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Abstract

By 2016, it is no secret to the global networking community: there are not adequate bandwidth
resources to go around anymore. The growing traffic demand rate is expected to overpass the
10 exabytes per month soon, driven by not only the 10 billion user equipments (UE) but also
the emerging Machine Type Communications (MTC) applications that are anticipated to bring
online 50 billion other devices. Such differentiated types of communications, offering a plethora
of differentiated services, sharpen the traffic demand heterogeneity adding tough constraints in
terms of latency, capacity, jitter, etc. Operators struggling with such traffic increase bet on
aggressively dense deployments, overlaying the conventional macro cell, where low-power small
cells dominate. Such heterogeneous network (HetNet) deployments will allow to spatially reuse
the given spectrum and provide additional capacity (e.g., in areas with dense usage such as
malls, airports, stadiums, etc.) as well as considerably improve spectral efficiency.

Nevertheless, the higher the deployment density the higher the chance that these networks
will suffer from intense spatio-temporal variations. Such fluctuations can create serious problems
in terms of performance, if not well studied. For instance, the arising load imbalance of such
deployments shall drive some Base Stations (BS) to congestion while leaving some other BSs
idle. Obviously, the former BSs shall offer rather subpar Quality of Service (QoS) to their users
as well as deteriorate (overall) system performance. On the other hand, the power wastage of
the latter BSs that serve little or no traffic while ON, is an issue under scrutiny for system energy
efficiency.

Additionally, the aggressive small cell densification, followed by a tremendous capacity
crunch, threatens the capacities of the corresponding backhaul links that provide connectiv-
ity to the core. In other words, next generation networks are expected to be mostly dominated
from backhaul links that are under-provisioned, i.e. incapable of meeting the tough capacity
requirements that radio access network pose. Usually, in such deployments multiple BS might
have to share the capacity of a single backhaul link due to, e.g, point-to-multipoint (PMP)
or multi-hop mesh topologies to the aggregation nodes. A complete end-to-end backhaul path
might also consist of links with different backhaul technologies (e.g., wired or wireless) and thus
different capabilities and requirements (e.g., in terms of capacity or delay). To that end, back-
haul network emerges as a complex performance bottleneck, and schemes that do not carefully
consider it might lead to poor performance.

The goal of this dissertation is twofold: (i) consider multiple dimensions in the traffic de-
mand entity to better reflect the heterogeneity of the services offered to users and the involved
requirements, as well as, (ii) optimization of various networking problems by jointly considering
the radio access and backhaul networks. This will allow us to achieve a good multi-dimension
tradeoff between different performance metrics (e.g., spectral efficiency versus load balancing,
or user QoS versus energy efficiency), preempt congestion issues, as well as reveal interesting
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Abstract

dependencies and bottlenecks for future HetNets. Towards this direction, we will perform ap-
propriate modeling, performance analysis, optimization for a family of objectives, using tools
mostly coming from (non) convex optimization, probability and queueing theory.

In particular, in Chapter 1 we provide a brief introduction to next generation heterogeneous
networks and the motivation of our work.

In Section 2, we start by investigating the popular user association problem by solely fo-
cusing on the radio access network. We adopt an α-fair family of objective functions widely
considered for user association, that directs the optimal solution towards different goals (e.g.
throughput optimal, delay-optimal, load balancing, etc.), and extend it considerably to better
capture the impact of traffic differentiation on radio access network performance. More precisely,
we formulate a convex optimization problem that studies (i) traffic differentiation between two
traffic classes (elastic and non-elastic flows), and (ii) uplink and downlink traffic performance, a
controversy to most of the related works in this context that usually investigate solely DL elastic
traffic demand. We then analytically prove different “device centric” user association rules that
end up maximizing either an arithmetic or a weighted harmonic mean of the achieved perfor-
mance along different dimensions, depending on whether uplink and downlink traffic of the same
user can be “split” to different BSs or not. Finally, we portray that our derived formulas can
be generalized and allow the inclusion of even more traffic dimensions in the problem setup and
flexible derivation of the corresponding optimal user association rules without any analytical
calculations.

In Chapter 3, we extend our framework for α-fair user association to extensively consider
the backhaul network limitations along with the radio access. In particular, we will try to shed
some light on the impact of (i) backhaul link capacities, and (ii) backhaul topology in different
under-provisioned scenarios. To do so, we include into our optimization problem appropriate
backhaul constraints, to ensure backhaul congestion avoidance, that eventually re-direct the
optimal point towards a shrinked feasible set. Our challenge is to keep the user association rules
“device centric”, even in scenarios where backhaul topologies are rather mesh. To that end, using
penalty functions for the emerging backhaul constraints we analytically derive novel backhaul-
aware user association rules that promise scalability irrespectively of the backhaul topology. We
also highlight that our rules still allow for the arithmetic or harmonic mean formula usage even
in under-provisioned backhaul scenarios.

In Chapters 2 and 3 we focused on various tradeoffs of the access and backhaul networks, by
assuming fixed bandwidth resource allocation between uplink and downlink (e.g., 50-50) on the
Medium Access Control (MAC) scheduler. However, the (i) asymmetric transmit powers of UEs
and different BSs leading to different physical data rates, along with the (ii) asymmetric traffic
applications (e.g., social media or video game applications), necessitate the need of matching the
uplink and downlink resources to the actual demand. To this end, in Chapter 4 we investigate
the opportunity of flexible Time Division Duplex (TDD) schemes, where e.g., each BS (or,
each backhaul link) having a limited amount of time resources can allocate them between the
downlink and uplink dimension based on the system/traffic dynamics. We then show that
optimizations of such TDD allocation shall interact jointly with UL/DL user association, since
separate optimization can lead to unnecessary performance deterioration. To that end, we
develop an α-fair optimization framework that tackles the interplay of (i) user-association, (ii)
radio resource allocation, and (iii) backhaul resource allocation of TDD resources. We propose
an algorithm that reduces the complexity of this non-convex problem by decomposing it into
three optimization subproblems, each potentially solved by a different network element and at
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different timescales. We finally show that under some certain circumstances such optimization
converges to the global optimum, by offering up to 3× higher performance in certain scenarios.

Eventually, in Chapter 5, we focus on energy efficiency, by investigating the trade off between
different user QoS criteria and energy savings. Specifically, we consider a novel sleep mode
scheme where BSs are switched-off to minimize energy, subject to three (BCD) QoS constraints:
B locking probability, C overage failure probability and Delay. The duration of the switching-off
period plays a key-role in the modeling of the various QoS constraints. We claim that while short
sleeping periods for small cells can result in a more complex analysis for the user QoS (since
the lack of the system convergence can invalidate the stationary formulas usually considered,
e.g. the Erlang-B for blocking probability), they can promise high energy savings when properly
considered. Towards this direction we strike a tradeoff between realistically capturing some
features of next generation cellular systems, while maintaining a certain analytical tractability
to provide insights into the user QoS vs. Energy savings.

In chapter 6 we conclude the thesis and discuss about future research directions.
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7.11 “Interférences croisées”, dans le cas où les BS voisins transmettent dans la direction

opposée. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.12 Taux d’arrivée. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.13 Associations optimales et TDD fixe/dynamique (τ = 0.5). . . . . . . . . . . . . . 104
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Chapter 1

Introduction.

1.1 Heterogeneous Networks

Wireless cellular networks typically consist of a set of User Equipments (UEs) and a collection
of Base Stations (BSs) that connect to the core network through a set of backhaul (BH) links.
In the traditional networks, traffic intensity and demand across different UEs usually remain
similar. Moreover, the BSs have alike transmit power levels, antenna patterns as well as backhaul
connectivity to the core.

Nowadays, the exponentially growing and varying traffic demand for UE services arising
from different applications is an emerging reality [1]. In particular, the “bandwidth hun-
gry” augmented-reality, social-networking as well as the various Machine Type Communication
(MTC) (e.g., monitoring healthcare or energy systems) applications pose tough capacity and
latency requirements. Operators struggling to cope with this traffic increase tend to build more
dense network deployments to improve spatial reuse. Specifically, they build additional low-
transmit power small cells (SC) along with the already existing high-transmit power macro BSs
(MBS). Let us point out that the power levels of the MBS is usually between 5 - 40 W, the
ones for SCs is only 0.25− 2 W. Networks composed of a mixture of different BSs with different
power levels (and thus different cell sizes) are called Heterogeneous Networks (HetNets).

Such HetNets have attracted the interest of Long Term Evolution (LTE) and Long Term
Evolution-Advanced (LTE-A) systems. From the earliest steps, LTE started studying such de-
ployments and referred to the different BSs as macro-, micro-, pico- and femto-cells; listed in
decreasing transmit power order. Later, additional SC types introduced with different abilities
and functionalities. For instance, in LTE Release 9 the Home eNB (HeNB) concept was intro-
duced. HeNB is mainly used to provide indoors coverage, for Closed Subscriber Groups, e.g.,
in office premises without major macro-network coordination. In LTE Release 10 the Relay
Node (RN) introduced as another low-power SC. RNs are BSs that offer enhanced coverage and
capacity at hot-spot areas can also be used to connect to remote areas without fiber connection.

While a dense HetNet topology is a promising opportunity to meet the growing traffic de-
mand, it requires a careful backhaul planning and support to serve the large number of SCs. To
that end, current research appears to study the new backhaul requirements in terms of Capital
Expenditure (CAPEX) and Operational Expenditure (OPEX), coverage, capacity, security, de-
lay, synchronization, physical design and management compared to the traditional ones posed
from macrocells. Next Generation Mobile Networks Alliance [2] and Small Cell Forum [3] provide
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Wireless Wired

Millimetre 70 - 80 GHz Direct fibre
Millimetre 60 GHz Digital subscriber line (xDSL)

Microwave point-to-point FTTx
Microwave point-to-multipoint Hybrid fibre-coax (HFC) and DOCSIS 3.0

Sub 6GHz Licensed -
TVWS -
Satellite -

Table 1.1: Backhaul Technologies.

various crucial contributions to address them.

One of the most important parameters for the backhaul planning and the related system ca-
pabilities is undoubtedly the backhaul technology of the link(s). Two backhaul network families
are widely considered in the related literature: the wired and wireless backhaul link technolo-
gies, as listed in Table 1.1 [3]. Their rather unsymmetrical characteristics make each of them
preferable in different scenarios. For instance, wired is usually an expensive backhaul option
and often impossible to deploy in rural areas with sparse BSs, hence making wireless a more
viable solution. There is also competition in intra-family technologies. E.g., in the wireless
family, the ability to provide Line-of-Sight (LoS) propagation, the duplexing mode, the licensing
arrangement, the ability for point-to-point (P2P) or point-to-multipoint (P2MP) connectivity
are some of the characteristics that suggest different wireless technologies to be better than
others in different scenarios. To that end, different operators shall choose different backhauling
strategies, and the complete backhauling end-to-end paths are expected to be dominated from
multiple technologies.

1.2 HetNet challenges and related work.

Radio access network, implementing the radio technologies at the BS level, have played a major
concern in HetNets during the last decade for both industrial and academic communities. The
latters have tried to tackle a plethora of different problems arising from different levels, where
typically the issue under scrutiny has been to improve the overall system performance. Such
performance improvements revolve around the following efficiency metrics:

• Area Spectral Efficiency, capturing how efficiently a limited spectrum is utilized per area
unit. Typically, HetNets promise significant enhancements since (i) the short-coverage
area SCs are allowed to reuse the spectrum locally, and (ii) the UEs are brought closer to
the BSs by enhancing the link quality.

• Load Balancing Efficiency, reflecting how well the traffic loads are distributed among
different BSs can be improved since the high number of available SCs can offload the
(usually congested) macro BSs so that the total load is distributed more evenly.

• Energy Efficiency, portraying the potential energy redundancy when the network runs,
can be improved by switching off the under-utilized SCs.
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Nevertheless, these efficiency metrics are not necessarily aligned and there are some non-
trivial conflicts between them. To that end, a great amount of works that attempt to achieve a
good tradeoff between them have appeared recently. For instance, since power and bandwidth
constrict the achievable gains under differentiated manners, many works have appeared, trying
to achieve a good tradeoff between energy and spectral efficiency [4, 5]. Load balancing and
energy efficiency coupling is investigated in [6–9]. The issue under scrutiny upon this tradeoff
is usually whether an under-utilized BS should be switched-off (to improve energy efficiency)
or stay switched-on and carry more traffic from neighboring over-utilized BSs (to improve load-
balancing). In [10] the tradeoff between spectral and load balancing efficiency is well studied,
where the authors explain that different weights of such a tradeoff are able to improve different
performance metrics.

Things get more complicated when user Quality of Service (QoS) enters into the picture.

• User QoS is the performance seen by the users, and is often considered in terms of service
delay, error rates, blocking probability, throughput, jitter, etc.

User QoS has an explicit relationship with spectral, load balancing and energy efficiency. As
an illustration, there has been an inconclusive debate about whether spectral or load balancing
efficiency plays the key role to optimize user QoS. Believing that “spectral efficiency is the main
driver of user QoS”, as most of the people tend to think, is an old fashion myth as stated from
Andrews et al., in [11]. There, as well as, in other related works [10, 12–16], it was shown that
user QoS heavily depends also on the BS loads. To put it differently, when the system is highly
loaded user QoS is usually killed. Additionally, another great amount of work tries to achieve a
good tradeoff between the contradicting notions of energy efficiency and user QoS [5, 6, 17, 18]:
switching-off BSs to save energy reduces the resources given to the users and harms their QoS.
This tradeoff is a major concern for network greening and its importance is highlighted for next
generation systems.

Typically, achieving a good tradeoff between such conflicting performance metrics (e.g., user
QoS, energy efficiency, etc.) is usually a rather challenging task. Current literature on this
abounds on examples that lie at the heart of different involved problems. We turn now our
attention on such problems and discuss in detail how current systems (e.g., LTE or LTE-A)
treat them to tradeoff different metrics. Such problems and involved tradeoffs for next generation
networks, will be one of the major concerns of this dissertation.

1.2.1 Problem 1: User Association in HetNets.

User association is the problem of associating users with BSs.

In conventional cellular systems, this problem was tackled by associating each user to the BS
with maximum SINR: such association rule was the base up to LTE-release 8. While this rule
also maximizes the instantaneous rate of a user (i.e., the best modulation and coding scheme -
MCS - supported), it reflects user QoS only when the BS is lightly loaded [11]. For example,
user performance, in terms of per flow delay or throughput, may be severely affected if the BS
offering the best SINR is congested [14,19]. Thus, current user association algorithms in HetNets
with intense traffic fluctuations suggest to explicitly consider the two conflicting concerns of: (i)
maximizing the spectral efficiency, and (ii) ensuring that the load across BSs is balanced to
improve load balancing and preempt congestion events.
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A number of research works have studied the problem of user association in HetNets, op-
timizing user rates [20–22], balancing BS loads [12, 23–27], or pursuing a weighted tradeoff of
them [10,12,28] to better reflect different user QoS degrees. Cell range Expansion (CRE) tech-
niques, where the SINR of lightly loaded BSs is biased to make them more attractive to the
users are also popular for the latter tradeoff in user association [29–34]. Interference-aware and
cooperative communication techniques such as coordinated beamforming [35, 36], coordinated
multi-point (CoMP) [37], and Device-to-device cooperation [38] were also proposed in this con-
text. Other related studies include the popular distributed user association algorithm proposed
in [39], where the global outage probability and the long term rate maximization are jointly
considered in the context of load balancing. The authors in [40] propose a framework that stud-
ies the interplay of user association and resource allocation in future HetNets, by formulating a
non-convex optimization problem and deriving useful performance upper bounds.

Finally, a user association framework that has received much attention is [10]. This frame-
work jointly considers a family of objective functions, each of which directs the optimal solution
towards different goals using an iterative algorithm. This framework has a similar form with the
α-fair utility function [41]. Specifically, by changing the α parameter one can flexibly optimize
different performance metrics, such as spectral or load balancing efficiency, delay, throughput
etc. [6,42,43] extend this framework to further include energy management, e.g., by switching off
under-loaded BSs. There, a key input parameter weights the importance of power savings versus
the original objective and the optimal solution is flexibly re-directed under the new feasible set.

1.2.2 Problem 2: Flexible TDD schemes in HetNets.

Typically, in wireless cellular systems, each BS is given an amount of bandwidth resources to
utilize for both DL and UL traffic by duplexing on the frequency (Frequency Division Duplex-
FDD) or the time (Time Division Duplex-TDD) domain1.

While in traditional networks FDD was the most popular choice, fixed and flexible TDD
started gaining more ground in LTE and LTE-A systems. Having been sketched initially for
traditional full coverage MBS deployments, fixed TDD was rather rigid with scarce flexibilities,
i.e., a pre-determined and fixed TDD pattern was expected to be selected for the complete
network in the longterm [45]. While such static TDD systems prohibited the resource adaptation
on potential traffic fluctuations, this was not a major problem in such primary systems because
macro cells usually aggregated a large number of users without significant traffic variations.

Nonetheless, in current HetNet deployments where SCs dominate, each BS is usually asso-
ciated with a small number of concurrent UEs. Thus, intense traffic fluctuations emerge the
dynamic TDD adaptation that match the UL and DL resources to the actual demand as a key.
As an example, focus on a SC that only serves one user. Obviously, system performance (in
terms of e.g., user throughput) can be drastically enhanced by TDD adaption depending on
whether he is doing uplink or downlink. Motivated by this, LTE Release 12 standardizes a re-
lated key-enabler for future 5G networks, namely “enhanced Interference Mitigation and Traffic
Adaptation” (eIMTA) [46].

Recently, a few works have appeared that try to match the UL and DL resources to the
actual demand in this context. For instance [47] propose that MBSs should be mostly scheduled
for DL due to their high transmit power, and SCs for UL to minimize the path loss. Such a

1The impossibility for radios to transmit and receive on the same frequency band simultaneously, establishes
this fundamental necessity [44].
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scheme shall improve spectral efficiency due to the higher achieved SINRs in both directions.
Other additional allocation schemes have further been proposed to better allocate the given
resources and improve user QoS [48] [49] [50]. In these frameworks, the allocation is realized
in a more sophisticated way by weighting the actual traffic demand in both directions, to avoid
resource wastage. Performance evaluation shows that user QoS can be significantly improved
when resources are flexibly adjusted on the current traffic fluctuations.

1.2.3 Problem 3: BS greening schemes in HetNets.

Minimizing energy consumption is of utmost importance for wireless cellular networks, not only
because the latters are a major energy killer worldwide [51,52] and the fact that electricity is the
main contributor for their high OPEX [53], but also because environmental protection becomes
a global inevitable trend.

In particular, there is overwhelming evidence corroborating the notion that radio access
network contribute 60-70% of the total energy consumption in wireless cellular systems [54].
Thus, most of the related works usually focus on decreasing the energy consumption of BSs e.g.,
see [6,55–61]. In particular, “cell breathing”, known also as “cell zooming” techniques are rather
popular in this context. These usually include sophisticated BS power management methods
where multiple cells can coordinate together to adjust their transmit power according to network
or traffic situation [58,60,62].

Additionally, under a certain under-utilization level e.g., during the night hours where traffic
load is usually light or negligible, some SCs could annihilate their transmit power i.e. completely
switch-off their functionality. There, some MBSs could remain ON, acting as umbrella-BSs, to
serve the few UE that remain active. Nowadays, such sleep mode techniques, that switch-off
BSs under various criteria, have played a major role for network greening. Various frameworks
have been proposed in this context, e.g., [6,57,61,63,64], most of them by trying to address the
complex tradeoff between power/energy consumption and user QoS.

1.3 Motivation and Contributions of the Thesis

Based on the previous discussion, HetNets indeed offer significant opportunities to improve
various performance metrics or achieve a good tradeoff between them in next-generation systems.

1.3.1 Motivation.

Most of current works in this context, following conventionalities of earlier networks usually (i)
maintain many traditional assumptions in the flow level and traffic modeling, (ii) ignore the
emerging bottlenecks in the backhaul and fronthaul network, as well as (iii) try separate opti-
mizations in coupling networking problems. Such weaknesses indeed can invalidate the offered
insights, results, and improvements as well as question their effectiveness by calling for more
modern and sophisticated related algorithms. In the rest of the section, we further investigate
such weaknesses and omissions of current standards by claiming that they can lead to either
wastage of bandwidth resources and system performance degradation. Later, in Section 1.3.2
we will show how one can efficiently address them through major problem revisions.
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LTE QCI Resource Type Example Service

1 GBR Conversational voice
2 GBR Live streaming of conversational voice
3 GBR Real time gaming
4 GBR Non conversational video(Buffered streaming)
5 Non-GBR IMS signaling
6 Non-GBR Video (buffered streaming),TCP based applications
7 Non-GBR Voice, video (live streaming), interactive gaming
8 Non-GBR Video (Buffered streaming), TCP based applications
9 Non-GBR Video (Buffered streaming), TCP based applications

Table 1.2: Flow types along with their QoS Class Identifier (QCI) proposed by LTE.

Traffic differentiation. Most of the current works studying the above-mentioned problems
solely assume homogeneous traffic profiles, and usually only focus on the DL direction.

For example, [6, 42, 43, 65–68] assume that all flows generated by a UE are “best-effort” (i.e.
elastic). However, modern and future networks will have to deal with high traffic differentiation,
with certain flows being able to require specific, dedicated (i.e., non-elastic) resources [69]. Such
dedicated flows do not share BS resources like best-effort ones, are subject to admission control,
and sensitive to different performance metrics. Thus, in our work we propose that one shall
explicitly consider the following traffic classes

• dedicated flows, where dedicated bearers are allocated for Guaranteed Bit Rate (GBR)
type of traffic to meet the required bit rate or latency constraints. In LTE and LTE-A
systems, these are differentiated by their QoS class of identifier (QCI) ranging from 1 to 4
(see also Table 1.2),

• best-effort flows, related to non-GBR traffic, and QCI from 5 to 9 (see also Table 1.2).

In addition, the majority of related studies only consider downlink (DL) traffic [6,19,22,65,
69–76]. Uplink (UL) traffic is becoming important, due to symmetric (e.g., social networking)
applications, MTC, augmented reality games (e.g., PokemonGo) etc. Yet, due to the asymmetric
transmit powers of UEs and BSs, leading to different physical data rates, the BS which is
optimal for DL traffic might lead to severely degraded performance for UL traffic. Thus, we also
differentiate between:

• downlink flows, with direction from the BS to the UE, and

• uplink flows, with direction from the UE to the BS.

In this context, there are many questions arising and that we attempt to tackle. How shall
such traffic differentiation affect the above mentioned problems? For example, shall dedicated
flows that are obviously associated with different (e.g., latency or capacity) requirements affect
similarly the BS loads and overall performance as the best-effort ones? What is the optimal way
that one can deal with the asymmetric UL and DL flow dynamics?

Additionally, in current systems, depending on the operator capabilities and desires one can
encounter two techniques for uplink and downlink traffic offloading
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• Split UL/DL, where a UE is allowed to be associated with two different BSs: one for its
UL and one for its DL traffic,

• Joint UL/DL, where each UE is required to be connected to a single BS for both UL and
DL traffic.

Split UL/DL was standardized in LTE Release 12 [77]. While it is obvious that Split UL/DL
can simultaneously optimize both downlink and uplink performance since it allows for two dis-
tinct associations, the corresponding improvements are not rather clear yet. Some initial heuris-
tics trying to sketch a few introductory insights on the improvements of Split have appeared
recently e.g., [18, 47, 78]. However, the maximum and precise enhancements in different perfor-
mance metrics are clouded yet and call for more analytical frameworks that investigate them in
depth.

Impact of backhaul limitations. Most related works focus on the radio access network
e.g., considering the physical user data rate on the access radio interface or BS load, ignoring
the backhaul network [4,6, 9, 23,31,37,40,47–49,61,66,67,73,75,78–83].

While such an assumption might be reasonable for legacy cellular networks, given that the
macrocell backhaul is often over-provisioned (e.g., fiber), this might be quite suboptimal for next
generation deployments. There, the considerably higher number of SCs, and related CAPEX
and OPEX2 suggest that backhaul links will mostly be inexpensive wired or wireless (in licensed
or unlicensed bands), and under-provisioned [3]. Multiple BS might also have to share the
capacity of a single backhaul link due to, e.g, point-to-multipoint (PMP) or multi-hop mesh
topologies to the aggregation node(s) [85]. Additionally, the various BS-coordinated schemes
that discussed to better exploit the given spectrum (e.g., enhanced Inter-Cell Interference Co-
ordination (eICIC) [82] and Coordinated Multi-Point (CoMP) transmission [37]) are expected
to further stress the backhaul network capacities.

Such an emerging bottleneck gets even more difficult to be tackled if one thinks that backhaul
network nowadays consists of heterogeneous links with different (e.g., in terms of capacity or
latency) capabilities and requirements. Thus, a flow might follow an end-to-end path consisting
of links with heterogeneous technologies.

Summing up, as the radio access network technologies (e.g., as analyzed in Chapter 1.2) are
constantly improving, it is argued that the backhaul network will emerge as a major performance
bottleneck. Thus, the algorithms that ignore the backhaul load, topology and technology will
be usually leading to poor performance [70]. This calls for the extensive consideration of the
backhaul network and the impact of its limitations.

Joint access and backhaul optimizations. As discussed there are plenty of algorithms
that consider various access network functionalities such as user association and dynamic TDD
allocation. However, as showed most of them do so in separation. Additionally, while there are
some primal works that try to optimize backhaul network functionalities, most of them do so
separately with the access network. Thus, the value of such works is questionable since there are
strong dependencies between different intra-network functionalities (e.g., user association and
TDD allocation) and inter-network ones (e.g., acess and backhaul).

2The dense deployments of SCs with low number of users suggest that the cost of their backhauling becomes
a significant part of the total CAPEX/OPEX, and in some cases could exceed the cost of their equipment [84].

7



CHAPTER 1. INTRODUCTION.

To make this more clear, assume that a UE is connected to a macro BS in the DL (from
which it receives the highest signal level), and to an SC in the UL (where the pathloss is lower),
as suggested in [47]. If the DL resources of the macro BS, or the UL resources of the SC are
not sufficient, this approach can lead to unnecessary congestion or under-utilization in either
direction. This suggests that, joint optimization of the two different access optimizations for user
association and dynamic TDD is key. Similarly, if the corresponding backhaul resources are not
well adapted to the requirements that radio access network pose, performance degradation will
be inevitable. Thus, backhaul resource allocation policies shall interact with the different radio
access policies, in order to satisfy the demands and the requirements that the latter generate. It is
not clear yet how such a synchronization can be established, and the quantitative improvements
it promises.

Short timescale sleep modes. As discussed previously a large research effort has been
initiated recently in the area of “green” networks.

Nevertheless, most past studies are performed not only in the context of simple QoS con-
straints related to homogeneous traffic profiles (e.g., signal quality as in [86], or traditional
blocking probabilities as in [17]), but also under the large time-scale sleeping mode (e.g., turning
off BSs during the night or for some hours [6, 8, 17, 23, 28, 51, 52, 83, 87]). In modern and future
HetNets, dealing with energy consumption issues becomes more challenging. Significantly more
opportunities arise for switching off SCs in smaller time scales (e.g., in the order of some min-
utes), due to the spatio-temporal load variations as well as their rapid and (mostly) power-free
transitions between ON and OFF states. Exploiting such opportunities in that short timescale
durations has not been investigated, yet. As a result, a number of interesting questions arise
in the context of HetNet that remain unexplored: Should the duration of switching-off period,
affect our decision, and if so, how? Which types of users and BSs should one consider when
making such a power management decision?

1.3.2 Contributions and Outline.

The focus of this thesis is on trying to provide answers to the above-mentioned questions by
revising Problems 1-3. To do so, we use novel objective functions and constraints, more re-
alistic assumptions as well as appropriate modeling to better reflect the arising requirements,
bottlenecks and trends for next generation networks. Using tools mostly coming from queue-
ing, probability as well as convex and non-convex optimization theory we provide the optimal
solutions for the various considered problems and perform evaluation analysis and comparison
with existing work. Throughout our results, we provide various insights, both quantitatively and
qualitatively, for a number of different problems and the involved tradeoffs, and we explicitly
show the impact of the arisen bottlenecks.

Specifically, the chapters of the thesis, and the main contributions in each one of them, are
organized as following:

Chapter 2 - Traffic steering user-association optimizations. As stressed earlier,
traffic differentiation is a key limitation in the works related to the user association problem.

In this chapter we consider (i) the dedicated flow types along with the best-effort ones as well
as (ii) uplink traffic performance. We propose new scheduling disciplines for the dedicated flows
at the BS level. We then analytically show how they affect the cell loads and the user QoS under
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an α-fairness family of objective functions that optimize different metrics for both split and non-
split scenarios. Note that playing with α one can flexibly tradeoff different performance metrics
such as: spectral efficiency, load balancing, user throughput, flow delay, etc. Using convex
optimization theory we analytically prove a set of optimal user-association rules that end up
maximizing either an arithmetic or a weighted harmonic mean of the achieved performance along
different dimensions (e.g. UL and DL performance or dedicated and best-effort performance).
We underline that our rules are “device-centric” by allowing for distributed implementations.
These rules are: scalable (constant amount of the BS broadcast messages irrespective of the
number of users), simple (constant complexity of the rule with respect to the number of BSs),
and offer flexible performance (defined from α values).

The work related to this chapter is

• N. Sapountzis, T. Spyropoulos, N. Nikaein, U. Salim, An analytical framework for optimal
downlink-uplink user association in HetNets with traffic differentiation, in Proc. IEEE
Global Communications (GLOBECOM) Conference, San Diego, CA, USA, 2015.

The following novel handover algorithm for HetNets, that considers jointly the user- and
network- performance, was inspired by our proposed user association algorithm

• K. Alexandris, N. Sapountzis, N. Nikaein and T. Spyropoulos. “Load-aware Handover
Decision Algorithm in Next-Generation HetNets”, IEEE WCNC, Doha, Qatar, 2016.

Chapter 3 - Backhaul aware user-association optimizations. As stressed earlier,
backhaul network is an emerging performance bottleneck and most of the existing user associa-
tion frameworks ignore it. As a matter of fact, their performance is questionable.

In this chapter our focus is on backhaul network limitations and their impact on system
performance while associating users with BSs. Specifically, we extend the work introduced
in Chapter 2 by including (i) various backhaul link capacity constraints, as well as (ii) the
backhaul topology. We thus derive novel user association rules that jointly consider radio access
and backhaul performance, and end up optimizing the (same) α-fairness family of objective
functions under the new feasible set. Finally, we show that our novel backhaul aware user
association rules still satisfy the criteria of (i) scalability (constant amount of the BS broadcast
messages irrespective of the number of users and backhaul topology), (ii) simplicity, (iii) fairness.

The work related to this chapter is

• N. Sapountzis, T. Spyropoulos, N. Nikaein, U. Salim, Optimal Downlink and Uplink User
Association in Backhaul-limited HetNets, in Proc. IEEE International Conference on
Computer Communications (INFOCOM), San Francisco, CA, USA, 2016.

– Best Presentation Award in Heterogeneous Networks Session.

• N. Sapountzis, T. Spyropoulos, N. Nikaein, U. Salim, User Association in HetNets: Impact
of Traffic Differentiation and Backhaul Limitations, pending major revision, IEEE/ ACM
Transactions on Networking (ToN), May 2016.

Chapter 4 - Flexible TDD Allocation for Access and Backhaul Networks on top
of User Association optimizations. As stressed earlier, dynamic TDD allocation at the
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BS level is usually tackled separately from user association by threatening the success of future
systems. Thus, joint optimization of them along with backhaul network optimizations is key.

In this chapter we develop a framework that tackles the optimal interplay of (i) user-
association, (ii) radio resource allocation, and (iii) backhaul resource allocation of TDD resources
for the α-fairness family of objective functions. We extend the α-objective function to capture
the various fairness degrees upon the new resource allocation parameters. This problem is asso-
ciated with three optimization variables and it is non-convex on them. We propose an iterative
algorithm that reduces the complexity of this problem by decomposing it into three optimization
subproblems, each potentially solved by a different network element and at different timescales.
We prove convergence to the global optimum, and provide simulation results that demonstrate
the performance benefits of our approach.

The work related to this chapter is

• N. Sapountzis, T. Spyropoulos, N. Nikaein, U. Salim, HoP: Hierarchize then optimize:
A distributed framework for user association and flexible TDD allocation for access and
backhaul networks, Tech-Report RR-16-328, Eurecom, 2016.

Chapter 5 - Energy Optimizations subject to user QoS constraints. As stressed
earlier, while there are many studies investigating the potential energy savings upon various
sleeping mode scenarios for BSs, most of them are performed under (i) homogeneous traffic
profiles, and (ii) the large timescale assumption. As explained such frameworks fail to capture
future HetNet necessities as well as opportunities.

Towards tackling these shortcomings, in this chapter we identify three QoS constraints,
related to different ways that the performance of a UE could deteriorate. We then derive ana-
lytically the probability of violating each of them, as a function of user and network parameters.
Our goal in this direction is to strike a tradeoff between realistically capturing some features of
new, data-centric cellular systems, while maintaining a certain analytical tractability to provide
insights into the user QoS vs. Energy savings. The main novelty of our methodology is that we
can select even a small time-interval, for the sleeping period, and evaluate the energy-QoE trade-
off by switching to transient analysis (rather than stationary analysis) of the stochastic model in
hand. Based on these QoE constraints and the time duration, we perform a preliminary study
and show that significant energy savings can be achieved even for switching-off periods of the
order of some minutes.

More specifically, the user QoS constraints considered include:

• “Blocking” probabilities, i.e. the probability that a flow that requires a certain amount of
(dedicated) bandwidth, is blocked due to the lack of the available resources.

• “Coverage Failure probabilities”, i.e. the probability that a random UE experiences poor
signal quality when it needs to use the network (e.g. making a call, or sending a web
request).

• “Delay” for regular “best-effort” flows, i.e. the ongoing delay for the flows that are multi-
plexed and have to compete for resources.

The works related to this chapter are

10
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• N. Sapountzis, T. Spyropoulos, N. Nikaein, U. Salim, Reducing the energy consumption
of small cell networks subject to QoE constraints, in Proc. IEEE Global Communications
(GLOBECOM) Conference, Austin, TX, USA, 2014.

• D. Wang, E. Karathanaras, A. Quddus, N. Sapountzis, L. Cominardi, F. Kuo, P. Rost,
C.J. Bernardos, I. Berberana, SDN-based Joint Backhaul and Access design for Efficient
Network Layer Operations, in Proc. IEEE European Conference on Networks and Com-
munications (EuCNC), Paris, France, 2015.
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Chapter 2

Traffic-steering User Association
Optimizations.

2.1 Introduction

As explicitly discussed in Chapter 1, future HetNet deployments are expected to experience high
spatio-temporal load fluctuations. This suggests that conventional user association schemes, e.g.,
associating a UE with the BS with the highest SINR, shall offer subpar performance by calling
for more sophisticated user association algorithms.

There are two, often conflicting, concerns when assigning UEs to a BS in the modern associ-
ation schemes: (i) maximizing the spectral efficiency, and (ii) ensuring that the load across BSs
is balanced to improve the utilization efficiency and preempt congestion events. While there
are many works that try to pursue a good tradeoff between them, most of them are relatively
simplified, not taking into account key features of future networks.

Firstly, most existing studies only consider homogeneous traffic profiles. For example,
[6, 10, 65] assume that all flows generated by a UE are “best-effort” (i.e., elastic). However,
as highlighted in Chapter 1, modern and future networks will have to deal with high traffic dif-
ferentiation, with certain flows being able to require specific, dedicated resources (i.e., dedicated).
Such dedicated flows do not share BS resources like best-effort ones, are subject to admission
control, and sensitive to different performance metrics by suggesting revision of current user
association algorithms. Secondly, while the majority of related studies only consider downlink
traffic, uplink traffic is becoming of utmost importance too. The asymmetric transmit powers
between the UEs and different BSs differentiate the DL and UL physical data rates significantly.
This suggests that associating a UE with the BS that offers the highest DL SINR, may lead to
subpar UL performance or require high UE transmission power and thus high energy wastage.
What is more, the traffic load on the DL and UL may vary significantly, due to the asymmetric
traffic applications. For instance, when a user is browsing he consumes resources mostly from
the downlink, when uploading a video from the uplink, or when playing an online interactive
video game from both downlink and uplink.

Additionally, most of the related work in the literature towards developing various user as-
sociation rules usually require some centralized knowledge [18, 88–90]. These need a controller
entity that governs the BSs and the UEs with access to all the necessary information. How-
ever, depending on the operator capabilities such an implementation may not be applicable.

13



CHAPTER 2. TRAFFIC-STEERING USER ASSOCIATION OPTIMIZATIONS.

Additionally, even when it is applicable, it may (a) require excessive message overhead and
computational complexity that increase exponentially in the network size, as well as (b) allow
only for slow adaptation on the queuing statistics at relatively long timescales, since such a
controller is usually implemented in a server deep in the core network. Thus, to avoid relying
on a centralized controller, current systems aim on distributed implementations by highlighting
the importance of “device centric” user association rules.

To this end, in this Chapter we revisit the problem of user association in a more complex
setup. We adopt the basic α-fair objective function and methodology proposed in [10] as our
starting point, and extend the framework considerably to include the above-mentioned chal-
lenges. Specifically, our contributions can be summarized as follows:

1) We introduce (i) dedicated flows along with a different scheduling discipline, (ii) the asym-
metric UL traffic performance, (iii) the ability for both Split/Joint UL/DL association into the
system model.

2) We prove that a “device centric” user association rule can still be derived for the complete
framework. Interestingly, this rule when considering multiple objectives resembles a (weighted)
harmonic or arithmetic mean of the individual association rules, depending on the whether Split
or Joint association is applied.

3) We further investigate the complex tradeoffs involved quantitatively to provide some initial
insights and guidelines about user-association policies in future HetNets.

The remainder of the Chapter is organized as follows: Section 2.2 outlines our system model
along with the considered scheduling disciplines. The proposed framework for the optimal user-
association is described in Section 2.3. Section 2.4 presents some simulation results, and Sec-
tion 2.5 concludes the Chapter.

2.2 System Model and Assumptions

In the following, we describe our assumptions related to the traffic arrival model (Assumptions
A.1-A.3) and the radio access network (Assumptions B.1-B.10).

We use a similar problem setup as the one used in a number of related works [6,10,42,67], and
extend it accordingly. To keep notation consistent, for all variables considered a first superscript
“D” and “U” refers to downlink (DL) and uplink (UL) traffic, respectively. A second superscript
“b” or “d” refers to best-effort and dedicated traffic, respectively. For brevity, in the following
we present most notation and assumptions in terms of downlink traffic only, assuming that the
uplink case and notation is symmetric. Specific differences will be elaborated, where necessary.
In Table 2.1, we summarize some useful notation we use throughout the chapter as well as
throughout the dissertation.

(A.1 - Traffic arrival rates) Traffic at location x ∈ L consists of file (or more generally
flow) requests arriving according to an inhomogeneous Poisson point process with arrival rate
per unit area λ(x)1. This inhomogeneity facilitates the creation of “hotspot” areas. Each new
arriving request is for a downlink (DL) flow, with probability zD, or uplink (UL) flow with
probability zU = 1 − zD. Each DL (or UL) flow can furher be a best-effort flow (e.g., file

1Without loss of generality, we do not distinguish between users at location x, as we assume that all users/flows
related to location x are treated similarly.
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Table 2.1: Notation

Variable Best-Effort Flows Dedicated Flows
Downlink Uplink Downlink Uplink

Flow type superscript D,b U,b D,d U,d

Flow type probability zD · zb zU · zb zD · zd zU · zd
Devoted bandwidth for BS i wi · ζi · ξDi wi(1− ζi) · ξUi wi · ζi(1− ξDi ) wi(1− ζi)(1− ξUi )

Traffic arrival rate at x λD,b(x) λU,b(x) λD,d(x) λU,d(x)

Max. rate | servers at x of BS i cD,bi (x) cU,bi (x) kDi (x) kUi (x)

System load at x of BS i ρD,b(x) ρU,b(x) ρD,d(x) ρU,d(x)

LB degree parameter ∈ [0,∞) αD,b αU,b αD,d αU,d

Total load of the i-th BS ρD,b ρU,b ρD,d ρU,d

Chance that a flow at x associate i pD,bi (x) pU,bi (x) pD,di (x) pU,di (x)

Flow size (bits) | duration (sec) a 1/µD,b 1/µU,b 1/µD,d 1/µU,d

Flow demand (bps) - - BD BU

Capacity of BH link j CDh (j) CUh (j) - -

Congestion indicator at BH link j ID(j) IU (j) - -

download) with probability zb, or dedicated flow (e.g., a VoIP call), with probability zd = 1−zb.
zD and zb are input parameters that depend on the traffic mix.

Using a Poisson splitting argument [14], it follows that the above gives rise to 4 independent,
Poisson flow arrival processes with respective rates

λD,b(x) = zD · zb · λ(x), λD,d(x) = zD · zd · λ(x) (2.1)

λU,b(x) = zU · zb · λ(x), λU,d(x) = zU · zd · λ(x), (2.2)

(λD,b(x) for the downlink best-effort flows, λU,b(x) for the uplink best-effort flows, etc.).

(A.2 - Best effort flow characteristics) Each best-effort flow is associated with a flow-size
(in bits) drawn from a generic distribution with mean 1/µD,b. 2

(A.3 - Dedicated flow characteristics) Each dedicated flow has a required data-rate (in
bits per second) that is drawn from a generic distribution with mean BD. This rate must be
guaranteed by the network throughout the flow’s duration. This duration (in seconds) is another,
independent random variable with mean 1/µD,d.

We now turn our attention to the radio access network.

(B.1 - Access network topology) We assume an area L ⊂ R2 served by a set of base
stations B, that are either MBSs or SCs. These together constitute the radio access network.

(B.2 - DL resources) Each BS i ∈ B is associated with a total bandwidth wi. Out of the
total bandwidth we perform two splits. We firstly introduce the parameter 0 < ζi < 1. wi · ζi is
the bandwidth resources allocated to DL traffic and the rest wi · (1−ζi) to the UL. Likewise, the
parameter 0 < ξDi < 1 further splits the DL resources. Specifically, wi · ζi · ξDi are the bandwidth

2Note that one can model heterogeneous flow characteristics across locations by considering different 1/µD,b(x)
at different x. This will come at the cost of the BS broadcast message increase (the number of broadcast messages,
as discussed in Theorem 3.1, will increase from 2 to 4).
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Figure 2.1: Processor sharing and k-loss queuing systems for (i) downlink dedicated, (ii) downlink
best-effort, (iii) uplink dedicated, and (iv) uplink best-effort flows.

resources for DL best effort traffic whereas wi · ζi · (1 − ξDi ) for the DL dedicated traffic. To
simplify discussion, in this Chapter we assume that these splits are fixed. However, later in
Chapter 4 we analytically show how one can optimize such bandwidth resource allocations.

(B.3 - DL physical data rate) BS i can deliver a maximum physical data transmission
rate of cDi (x) to a user at location x, in absence of any other flows served, which is given by the
Shannon capacity3

cDi (x) = (ζi · wi) · log2(1 + SINRi(x)), (2.3)

where SINRi(x) = Gi(x)Pi∑
j 6=iGj(x)Pj+N0

and Pi the transmit power of the BS. N0 is the noise power,

and Gi(x) represents the path loss and shadowing effects between the i-th BS and the UE located
at x (as well as antenna and coding gains, etc.)4. We assume that effects of fast fading are filtered
out. Our model assumes that the total intercell interference at location x is static, and considered
as another noise source, as is previously considered in most aforementioned works [6, 10].

Note that, due to B.2 the effective capacity for DL best effort flows will only be cD,bi (x) =

ξDi · cDi (x) whereas for DL dedicated only cD,di (x) = (1− ξDi ) · cDi (x).

The next 4 points (B.4-B.7) describe the scheduling and performance model for best effort
traffic only. We return to dedicated traffic in (B.8-B.9).

(B.4 - Best effort load density) We introduce the load density for best effort flows, at
different locations x,

ρD,bi (x) =
λD,b(x)

µD,bcD,bi (x)
, (2.4)

3We use Shannon capacity for clarity of presentation. However, our approach could be easily adapted to
include modulation and coding schemes (MCS). Furthermore, capacity improving technologies, e.g., the use of
MIMO, and modifications to this capacity formula are othogonal to our framework.

4In the case of UL, we assume that the Tx power of each user is PUE , and slightly abuse notation for SINR,
G, etc., as these don’t play a major role in the remaining discussion.
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which is the contribution of location x to the total load of a BS i, when location x is associated
to BS i.

(B.5 - Best effort load) Each location x is associated with routing probabilities pD,bi (x) ∈
[0, 1], which are the probabilities that best effort DL flows generated for users at location x get

associated with (i.e., are served by) BS i. We can thus define the total best effort load ρD,bi for
BS i as

ρi
D,b =

∫
L
pD,bi (x)ρD,bi (x)dx. (2.5)

Similarly to [10, 19], we are interested in the flow-level dynamics of this system, and model the

service of DL best-effort flows at each BS as a queueing system with load ρD,bi shown in Fig. 2.1.
Finally, since we are interested in the aggregation of all flows at BS level (i.e., all flows from
all locations x assosicated to BS i), even if flow arrivals at each location are not Poisson (as
in A.1), the Palm-Khintchine theorem [14] suggests that Poisson assumption could be a good
approximation for the input traffic to a BS.

(B.6 - Best effort scheduling) Proportionally fair scheduling is often implemented in
modern networks for best-effort flows, due to its good fairness and spectral efficiency proper-
ties [69]. This can be modeled as an M/G/1 multi-class processor sharing (PS) system (see,
e.g., [6, 10, 19]). It is multi-class, because each flow might get different rates for similarly al-
located resources, due to different channel quality and MCS at x. Channel-based scheduling
could also be included in the model and can be accounted for using a multiplicative factor in
the average service rate [91].

(B.7 - Performance for best effort flows) The stationary number of flows in BS i is

equal to E[Ni] =
ρD,bi

1−ρD,bi

[14]. Hence, minimizing ρD,bi minimizes E[Ni], and by Little’s law it

also minimizes the per-flow delay for that base station [14]. Also, the throughput for a flow

at location x is cD,bi (x)(1 − ρD,bi ). This observation is important to understand how the user’s

physical data rate cD,bi (x) (related to users at location x only) and the BS load ρD,bi (related to
all users associated with BS i) affect the optimal association rule.

(B.8 - Dedicated traffic load density) Unlike best-effort flows which are elastic, dedicated
flows are subject to admission control, since they require some resources for exclusive usage in
order to be accepted in the system. Specifically, let ci

D,d(x) denote the maximum offered rate to
users at location x corresponding to dedicated flows only (referred to (1− ξDi ) - see B.2 above).

If each flow at x demands, on average, a rate of BD (see A.3), then at most kDi (x) = ci
D,d(x)
BD

dedicated flows from x could be served in parallel by BS i (assuming again no other flows in the
system), and any additional flows would be rejected5. Similarly to the best effort case (B.4), we
can define a system load density for dedicated traffic at x

ρi
D,d(x) =

λD,d(x)

µD,dkDi (x)
=

λD,d(x) ·BD

µD,d · ciD,d(x)
. (2.6)

(B.9 - Dedicated traffic performance) Given the above heterogeneous blocking model for
dedicated flows, we can approximate the allocation of BS i dedicated resources with an M/G/k/k

5In fact, since the rate requirement for each flow is a random variable, using its mean BD in the denominator
yields a lower bound for kDi (x) (by Jensen’s inequality), which can be used as a conservative estimate.
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(or k-loss) system, where the total load ρD,di can be calculated as in (B.5) and Eq. (2.5), using the

density of Eq. (2.6) and corresponding routing probability pD,di (x) for dedicated flows (see also

Fig. 2.1). It is known that for M/G/k/k systems, minimizing ρD,di is equivalent to minimizing
the blocking probability, given from the Erlang-B formula, for new flows [14]. This observation
is important to understand that a similar tradeoff (as in B.7) exists between choosing a BS at
x that maximizes kDi (x) (related only to flow and channel characteristics at x) and choosing a

BS whose total load ρD,di (related to all users attached to BS i).

(B.10 - UL/DL association split) We investigate two scenarios, depending on the whether
a UE is allowed to be attached to different BSs for its DL and UL traffic [77]:

Split UL/DL: Each UE can be associated to different BSs for its DL and UL traffic. This
allows one to optimize UL and DL performance independently.

Joint UL/DL: Each UE must be associated with the same BS for both UL and DL traffic.
This is the standard practice in current networks.

2.3 Traffic-Steering User Association: Problem and Optimal
Rules.

We remind to the reader that based on our system model, the association policy consists in
finding appropriate values for the routing probabilities pl,ti (x), l ∈ {D,U}, t ∈ {b, d}, for DL
and UL, best-effort and dedicated traffic, respectively (defined earlier in assumption B.5 and
B.9). That is, for each location x, we would like to optimally choose to which BS i to route
different flow types generated from (UL) or destined at (DL) users in x6. As it will turn out
later, these probabilities can take the same or different values, depending on the scenario.

Our goal for this association problem is threefold: (i) ensure that the capacity of no BS is
exceeded; (ii) achieve a good tradeoff between spectral efficiency, user QoS and load balanc-
ing, (iii) investigate how UL/DL association split impacts the optimal rule derivation and the
performance benefits of split UL/DL.

To that end, in Section 2.3.1 we explicitly sketch an extended version of the convex α-fair
objective function defined on a convex feasible set and then, we formulate the arising Optimiza-
tion Problem 1. In Sections 2.3.2, 2.3.3 we separately solve this problem upon Split and Joint
UL/DL association and illustrate our novel user association rules. Section 2.3.4 completes our
framework by illustrating our proposed distributed implementation.

2.3.1 Feasible Set, Objective Function and Optimization Problem 1

We define the feasible region for the aforementioned routing probabilities, by requiring that no
BS capacity being exceeded.

Definition 1. (Feasibility) Let l ∈ {U,D}, t ∈ {b, d}, and let ε be an arbitrarily small positive

6The use of a probabilistic association rule simplifies solving the problem. As it will turn out, the optimal
values will be either 0 or 1 (deterministic).
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constant. The set f l,t of feasible BS loads ρl,t = (ρl,t1 , ρ
l,t
2 , . . . , ρ

l,t
‖B‖) is

f l,t =
{
ρl,t | ρl,ti =

∫
L
pl,ti (x)ρl,ti (x)dx,

0 ≤ ρl,ti ≤ 1− ε,∑
i∈B

pl,ti (x) = 1,

0 ≤ pl,ti (x) ≤ 1,∀i ∈ B,∀x ∈ L
}
.

(2.7)

Lemma 1. The feasible sets fD,b, fD,d, fU,b, fU,d as well as the [fD,b; fD,d], [fU,b; fU,d], [fD,b; fU,b],
F = [fD,b; fD,d; fU,b; fU,d], are convex.

Proof. The proof for the feasible set fD,b is presented in [10]. It can be easily adapted for the
other cases, too.

Following [10] we extend the proposed objective to also include the DL dedicated traffic (see
A.1, A.3). We introduce parameter θ ∈ [0, 1] that helps the operator weigh the importance
of DL best effort versus DL dedicated traffic performance. αD,b controls the amount of load
balancing desired in the DL best-effort resources, and αD,d in the DL dedicated. Lets denote
αD = [αD,b;αD,d] and ρD = [ρD,b; ρD,d].

Definition 2. (Objective function for DL) Our objective is

φαD(ρD) =
∑
i∈B

θ ·
(1− ρD,bi )1−αD,b

αD,b − 1
+ (1− θ) ·

(1− ρD,di )1−αD,d

αD,d − 1
, if αD,d, αU 6= 1. (2.8)

If αD,b (or, αD,d) is equal to 1, the respective fraction must be replaced with log(1− ρD,bi )−1 (or,

log(1− ρD,di )−1).

As a final step, we want to further extend this objective to also capture the UL traffic
performance and thus, we introduce 0 ≤ τ ≤ 1 to trade it off with DL. Specifically, as τ → 0
the weight turns to DL traffic performance whereas as τ → 0 to UL. Lets assume that α =
[αD,b;αD,d;αU,b;αU,d] and ρ = [ρD,b; ρD,d; ρU,b; ρU,d].

Definition 3. (Objective function for DL and UL) The objective that jointly considers DL and
UL performance follows

φα(ρ) = τ · φαD(ρD) + (1− τ) · φαU(ρU). (2.9)

Lemma 2. The objective function φα(ρ) is convex.

Proof. Since φα(ρ) is a weighted sum of four convex functions [10], convexity is preseved [92].

Definition 4. (Optimization Problem 1) The UL/DL user association problem can be expressed
as

minimize
ρ

{φα(ρ)|ρ ∈ F},

subject to pDi (x) = pD,bi (x) = pD,di (x) and pUi (x) = pU,bi (x) = pU,di (x),

(dependent) subject to pDi (x) = pUi (x) iff joint UL/DL association,∀x ∈ L.

(2.10)
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The objective function to minimize is the α-fair cost function introduced in Eq. 2.9. The first
constraint ensures that all DL best-effort flows as well as all DL dedicated shall be originated
from the same BS, as most current cellular networks require. Similarly for UL. (This constraint
can be easily relaxed to reflect additional flexibilities, as we will show later.) On the other hand,
the DL and UL traffic is allowed to be associated with different BSs only for the split scenario
without additional constraints, as the second (dependent) constraint suggest. This constraint,
for joint uplink and downlink association, shall only be required in joint UL/DL association
scenarios (see B.10).

Lemma 3. Optimization Problem 1 is a convex minimization problem since its objective function
is convex in the convex set F .

In the next sections we discuss how one can derive “device-centric” user association rules, by
minimizing Optimization Problem 1.

2.3.2 Optimal Rules for Split UL/DL

We start with the simpler Split UL/DL association scenario where the dependent constraint
defined in Optimization Problem 1 is relaxed. Thus, in this scenario a UE can be associated
with different BSs for its DL and UL traffic (see B.10), i.e., pDi (x) and pUi (x) are allowed to take
different values.

It is obvious that in this case the UL and the DL problem decouple. Specifically, one can
separately optimize φαD(ρD) and φαU(ρU). In the reminder of the section we focus on the DL
(the UL case is symmetric) and to simplify notation we drop the “D” superscript.

Theorem 3.1. (Split UL/DL User Association Rule) If ρ∗ = (ρ∗1, ρ
∗
2, · · · , ρ∗||B||) denotes the

optimal load vector, the optimal “device-centric” user association rule at x is

i(x) = arg max
i∈B

 ci(x)︸ ︷︷ ︸
user knowledge

·
BS broadcast message︷︸︸︷

Pi

 (2.11)

where each BS i ∈ B shall broadcast the following weighted harmonic mean (of individual rules)
formula

Pi =

(
1− ρ∗bi

)αb · (1− ρ∗di )αd
eb ·
(
1− ρ∗di

)αd
+ ed ·

(
1− ρ∗bi

)αb .
Note that, eb = θzDzb

µbζiξDi
as well as ed = (1−θ)zDzdBD

µdζi(1−ξDi )
optimally weight the corresponding individual

association rules depending on the traffic statistics.

Proof. We prove that the above user association rule Eq. 2.11 indeed minimizes the objective
defined in Eq. 2.8, that is mainly the DL part of Eq. 2.9. As discussed there this is a convex
optimization problem. Hence, it is adequate to check the following condition for optimality

〈∇φ(ρ∗),∆ρ∗〉 ≥ 0 (2.12)

for all ρ ∈ f , where ∆ρ∗ = ρ − ρ∗. Let p(x) and p∗(x) be the associated routing probability
vectors for ρ and ρ∗, respectively. Using the deterministic cell coverage generated by Eq. 2.11,

20



CHAPTER 2. TRAFFIC-STEERING USER ASSOCIATION OPTIMIZATIONS.

the optimal association rule is given by:

p∗i (x) = 1

{
i = arg max

i∈B
cDi (x)

(
1− ρ∗bi

)αb · (1− ρ∗di )αd
eb ·
(
1− ρ∗di

)αd
+ ed ·

(
1− ρ∗bi

)αb
}
. (2.13)

Then the inner product in Eq. 2.12 can be written as:

〈∇φ (ρ∗) ,∆ρ∗〉 =
∑

z={b,d}

∂φ

∂ρz
(ρ∗) (ρz − ρ∗z)

=
∂φ

∂ρb
(ρ∗)(ρb − ρ∗b) +

∂φ

∂ρd
(ρ∗)(ρd − ρ∗d)

= θ
∑
i∈B

1

(1− ρbi)α
b (ρbi − ρ∗bi ) + (1− θ)

∑
i∈B

1

(1− ρdi )α
d (ρdi − ρd∗i )

=
∑
i∈B

θ
∫
L ρ

b
i(x)(pi(x)− p∗i (x))dx

(1− ρbi)α
b +

(1− θ)
∫
L ρ

d
i (x)(pi(x)− p∗i (x))dx

(1− ρdi )α
d

=

∫
L
λ(x)

∑
i∈B

(pi(x)− p∗i (x))

(
eb(1− ρ∗di )α

d
+ ed(1− ρ∗bi )α

b

ci(x) · (1− ρ∗bi )αb(1− ρ∗di )αd

)
dx.

(2.14)

Note that,∑
i∈B

pi(x)
eb(1− ρ∗di )α

d
+ ed(1− ρ∗bi )α

b

ci(x) · (1− ρ∗bi )αb(1− ρ∗di )αd
≥
∑
i∈B

p∗i (x)
eb(1− ρ∗di )α

d
+ ed(1− ρ∗bi )α

b

ci(x) · (1− ρ∗bi )αb(1− ρ∗di )αd
(2.15)

holds because p∗(x) in Eq. 2.13 is an indicator for the minimizer of
eb(1−ρ∗di )α

d
+ed(1−ρ∗bi )α

b

ci(x)·(1−ρ∗bi )αb (1−ρ∗di )αd
. Hence,

the inner product condition defined in Eq. 2.12 holds.

While θ linearly weights the best effort versus dedicated flow performance, the impact of
αD,b, αD,d is not obvious. We now discuss their impact on the system performance and refer
to [10], [93] for the respective proofs.

• Spectral Efficiency Optimization: αD,d = 0 maximizes the average physical rate for best-
effort flows (defined in B.3), whereas αD,d = 0 maximizes the average dedicated servers for
dedicated flows (defined in B.8). Obviously, these optimize the user SINR and spectral
efficiency.

• Optimizing related QoS metrics: when αD,b = 1 the derived rules tend to maximize the
average user throughput. If αD,b = 2 the per-flow delay is minimized since the objective
for best effort flows corresponds to the delay of an M/G/1/PS system. If αD,d = 1 the
corresponding optimal rule becomes equivalent to the average idle dedicated servers in a
M/G/k/k system, and the actual blocking probability is minimized.

• Load-Balancing Efficiency Optimization: as αD,b → ∞, we minimize the maximum BS
utilization, i.e., load balancing between the ρD,b is achieved. Similar for αD,d and ρD,d’s.
Note that, the point of αD,b that all BS best-effort utilizations are equalized might be
different from the one for dedicated, depending on the respective traffic statistics.

In the case of split UL/DL association, the above analysis can be applied separately on UL
and DL traffic, and optimize UL and DL associations independently.
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2.3.3 Optimal Rules for Joint UL/DL

Traditional cellular networks suggest that a UE should be connected to a single BS for both UL
and DL traffic. In this section we derive the optimal rules for such a joint UL/DL association
scenario, where the dependent constraint pDi (x) = pUi (x) discussed in Optimization Problem 1
shall be satisfied. The unique BS a user shall associeated with in such a scenario is portrayed
from the following theorem.

Theorem 3.2. [Joint UL/DL User Association Rule] The optimal user-association rule at x
for joint UL/DL association turns out to be

i(x) = arg max
i∈B

1
PDi
cDi (x)

+
PUi
cUi (x)

(2.16)

where each BS i ∈ B shall broadcast

PDi =

∑
t∈{b,d}

eD,t
∏

c∈Ω6=(D,t)

((1− ρ∗c)αc)∏
c∈Ω

((1− ρ∗c)αc)
(similar in UL),

and Ω ∈ {(D, d), (D, b), (U, d), (U, b)}. This formula ends up maximizing the weighted harmonic

mean formula of the individual rules, with corresponding weighting factors eD,b = τ θ
DzDzb

µD,bζξD
,

eD,d = τ (1−θD)zDzdBD

µD,dζ(1−ξD)
, eU,b = (1− τ) θUzUzbBU

µU,b(1−ζ)ξU and eU,d = (1− τ) (1−θU )zUzdBU

µU,d(1−ζ)(1−ξU )
.

Proof. The proof follows similar steps with the one for Split UL/DL scenario, where now one
has to require also pDi (x) = pUi (x). Then, the inner product becomes:

〈∇φ (ρ∗) ,∆ρ∗〉 =
∑

z={b,d}

∂φ

∂ρz
(ρ∗) (ρz − ρ∗z)

= θD
∑
i∈B

1

(1− ρD,bi )αD,b
(ρD,bi − ρ∗D,bi ) + (1− θD)

∑
i∈B

1

(1− ρD,di )αD,d
(ρD,di − ρD,d∗i )

+ θU
∑
i∈B

1

(1− ρU,bi )αU,b
(ρU,bi − ρ

∗U,b
i ) + (1− θU )

∑
i∈B

1

(1− ρU,di )αU,d
(ρU,bi − ρ

U,d∗
i )

=

∫
L
λ(x)

∑
i∈B

(pi(x)− p∗i (x))

(
PDi
cDi (x)

+
PUi
cUi (x)

)
dx ≥ 0,

(2.17)

due to the corresponding minimizer pi(x) derived from Eq. 2.16.

Remark 1. All the derived rules are “device centric” i.e., the user is able to select where
to associate based on own measurements (e.g. SINR) and BS-transmitted information. Such
broadcast quantities can be easily integrated through the newly proposed Access Network Dis-
covery and Selection Function (ANDSF) mechanism or in the absolute/dedicated priority list
mechanisms of LTE [94]. In both Split and Joint association scenarios, we proved that each BS
only needs to broadcast two different messages: one value related to its DL dynamics (PDi ), and
another one related to the UL (PUi ). This is inline with user association in current LTE systems,
where user association depends on “device centric” information (e.g. SINR measurements) but
also BS-transmitted information (e.g. priority lists of BSs to monitor). These rules:
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• are scalable (constant amount of the BS broadcast messages irrespective of the number of
users),

• are simple (constant complexity of the rule with respect to the number of BSs), and

• offer flexible performance (defined from α values).

Remark 2. The optimal rule derived in Eq. 2.16 suggests that in the joint UL/DL scenario
associated with objectives that potentially conflict with each other (due to the different flow
type performances), it is optimal to associate a user with the BS that maximizes a weighted
version of the harmonic mean of the individual association rules when considering each objective
alone. To better understand this, we focus on a simple scenario with only DL and UL best-effort
traffic. And assume the following BS options for a user: (BS A) offers 50Mbps DL and only
1Mbps UL; (BS B) 200Mbps DL and 0.5Mbps UL; (BS C) 20Mbps DL and 5Mbps UL. If we
care about UL and DL performance equally (i.e. τ = 0.5), one might assume that the BS that
maximizes the arithmetic mean (or arithmetic sum) of rates would be a fair choice (i.e. BS
B). However, this would lead to rather poor UL performance. Maximizing the harmonic mean
would lead to choosing (BS C) instead7. Additionally, note that in the case of split UL/DL,
covered in Section 2.3.2, where each user is free to be associated with two different BSs for
the DL and UL traffic offloading, DL traffic would be associated with (BS B), and UL traffic
with (BS C) by maximizing the arithmetic mean (or, sum) of their throughputs8. These simple
examples intuitively explain how split UL/DL impacts the user association policies, by allowing
to independently optimize each objective. This also demonstrates why UL/DL split may perform
considerably better than the joint association. We will further explore this in the Simulations.

Remark 3. We finally underline that, the “formula” of harmonic or arithmetic mean maxi-
mization further allows to add more dimensions in our setup and flexibly derive the optimal rules
without any analytical calculations. For instance, consider a more modern offloading technique,
where different downlink, or uplink, flow types are able to be offloaded to different BSs (e.g., per
flow/QCI offloading) with conflicting aims. Using our model we can consider an additional re-
spective α-function for each flow type, and either analytically or flexibly, optimize the complete
objective as showed earlier. As an example, one can relax the constraints pD,bi (x) = pD,di (x) and

pU,bi (x) = pU,di (x) to allow a UE offload its DL (or, UL) flows to different BSs. Then we can
directly derive the optimal association rules using the arithmetic formula of the individual rules.

2.3.4 Distributed Implementation Framework

In Theorems 3.1 and 3.2, we derived different “device centric” user association rules for different
scenarios, where each UE is able to decide where to associate by itself in both downlink and
uplink. We now elaborate on our proposed implementation framework where such rules apply,
and direct the network towards the optimal BS loads.

Following [10], we sketch a distributed implementation that is applied iteratively, adapts to
spatial traffic loads, and mainly involves two parts: the user and base station tier.

7While this simple example captures the main principle, the actual rule is more complex, as it weighs each
objective with the complex factor el.

8The usage of harmonic mean and arithmetic mean/sum appears in a number of physical examples, such as
in the calculation of the total resistance in circuits where all resistances are set in series or in parallel.
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Table 2.2: Simulation Parameters

Parameter Variable Value

Transm. Power of eNB/ SC/ UE PeNB/PSC/PUE 43/24/12 dBm

BS Bandwidth for DL, UL w/W 10/10 MHz

Noise Power Density N0 -174 dBm/Hz

Splitting parameter for DL, UL ζDi , ζ
U
i 0.5/0.5

Average DL/UL flow sizes 1
µD,b

/ 1
µU,b

100/20 Kbytes

Average DL/UL flow demands BD(x)/BU (x) 512, 128 kbps

Different flow ratios zb, zD 0.3,0.6

At the k-th period, each user at some location x receives from each BS in range the two
corresponding values PDi , P

U
i in order to apply the derived association rule (e.g., in Eq. 2.11 the

DL association is based on PDi and in UL on PUi ), e.g., through broadcast control messages.
Then each new flow request simply selects the BS i that maximizes the corresponding quantity.
Also, at each k iteration, BSs measure their average utilizations ρ(k) after some required period
of time (e.g., see Eq. (2.5)). Then, based on the previous BS loads ρ̃(k), the new BS vector ρ̃(k+1)

needed for the broadcast control message in the next iteration would be

ρ̃(k+1) = β(k) · ρ(k) + (1− β(k)) · ρ̃(k), (2.18)

where β(k) ∈ [0, 1) is an exponential-averaging parameter. Note that, in the Split UL/DL
scenario, the UL and DL loads can be independently updated, whereas in the Joint UL/DL
should be updated jointly using the same β(k). This iteration converges to the globally optimal
point ρ∗, requiring a simple modification to the proof found [10].

Alternatively, note that our framework could also be implemented in an SDN framework,
using a centralized or hierarchical implementation, where a controller derives the optimal asso-
ciations and directly sends them through the network to the UEs [93] [95].

2.4 Simulations

In this section we briefly present some numerical results and discuss related insights.

We consider a 2 × 2 km2 area. Figure 2.2 shows a color-coded map of the heterogeneous
traffic demand λ(x) (flows/hour per unit area) (blue implying low traffic and red high), with
2 hotspots. We assume that this area is covered by two macro BSs and eight SCs. The macro
BSs that are shown with asterisks are numbered from 1-2, and the SCs that are shown with
triangles are numbered from 3-10, as we can see in Fig. 2.3, Fig. 2.5. We also consider standard
parameters as adopted in 3GPP [96], listed in Table 2.29. If not explicitly mentioned, we assume
θD = θU = τ = 0.5, and the split UL/DL scenario as default.

We will present the impact of our proposed association rules via coverage snapshots to show
how users associate in the considered network. Additionally, we will also provide values for
related performance metrics that complete our study numerically.

9As for (i) the sizes and ratios of different flows, (ii) splitting parameters, we can use different values in order
to capture different simulation scenarios, and derive similar results.
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Figure 2.2: Traffic Arrival Rate (blue colour implying low traffic and red colour implying high
traffic demand).

Coverage snapshots: Spectral vs. Load balancing Efficiency. Figure 2.3(a) outlines
the optimal DL user-associations if αD,b = αD,d = 0, i.e., when (area) spectral efficiency is
maximized. Thus, each UE at x is attached to the BS that offers the highest DL SINR and
promises higher DL physical rate for best effort flows cD,bi (x), and more “dedicated” servers
kDi (x); i.e. most of UEs are attached to macro BSs due to their high power transmission, and
fewer to SCs, forming small circles around them. Consequently, macrocells are overloaded and
load imbalance within the cells is sharpened (decreased 1−MSED,b, 1−MSED,d; see line 1 of
Table 4.2). Note that Load Balancing (LB) efficiency is considered in terms of the mean square
error (MSE) between different BS loads (normalized). However, in Fig. 2.3(b) we emphasize the
load-balancing efficiency and set αD,b = αD,b = 10. Now, most SCs vastly increase their coverage
area in order to offload the overloaded macro BSs (e.g., BSs 6, 8, 10); “heavily” loaded (due to
the hotspots) BSs, roughly maintain the same coverage (BS 4 and 7). Thus load balancing is
improved, at the cost of E[cD,b], E[kD] (see line 2 of Table 4.2). For further implications of α
parameters we refer the reader to [10].

Best-effort versus dedicated traffic performance. Although in the previous scenarios
the best-effort- and dedicated- related traffic rules (represented from αD,b, αD,d) are aligned, one
could ask how would two conflicting optimization objectives affect our network? The answer lays
in the usage of θ, that judges which objective carries more importance. E.g., an operator has
two main goals: (i) to maximize the average number of servers for “dedicated” traffic captured
by E[kD] (set αD,d = 0), (ii) to better balance the utilization of best-effort resources between
BSs (set αD,b = 10). As shown in Fig. 2.4, if θ → 0 E[kD] is maximized, whereas as θ → 1,
1−MSED,b (DL best-effort load balancing) is optimized, and each objective comes at the price

25



CHAPTER 2. TRAFFIC-STEERING USER ASSOCIATION OPTIMIZATIONS.

   0  500 1000 1500 2000

   0

 500

1000

1500

2000

BS1

BS3

BS4

BS10
BS9

BS6

BS7

BS2
BS8

BS5

(a) Spectral Efficiency Optimization αD,b =
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(b) Enhanced Load Balancing αD,b = αD,d = 10.

Figure 2.3: Optimal user-associations (considering the tradeoff between spectral efficiency and
load balancing efficiency.)
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Figure 2.4: θ versus Number of Servers for dedicated flows (E[kD]) and Load Balancing (or,
utilization) efficiency for best-effort traffic (tradeoff between best effort vs. dedicated traffic
performance).

DL vs. UL traffic performance is considered in Figure 2.3(a), 2.5(a)-2.5(b), with re-
spective numerical performance metrics in Table 2.4. The first two figures depict the DL and
UL optimal associations, in case of split UL/DL, for each user at x. However, if split is not
available from the operator point of view, we have to weight whether the DL or UL performance
is more important while selecting a single BS for joint UL/DL association, using parameter τ .
To that end, Figure 2.3(a) (also) outlines the optimal associations in the joint UL/DL case if
the whole emphasis is on the DL performance (τ = 1): this hurts the UL performance due to
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Table 2.3: Numerical values for Physical Data Rates and Load Balancing (Figure 2.3).

Rates and Servers Load Balancing
E[cD,b] (Mbps) E[kD] 1-MSED,b 1-MSED,d

Fig. 2.3(a) 16.3 32 0.77 0.78

Fig. 2.3(b) 14.3 27 0.96 0.995

the asymmetric transmission powers of the UEs and BSs (see line 1 of Table 2.4). In Fig. 2.5(a)
the emphasis is moved on the UL performance (τ = 0), and each UE is attached to the nearest
BS, in order to minimize the path loss [47] and enhance the UL performance; this hurts its DL
performance though (see line 3 of Table 2.4). Finally, Fig. 2.5(b) shows the optimal coverage
areas when one assigns equal importance to the UL and DL performance (i.e. τ = 0.5): this
moderates both DL and UL performance (line 2 of Table 2.4).

Split vs. Joint UL/DL Association. We saw that within joint UL/DL association it
is impossible to achieve optimal UL/DL performance simultaneously. Using τ , we can trade-off
which carries more importance while selecting the single BS for association, though. On the
other hand, according to the Split UL/DL each UE is attached to two BSs: one that maximizes
its DL, and one that maximizes its UL performance, as shown in Fig. 2.3(a), 2.5(a), Table 2.4,
and implied in Remark 2.
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(a) UL performance optimization τ = 0.
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(b) Equal emphasis of DL vs. UL τ = 0.5.

Figure 2.5: Optimal user associations (considering the tradeoff between downlink (DL) versus
uplink (UL) traffic performance)

Table 2.4: Numerical values for downlink and uplink performance (Figure 2.5).

DL performance UL performance
E[cD,b] (Mbps) E[kD] E[cU,b] (Mbps) E[kU ]

Fig. 2.3(a) 16.3 32 2.3 18

Fig. 2.5(b) 14.7 28 3 24

Fig. 2.5(a) 13.3 26 3.6 28
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2.5 Conclusion

In this Chapter, we considered the user-association problem for future dense HetNets. We made
a first step towards addressing various key issues that future user association schemes shall be
aware of, such as: (i) traffic consisting of both best-effort and dedicated flows, and (ii) UL
and DL performance, (iii) differentiation between Split and Joint UL/DL associations. To that
end, novel “device centric” association rules were analytically derived within our framework, for
different scenarios. We also showed that such rules end up maximizing different kinds of mean,
depending on the association. Finally, initial simulation results are presented that corroborate
the correctness of the framework, and reveal interesting tradeoffs.
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Chapter 3

Backhaul-aware User Association
Optimizations.

3.1 Introduction

In the previous Chapter we considered the user association problem, by focusing on the radio
access network. More precisely, we revisited the popular α-fair objective for user association.
The issue under scrutiny was to derive novel “device centric” user association rules that achieve
a good tradeoff between different efficiencies by capturing the traffic differentiation and Split/
Joint UL/DL association schemes.

Nevertheless, while our proposed rules surely lead to BS loads that are supported from the
access network, they perhaps will not be supported from the backhaul link (or the corresponding
backhaul link path) for that BS, since they ignore potential backhaul limitations. As highlighted
in Chapter 1, the chance that the backhaul link capacities will not sufficient to support the
demand of the access network, is relatively high, in future HetNets. The main reasons for that
include (i) the constant improvement of access network functionalities, and (ii) the fact that
multiple BS might also have to share the capacity of a single backhaul link; both threatening
the backhaul capacities. Due to these reasons, as well as the heterogeneous technologies that are
expected to dominate in future backhaul systems (heterogeneous in terms of capacity, latency,
etc.), there is an emerging call for more sophisticated, backhaul-aware, user association schemes.

To this end, in this Chapter we revisit the user association problem, by jointly considering
not only the radio access but also the backhaul network performance. Our aim is to derive novel
backhaul-aware user association rules. Specifically, our main contributions can be summarized
as it follows

1) We further extend the popular α-fair objective function to include (i) (heterogeneous)
backhaul capacity constraints, and (ii) backhaul topology limitations.

2) We analytically derive novel backhaul-aware association rules. We use appropriate tools
mostly coming from convex optimization theory, so that (i) our rules are “device centric” (ap-
plicable in distributed implementations); (ii) maintain the desired properties required by future
systems (e.g., scalability).

3) We use our framework to investigate the various tradeoffs arising in this complex asso-
ciation problem, and provide some initial insights and guidelines about the impact of backhaul
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limitations in optimal user-association policies for future HetNets.

3.2 System Model and Assumptions

The system model in terms of traffic and access network modeling stays the same as in (A.1-A.3)
and (B.1-B.10). However, we need to make some explicit assumptions regarding the backhaul
network (C.1-C.4) as it follows later in the Chapter.

In order to better elucidate the considered problem at hand and without loss of generality, we
focus on a simple scenario with only best-effort traffic. This will allow us, to better understand
the impact of backhaul limitations. So, in the remainder of the section we drop the corresponding
superscripts “b”, “d” to simplify notation. We remind to the reader that to keep notation
consistent, for all variables considered a first superscript “D” and “U” refers to downlink (DL)
and uplink (UL) traffic, respectively and that, for brevity, in the following we present most
notation and assumptions in terms of downlink traffic only, assuming that the uplink case and
notation is symmetric (Table 2.1 summarizes some useful notation). (Specific differences will be
elaborated, where necessary.)

Our assumptions for the backhaul network follow.

(C.1 - Backhaul network topology) Each access network node (either MBS or SC) is
connected to the core network through an eNB aggregation gateway via a certain number of
backhaul links that constitute the backhaul network. This connection can be either direct (“star”
topology) or through one or more SC aggregation gateways (“tree” or “mesh” topology).

Figure 3.1: Future Backhaul topology of a HetNet.

Without loss of generality, we assume that there is a fiber link from the eNB to the core
network, and focus on the set of capacity-limited backhaul links (wired or wireless) connecting
SCs to the eNB, denoted as Bh. We denote as routing path Bh(i) the set of all backhaul links
j ∈ Bh along which traffic is routed from BS i to an eNB aggregation point, and we assume that
it is given (e.g., calculated in practice as a Layer 2 (L2) spanning tree). For example, in Fig. 3.1,
Bh(1) = {1}, and Bh(3) = {1, 2, 3}. We further denote as B(j) the set of all BS i ∈ B whose
traffic is routed over backhaul link j. E.g., B(1) = {1, 2, 3, 4} and B(2) = {2, 3, 4} in Fig. 3.1.

(C.2 - Backhaul Resource Allocation Policy) Each j ∈ Bh backhaul link is associated
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with a total capacity Ch(j). While traditional backhaul links are multiplexed using FDD, nowa-
days TDD gains more ground due to the performance improvements it promises [97]. So, in
the context of TDD, we introduce the backhaul resource allocation parameter 0 < Z(j) < 1,
that splits the backhaul capacity of the j link between DL (Z(j)→ 1) and UL (Z(j)→ 0). To
simplify discussion, throughout the chapter we assume that Z(j) is pre-determined and remains
fixed. However, in Chapter 4 we show how one can optimally derive the the various Z(j) given
the current traffic conditions.

Note that, backhaul links usually don’t implement any particular scheduling algorithm, so
they can be seen as a data “pipe”.

(C.3 - Backhaul load) The DL load on a backhaul link j consists of the sum of DL loads
of all BSs using that link (i ∈ B(j)), divided by its offered backhaul capacity [95]

∑
i∈B(j)

ρDi
ζi
· (ζi · c̃Di )

Z(j) · Ch(j)
=
∑
i∈B(j)

ρDi · c̃Di
Z(j) · Ch(j)

. (3.1)

where c̃Di is a parameter use to “dimension” the BH link and corresponds to an estimate of the
maximum DL total rate that BS i might request the backhaul to transport. A BS is characterized
by its “peak” rate (often upper bounded by the maximum MCS available), and a “busy” rate
when this BS serves many users [3]. The latter is usually quite smaller than the former, since
users near the edge of the cell tend to bring the average rate down. However, the use of channel-
based scheduling and related multi-user diversity gains suggest that conservatively setting c̃Di
closer to its nominal peak value is safer. In practice, a BS can directly measure it.

(C.4 - Backhaul provisioning) Each BH link j is associated with a backhaul load (see
C.3), that shall be maintained below 1 to prohibit backhaul congestion. As a result, each BH
link is associated with a backhaul constraint :∑

i∈B(j)

ρDi c̃
D
i

Z(j) · CDh (j)
< 1, ∀j ∈ Bh (3.2)

Throughout this dissertation, we assume that the backhaul network is either under-provisioned
if the capacity of at least one backhaul link is exceeded, or over-provisioned otherwise.

3.3 Backhaul-Aware User Association: Problem and Optimal
Rules.

Our aim remains to find appropriate values for the various association probabilities pDi (x), pUi (x)
under the underlying backhaul network. We include to our goals (i) that no backhaul link
should be congested, (ii) the investigation of backhaul topology and capacity on key performance
metrics, (iii) whether the harmonic/ arithmetic mean formula maximization and related insights
for Split and Joint UL/DL association remain similar or not.

We follow the same presentation as in Chapter 2 (where the backhaul network was ignored
or it was assumed to be over-provisioned). Thus, in Section 3.3.1 we formulate Optimization
Problem 2 that portrays the α-fair user association problem in backhaul-limited networks. Inves-
tigating both star and tree backhaul topologies in Sections 3.3.2 and 3.3.3 we derive the optimal
user association rules for both Split and Joint UL/DL association scenarios, respectively.
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3.3.1 Feasible Set, Objective Function and Optimization Problem 2

While the feasible region of the aforementioned probabilities shall shrink (see Definition 1) by
including the convex backhaul constraints defined in Eq. 3.2, we keep the same α-objective
function that can capture various fairness degrees (see Definition 2).

The arising Optimization Problem 2, namely user association in HetNets with limited back-
haul resources follows.

Definition 5. (Optimization Problem 2) The UL/DL user association problem under back-
haul constraints can be expressed

minimize
ρ

{
φα(ρ)|ρ ∈ F

}
,

subject to
∑
i∈B(j)

ρDi c̃
D
i

Z(j) · CDh (j)
≺ 1, ∀j ∈ Bh, (similar in UL)

(dependent) subject to pDi (x) = pUi (x) iff joint UL/DL association,∀x ∈ L.

(3.3)

The first constraint ensures that all backhaul links have utilization less that 1, and the second
one requires that a UE shall be offloaded to the same BS for UL and DL in the joint UL/DL
scenario.

3.3.2 Optimal Rules for Split UL/DL

We start out discussion, with the Split UL/DL case, where the UL and DL problem decouple
from each other. Following the analysis of the previous Chapter, we focus on the DL (UL is
symmetrical in terms of formulation). To better illustrate our approach, we first consider the
simple star backhaul topology, and then generalize for a tree backhaul topology.

(Backhaul Scenario: Star Topology)

The first challenge we need to tackle for Optimization Problem 2 is the proper treatment of
the backhaul constraints. While famous solvers for such convex problems shall try to tackle them
through a centralized controller entity, e.g., through the Lagrangian dual function [92], we want
to follow another direction so that our rules remain “device centric” and allow for distributed
implementations. To that end, we chose to consider the backhaul constraints in the objective
function as appropriate penalty functions [95]. This not only facilitates deriving a distributed
implementation of the policy as it will turn out later, but also allows us to treat the backhaul
constraint as a “soft” constraint that ends up being “hard” and satisfy convergence to a feasible
solution [98].

To do so, we need to define a new indicator variable that helps us formulating the penalties.
Specifically let I(i) show whether the i-th backhaul link is congested (I(i)=1) or not (I(i)=0).
Precisely for a star topology (see C.2)

I(i) =

{
0, when ρic̃i

Z(j)Ch(i) < 1

1, otherwise.
(3.4)
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Thus, the constrained Optimization Problem 2 (ignoring the dependent constraint since we
are in the Split UL/DL scenario) is equivalent to the following unconstrained optimization prob-
lem

minimize
ρ

{
Φα(ρ) = φα(ρ) + γ

∑
i∈Bh

I(i)

(
ρic̃i

Z(i)Ch(i)
− 1

)2

|ρ ∈ F
}
, (3.5)

φα(ρ) is the standard α-cost function for each BS i, already analyzed in the previously. The
second sum introduces a penalty for each backhaul link i whose capacity is exceeded (I(i) = 1).
Note that, in the star topology, there is a single backhaul link for each BS i, and ‖Bh‖ = ‖B‖. So,
we can use the same index i for both. This penalty function is quadratic on the amount of excess
load. Quadratic penalty functions are often considered in convex optimization literature [98].

γ could be chosen as a large constant, introducing a “soft” constraint for the backhaul links
(i.e., backhaul capacity could be slightly exceeded, if this really improves access performance),
or be iteratively adapted using increasing values, so as to converge to a “hard” constraint. The
latter is usually preferred in such optimization problems since it ensures that the algorithm
converges and doesn’t get stuck in steep valleys [98,99].

Theorem 3.1. (Backhaul-aware association rule for star backhaul topology [Split
scenario]) If ρ∗ = (ρ∗1, ρ

∗
2, · · · , ρ∗||B||) denotes the optimal load vector, the user association rule

at location x is

i(x) = arg max
i∈B

 ci(x)︸ ︷︷ ︸
user knowledge

·
BS broadcast message︷︸︸︷

Pi

 , (3.6)

where,

Pi =
(1− ρ∗i )α

1 + 2γ · (1− ρ∗i )α · c̃i ·
I(i)

Z(i)Ch(i) ·
(

ρ∗i c̃i
Z(i)Ch(i) − 1

) .
Proof. We now prove that the above rule indeed minimizes Optimization Problem 2. This is a
convex optimization problem. Its feasible set is convex, and the objective Φα(ρ) is also convex
due to the summation of two convex terms: the first is convex as discussed earlier, and the
second due to the composition property of convexity [92]. Let ρ∗ be the optimal solution of this
minimization problem. Again, it is adequate to check for optimality if

〈∇Φα(ρ∗),∆ρ∗〉 ≥ 0 (3.7)

for all ρ ∈ f , where ∆ρ∗ = ρ − ρ∗. Let p(x) and p∗(x) be the associated routing probability
vectors for ρ and ρ∗, respectively. Using the deterministic cell coverage generated by (3.6), the
optimal association rule is given by:

p∗i (x) = 1

{
i = arg max

i∈B

ci(x)(1− ρ∗i )α

1 + 2γ · (1− ρ∗i )α · c̃i ·
I(i)

Z(i)Ch(i) ·
(

ρ∗i c̃i
Z(i)Ch(i) − 1

)}. (3.8)

Before proceeding to the calculation of the inner product, we analytically calculate the derivative
of the corresponding cost function Φα(ρ), described in Eq. (3.5). The derivative is an i-th
dimensional vector; the i-th element of which has value:

∇Φα(ρi) =

{
(1− ρi)−α, if ρic̃i

Z(i)Ch(i) ≤ 1

(1− ρi)−α + γI(i)
2ρic̃

2
i−2c̃iZ(i)Ch(i)

Z(i)Ch(i)2 , if ρic̃i
Z(i)Ch(i) ≥ 1.

(3.9)
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When ρi = Z(i)Ch(i)
c̃i

, we work out explicitly from the definition to calculate the derivative. It is:

lim
ρi→

Z(i)Ch(i)

c̃i

+
∇Φ(ρi) = lim

ρi→
Z(i)Ch(i)

c̃i

−
∇Φ(ρi) = (1− ρi)−α.

(3.10)

Summarizing, the i-th element of the derivative of the considered function can be written:

∇Φ(ρi) = (1− ρi)−α + γI(i)
2ρic̃

2
i − 2c̃iZ(i)Ch(i)

Z(i)Ch(i)2
. (3.11)

To that end, the inner product defined in Eq. (3.7), becomes:

〈∇φ (ρ∗) ,∆ρ∗〉 =
∑
i∈B

(
1

(1− ρ∗i )α
+ γI(i)

2ρ∗i c̃
2
i − 2c̃iZ(i)Ch(i)

Z(i)Ch(i)2

)
(ρi − ρ∗i )

=
∑
i∈B

1 + 2γI(i)(1− ρ∗i )α
(ρ∗i c̃

2
i−c̃iZ(i)Ch(i))

Z(i)Ch(i)2

(1− ρ∗i )α

∫
L
ρi(x) (pi(x)− p∗i (x)) dx

=

∫
L

λ(x)

µ(x)

∑
i∈B

1 + 2γ(1− ρ∗i )αc̃i
I(i)

Z(i)Ch(i)

(
ρ∗i c̃i

Z(i)Ch(i) − 1
)

ci(x)(1− ρ∗i )α

 (pi(x)− p∗i (x)) dx.

Note that, ∑
i∈B

pi(x)

1 + 2γ(1− ρ∗i )αc̃i
I(i)

Z(i)Ch(i)

(
ρ∗i c̃i

Z(i)Ch(i) − 1
)

ci(x)(1− ρ∗i )α

 ≥
∑
i∈B

p∗i (x)

1 + 2γ(1− ρ∗i )αc̃i
I(i)

Z(i)Ch(i)

(
ρ∗i c̃i

Z(i)Ch(i) − 1
)

ci(x)(1− ρ∗i )α


holds because p∗i (x) in Eq. 3.8 is an indicator for the minimizer of

1+2γ·(1−ρ∗i )α·c̃i· I(i)
Z(i)Ch(i)

·
(

ρ∗i c̃i
Z(i)Ch(i)

−1

)
ci(x)(1−ρ∗i )α .

Hence, Eq. 3.7 holds.

Regarding the derived backhaul-aware association rule of Eq. 3.6, we note that when the
capacity constraint for the backhaul link i is not active (i.e., I(i) = 0, e.g., in provisioned back-
haul networks), the above theorem states that the optimal association rule is the same as the
one found in [10], or the one defined in Theorem 3.1 when θ → 1 (since, as discussed at the
beginning of the section we only consider best effort flows in this Chapter). However, when the
backhaul link of BS i gets congested, a second term is added in the denominator that penalizes
that BS making it less preferable to UEs at location i, even if the offered radio access rate ci(x)
is high, or the radio interface of i is not itself congested.

(Backhaul Scenario: Tree Topology)

We now consider a more complex backhaul scenario, where a single backhaul link might route
traffic from multiple BSs, and the traffic of a single BS might be routed over multiple backhaul
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links (multi-hop path) towards the eNB gateway. Now, the indicator variable I(j) turns out
being (see also C.2)

I(j) =

{
0, when

∑
i∈B(j) ρic̃i

Z(j)Ch(j) < 1

1, otherwise.
(3.12)

While the procedure of deriving the optimal rules follows similar steps as before, we highlight
that now one shall consider the complete backhaul routing path to the eNB gateway (that
might consist of multiple links with heterogeneous capacities). The corresponding unconstrained
problem for a tree backhaul topology is

minimize
ρ

{
Φα(ρ) = φα(ρ) + γ

∑
j∈Bh

I(j)


∑

i∈B(j)

ρic̃i

Z(j)Ch(j)
− 1


2}

, (3.13)

Theorem 3.2. (Backhaul-aware association rule for tree backhaul topology [Split
scenario]) The optimal user-association rule at location x is now

i(x) = arg max
i∈B

 ci(x)︸ ︷︷ ︸
user knowledge

·
BS broadcast message︷︸︸︷

Pi

 , (3.14)

where each BS i ∈ B shall broadcast

Pi =
(1− ρ∗i )α

1 + 2γ · (1− ρ∗i )α · c̃i
∑

j∈Bh(i)

I(j)
Z(j)Ch(j) ·

( ∑
k∈B(j)

ρ∗k c̃k

Z(j)Ch(j) − 1

) .
Proof. The steps of this proof are similar to the star case, so we present here directly the
corresponding inner product.

〈∇Φα (ρ∗) ,∆ρ∗〉 =

=
∑
i∈B

 1

(1− ρ∗i )α
+ 2γ

∑
j∈Bh(i)

I(j)

(∑
k∈B(j) ρ

∗
k c̃k

Z(j)Ch(j)2
c̃i −

c̃i
Z(j)Ch(j)

) (ρi − ρ∗i )

·
∫
L
ρi(x) (pi(x)− p∗i (x)) dx =

=

∫
L

λ(x)

µ(x)

∑
i∈B


1 + 2γ(1− ρ∗i )αc̃i

∑
j∈Bh(i)

I(j)
Z(j)Ch(j) ·

( ∑
k∈B(j)

ρ∗k c̃k

Z(j)Ch(j) − 1

)
ci(x)(1− ρ∗i )α

 ·
· (pi(x)− p∗i (x)) dx ≥ 0,

(3.15)

due to the corresponding maximizer p∗i (x) derived from (3.14).

As one can see, Pi, i.e., the value of the BS broadcast message differs compared to the star
backhaul topology. First, the penalty term in the denominator now considers the whole backhaul
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path Bh(i) that traffic from BS i traverses, and adds a penalty for every link along that path
that is congested (outer sum in the denominator). This observation provides some support for
the number of backhaul hops heuristic proposed in [18,90]. However, our analysis also suggests
that it can be suboptimal, as a path with few hops might still include one or more congested
links, and provides the optimal way to weigh in the amount of congestion on each backhaul link.

Second, the actual congestion on each backhaul link j is now not only dependent on the load
of the candidate BS i, but also on other BSs whose load is routed over j. Hence, a BS i which
would otherwise be a good candidate for traffic at location x, might still be penalized and not
selected, even if it does not impose itself a large load on a backhaul link j. This is because other
BSs sharing the same backhaul link might be heavily loaded or congested.

In the case of split UL/DL traffic, the above analysis can be applied separately on UL and
DL traffic, and optimize UL and DL associations independently. It thus suffices to consider the
respective quantities with the appropriate superscript “D” or “U”, as explained earlier.

Finally, although we have provided separate solutions for star and tree topologies, to better
illustrate our approach, the optimal rule for the tree topology is generic, and includes star
topologies as well.

3.3.3 Optimal Rules for Joint UL/DL

Here, we need to modify our framework accordingly, as we did in the previous Chapter, by
considering the (dependent) constraint pDi (x) = pUi (x) ∀i ∈ B . Additionally, we need to extend
the penalty function to consider both uplink and downlink capacity being exceeded on the
backhaul link.

The corresponding objective is

Φα(ρ) = φα(ρ) + γ
∑

k∈{D,U}

∑
j∈Bh

Ik(j)


∑

i∈B(j)

ρki c̃
k
i

Ckh(j)
− 1


2

. (3.16)

We present our results directly for the general case of tree backhaul topology, and we remind
the reader that this is applicable to star backhaul topologies as well.

Theorem 3.3. (Backhaul-aware association rule for tree backhaul topology [Joint
scenario]) The optimal user-association rule at location x is

i(x) = arg max
i∈B

1
PDi
cDi (x)

+
PUi
cUi (x)

, (3.17)

where the BS broadcast messages are:

PDi =
eD · (1− ρU∗)αU

(1− ρ∗D)αD · (1− ρU∗)αU
,

PUi =
eU · (1− ρ∗D)α

D

(1− ρ∗D)αD · (1− ρU∗)αU
.
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If gD = τ, gU = 1− τ , then the corresponding factors of the harmonic mean formula follow

el =

zl

(
gl + 2γ

(
1− ρ∗li

)αl ∑
j∈Bh(i)

Il(j)
Z(j)Clh(j)

( ∑
k∈B(j)

ρ∗lk c̃
l
k

Z(j)Clh(j)
− 1

))
µl(x)

, l ∈ {D,U}.

Proof. Since we depict immediately the tree topology, we provide the proof with analytical steps.
Let ρ∗ be the optimal solution of this optimization problem, that corresponds to the optimal
association rule (3.17). In a similar way, it is adequate to check the following condition for
optimality

〈∇Φα(ρ∗),∆ρ∗〉 ≥ 0 (3.18)

for all ρ ∈ F , where ∆ρ∗ = ρ − ρ∗. Let p(x) and p∗(x) be the associated routing probability
vectors for ρ and ρ∗, respectively. Using the deterministic cell coverage generated by (3.17), the
optimal association rule is given by:

p∗i (x) = 1

{
arg max

i∈B

1
PDi
cDi (x)

+
PUi
cUi (x)

}
. (3.19)

Similarly to the previous case, we calculate the inner product of Eq. (3.18). It is

〈∇Φα (ρ∗) ,∆ρ∗〉 =

=
∑
i∈B

τ · 1

(1− ρ∗Di )αD
+ 2γ

∑
l∈Bh

ID(l)

(∑
j∈B(l) ρ

D
j c̃

D
j

Z(l)Ch(l)2
c̃Di −

c̃Di
Z(l)Ch(l)

) ρDi − (ρ∗Di ))+

+
∑
i∈B

(1− τ) · 1

(1− ρ∗Ui )αU
+ 2γ

∑
l∈Bh

IU (l)

(∑
j∈B(l) ρ

U
j c̃

U
j

Z(l)Ch(l)2
c̃Ui −

c̃Ui
Z(l)Ch(l)

) (ρUi − (ρU∗i )) =

=
∑
i∈B

τ · 1

(1− ρ∗Di )αD
+ 2γ

∑
l∈Bh

ID(l)

(
c̃Di (
∑

j∈B(l) ρ
D
j c̃

D
j − Z(l)Ch(l))

Z(l)Ch(l)2

) ·
·
∫
L
ρDi (x) (pi(x)− p∗i (x)) dx+

+
∑
i∈B

(1− τ) · 1

(1− ρ∗Di )αU
+ 2γ

∑
l∈Bh

IU (l)

(
c̃Ui (
∑

j∈B(l) ρ
U
j c̃

U
j − Z(l)Ch(l))

Z(l)Ch(l)2

) ·
·
∫
L
ρUi (x) (pi(x)− p∗i (x)) dx =

=

∫
L
λ(x)

∑
i∈B

 PDi
cDi (x)

+
PUi
cUi (x)

1

 · (pi(x)− p∗i (x)) dx.

(3.20)
Note that, ∑

i∈B
pi(x)

{ PDi
cDi (x)

+
PUi
cUi (x)

1

}
≥
∑
i∈B

p∗i (x)

{ PDi
cDi (x)

+
PUi
cUi (x)

1

}
(3.21)
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holds because p∗i (x) due to the minimizer defined in (3.19). Hence (3.18) holds.

Remark 1. We note that still in backhaul-limited networks, in case of Joint UL/DL association,
if one jointly considers potentially conflicting objectives, it is optimal to associate a user with
the BS that maximizes the harmonic mean of the individual association rules, when considering
each objective alone. Note that now, the actual rule is more complex, as it weighs each objective
with the factor eD, eU that is related to not only radio access performance but also backhaul
penalties, and we provide the optimal way to weight them. Or, in case of Split UL/DL it is
optimal to optimize their arithmetic mean (each objective independently). Thus, our results
prove that we can still include more dimensions to our setup, and flexibly derive the optimal
association rule in more complicated offloading scenarios that also include potential limitations
in the backhaul network.

Remark 2. Our derived rules are still “device centric”, and maintain the same desired proper-
ties. In particular, the rules are still scalable since there is a constant amount of the BS broadcast
messages irrespective of the number of users and backhaul topology. This plays an interesting
contribution since we showed that through our rules: each BS is able to reflect its potential of
serving more downlink users in terms of both access and backhaul resources by broadcasting only
one value, even when the backhaul topology up to the eNB gateway is rather “mesh” with multiple
hops, (e.g., this value is Pi in Theorem 3.1). To that end, using the same distributed imple-
mentation scheme proposed in Section 2.3.4 these rules can be applied by the users iteratively,
and the BS loads will eventually converge to the optimal values under the feasible set that the
backhaul constraints sketch. Obviously, our rules remain simple, and offer flexible performance.

Note that our model allows that the backhaul links can have heterogeneous backhaul link
technologies and capacities, by appropriately fixing the parameter Ch(j) (see C.2).

3.4 Simulations

In this Section we focus on some backhaul-limited network scenarios, and evaluate their perfor-
mance by applying our derived rules.

We again consider the same 2× 2 km2 topology as in Section 2.4. We assume that this area
is covered by two macro BSs and eight SCs as considered previously, and the traffic demand rate
λ(x) (flows/hour per unit area) as well as the other parameters remains the same (see Fig. 2.2).
If not explicitly mentioned, we assume τ = 0.5, and the Split UL/DL scenario as default.

We remind to the reader that our focus in this Chapter is on the backhaul links between the
macro cells and SCs (for simplicity we assume provisioned links between the macro cells and
core network). As already discussed in assumption C.1, we investigate two different backhaul
topology families: (i) “star” topologies (single-hop paths), (ii) “tree” topologies (with multi-
hop paths), along with two backhaul links types: wired and wireless1. Our aim is to evaluate
the derived association rules for different under-provisioned scenarios, by fixing αD = αU = 1
(throughput optimal values). Also, we assume fixed backhaul routing paths, pre-established

1Note that copper and fiber access are the key technologies for wired backhaul links, and microWave and
millimeter-wave P2P or P2MP access are the counterpart for the wireless backhaul links [100].
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with traditional Layer 2 routing, that the BH capacities on the DL and UL are the same (i.e.
CDh (j) = CUh (j) = Ch, ∀j ∈ Bh), and if not explicitly mentioned we assume them to be equal
to 400Mbps. We maintain this assumption to facilitate our discussion, although our framework
works for heterogeneous backhaul links and UL/DL capacities (see C.2).
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(a) Backhaul network: provisioned.
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Figure 3.2: Optimal downlink user associations when (a) backhaul network is provisioned, or
when backhaul network is under-provisioned and we consider (b) Wired-Star Topology, (c) Back-
haul Wireless-Star Topology, (d) Backhaul Wireless-Tree Topology.

Before proceeding, we need to make an assumption about the backhaul link capacities. In case
of wired backhaul links, we assume that the peak backhaul capacity Ch is always guaranteed. For
wireless backhaul links we adopt a simple model associating peak backhaul capacity to distance:
if the length of the i-th link is ri, the peak capacity drops as:

d(ri) =

{
1, ri ≤ r0

( r0ri )
n, otherwise,

(3.22)

where r0 is some threshold range within which the maximal rate is obtained (e.g. Line-of-Sight),
and n is the attenuation factor. Hence, the available capacity drops to d(ri)Ch(j) (≤ Ch(j)).
For our simulations, we assumed that r0 = 200m, and n = 3. While the above model is perhaps
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oversimplifying, our main goal is to simply include a generic model for the propagation related
impact on wireless backhaul, compared to wired, without getting into the details of specific
backhaul implementations. For detailed path loss models for different backhaul technologies, we
refer the interested reader to [71].

Coverage Snapshots. In Fig. 3.2(a) we depict the optimal DL user-associations for provi-
sioned backhaul network with respect to the traffic arrival rates shown in Fig. 2.2. Compared
to the associations showed in Figure 2.3(a) where αD = αU = 0, we note that now some SCs
have slightly increased coverage area, in order to improve the mean user throughput [10].

In the following, we focus on different under-provisioned backhaul scenarios, and study the
DL associations. In Fig. 3.2(b) we adopt a wired-star backhaul topology, where SCs shrink
their coverage areas, by handing-over users to other BSs, in order to offload the corresponding
(under-provisioned) backhaul links; this phenomenon becomes more intense in the “hot-spot”
areas (e.g., BS7 have vastly decreased their coverage areas) due to the higher traffic demand.
Similarly, in Fig. 3.2(c), we assume a wireless-star backhaul topology, where SCs further decrease
their coverage areas, due to the higher backhaul capacity loss caused from the long wireless links
(see Eq.(3.22)).

In Fig. 3.2(d) we adopt a wireless-tree topology, where some SCs are required to carry also
traffic of other SCs, and end up more congested. As a result, most SCs further decrease their
coverage area, compared to the star-wireless topology. However, BS7 and BS10 enlarge their
coverage areas, compared to the star case. This occurs because these SCs are far from the eNB,
and multi-hop topology allows them to route their traffic over shorter wireless links with smaller
capacity losses, compared to the star case (Fig. 3.2(c)). Hence, there are two main factors
affecting the coverage areas in such wireless backhaul networks: (topology) each BS-load might
traverse through multi-hop backhaul paths, by “wasting” resources from more than one backaul
links (drawback for tree topologies); (location) the higher the η,r0 the worse the capacity loss
“wastage” over a dedicated direct backhaul link (drawback for star topologies that require longer
links).

As backhaul networks become increasingly complex, e.g. “mesh” topologies, each BS has
multiple possible routing paths to follow, beyond what is shown in the figures (we remind the
reader that the above shown topologies are simply the given spanning routing trees). The above
observations thus underline the shortcomings of predetermined, Layer 2 (L2) backhaul routing
mechanisms, and call for a joint optimization of user-association on the radio access network
along with dynamic, Layer 3 (L3) backhaul routing.

Under-provisioning impact on user performance. Figure 3.3, 3.4 depict the average
DL and UL user throughputs, as a function of the backhaul capacity constraint Ch, on different
scenarios. Generally, as Ch drops, the mean throughputs are decreased, since users are handed
over to (potentially far-away) macro BSs, causing performance degradation. Interestingly, the
slope of the dropping rate becomes more steep for lower values of Ch, due to the logarithmic
capacity formula chosen in assumption (B.2). Also, as Ch increases, the average throughputs
“converge” to the value corresponding to a provisioned backhaul network. Note that the average
UL throughput convergences more quickly, compared to the DL. This happens due to the asym-
metry between the DL and UL traffic demand on the radio access network: the UL one is much
lower, mainly due to the asymmetry between the transmission powers of BSs and UEs, as well
as different file sizes assumed in each direction. Beyond this point, the UL backhaul resources
will be underutilized. This calls for a flexible TDD duplexing scheme, that will dynamically
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distribute the backhaul resources accordingly, for example by giving more backhaul resources to
DL when the UL demand is already satisfied. Finally, in the wired case, star topology is always
slightly better than the tree, whereas in the wireless the opposite, as explained earlier.
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Figure 3.3: Downlink user throughput considering all the users for various backhaul topologies
(in Mbps).
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Figure 3.4: Uplink user throughput considering all the users for various backhaul topologies (in
Mbps).
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Table 3.1: Mean throughput for handed-over users (in Mbps).

Topology Ch = 50 250 500 (Mbps)

DL / UL thr.: Star-Wired 1.1 / 0.2 3.1 / 1.6 4.1 / X

DL / UL thr.: Tree-Wired 0.6 / 0.1 2.4 / 0.7 3.2 / X

DL / UL thr.: Tree-Wirel. 0.2 / 0.03 1.7 / 0.07 2.1 / 0.15

DL / UL thr.: Star-Wirel. 0.1 / 0.001 1.4 / 0.05 1.7 / 0.02

One could notice that user throughputs drop slightly on the Ch constraint, e.g. in a wired-
star topology if Ch drops 500 → 50 Mbps (10 times), the mean user throughput only drops
15→ 6 Mbps (∼ 3 times). This is due to the fact that, under-provisioned backhaul links do not
affect the whole network, but specific groups of users associated with the cells that suffer from
low backhaul capacity. To better illustrate this, in Table 3.1 we show the average throughput
of the handed-over users, as a function of Ch. Indeed, their performance is severely affected:
for the same scenario, their DL throughput drops all the way to 1.1 Mbps (∼ 15 times). (In
scenarios with no handovers, we mark the respective table entry with an X.)

Under-provisioning impact on Network Performance. Turning our attention to
network-related performance, Fig. 3.5 considers spectral efficiency (bit/s/Hz), normalized by
the maximum corresponding value when the network is provisioned. Load-balancing (“utiliza-
tion”) efficiency is further considered in Fig. 3.6 in terms of the MSE metric, described earlier.
Both efficiencies converge to 1 as the network gets provisioned. Low Ch values will push users
to handover to far-away BSs, and this will potentially decrease their SINR (spectral efficiency
decrease), and create steep differences between BSs loads, e.g. by congesting macro BSs and
under-utilizing the SCs (load balancing decrease). Note that, the joint degradation of these
performances also impacts user performance negatively (e.g. user throughput), as explained in
Section B.6. Regarding spectral efficiency, more specifically, although in the wired scenario, star
topology is always better compared to the tree, in the wireless scenario this is not the case. For
low values of Ch, the star topology is worse, due to the higher capacity loss of the long and
direct links. However, as Ch is increased, and some links start becoming provisioned in the star
topology, the capacity loss cost due to the long wireless links in the star topology, is dominated
from the capacity loss cost due to multi-hop sharing links of the tree topology, by making tree
a worse choice. We highlight that this trade-off can suggest different topologies as optimal in
different under-provisioned scenarios, and can affect different performance metrics.
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Figure 3.5: Downlink Spectral Efficiency (SE) for different backhaul topologies (normalized).
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Figure 3.6: Downlink Load Balancing (or, Utilization) (LB) Efficiency for different backhaul
topologies (normalized).

Split UL/DL impact. As discussed earlier, while split is able to optimize the DL and UL
performance, simultaneously, joint UL/DL association is incapable of this parallel optimization
and using 0 ≤ τ ≤ 1 we can trade-off which dimension carries more importance. Table 3.2
illustrates the performance improvements that split promises over the joint UL/DL association,
in terms of various metrics, for various τ when backhaul is underprovisioned. We underline that
split enhances the UL performance considerably, e.g. the average UL throughput is increased
up to 37%. This is due to the dependency that joint UL/DL generates between the DL and UL
associations in the access network, that often makes the DL the bottleneck in the backhaul (due
to aforementioned asymmetry between the peak access rates). Thus, DL will often “preempt”
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the backhaul constraint, and potentially (i) leave some UL resources unused, (ii) cause UL
performance degradation.

Table 3.2: Split Vs. Joint UL/DL association Improvements

Performance τ = 0 τ = 0.5 τ = 1

DL / UL Throughput 6% / 32% 4% / 35% 0% / 37%

DL / UL Spectr. Eff. 4% / 29% 3% / 31% 0% / 33%

DL / UL Uiliz. Eff. 7% / 34% 4% / 38% 0% / 41%

3.5 Conclusion

In this Chapter, we considered a complete user-association framework for future HetNets that
encompasses joint optimization of access and backhaul networks. We showed how different
backhaul topologies and capacity limitations affect the user and network performances. Initial
simulation results corroborate the correctness of our framework, and reveal interesting trade-
offs for different network scenarios, as well as potential drawbacks of schemes operated in the
backhaul, currently.
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Chapter 4

Hierarchize then optimize (HoP):
joint user association, access and
backhaul TDD Allocation
Optimizations.

4.1 Introduction

In the previous chapters we tried to shed some light on how (i) traffic differentiation (Chapter 2),
as well as (ii) backhaul limitations (Chapter 3) shall affect user association in next-generation
HetNets by trading-off performance. We thus provided both analytical insights as well as qual-
itative and qualitative performance evaluation to explain them.

Nevertheless, in our proposed frameworks we assumed that the bandwidth resources alloca-
tion between UL and DL at the BS level (see B.2) remain static. While such schemes indeed
improve performance, they do so under a such defensive, fixed and pre-determined resource allo-
cation. It is easy to understand that more flexible allocation policies that distribute the resources
under a more sophisticated manner (e.g., rather than the fixed 50-50 for DL/UL) shall further
enhance performance by adding additional degrees of freedom for the operator. For instance,
as explained earlier, if most of the associated users of a BS are currently doing UL, this BS
should turn its resource allocation to UL to avoid resource wastage on DL as well as improve
performance on UL (i.e., by decreasing its ζ).

Such dynamic/flexible TDD schemes require additional considerations, in particular in asym-
metric interference scenarios. As a typical example, if an SC is doing UL while a nearby MC is
transmitting on the DL (with much higher power), the performance of the SC might be signifi-
cantly degraded from this cross-interference (see e.g., Fig. 4.1). Enhanced Inter-Cell Interference
Coordination (eICIC) schemes such as Almost Blank Subframes (ABS) could alleviate this but
only to some extent [101, 102]. Large amounts of mismatch might lead to excessive usage of
resources for eICIC, instead of user traffic, leading instead to considerable performance degrada-
tion. While a key-enabler for 5G networks, namely“enhanced Interference Mitigation and Traffic
Adaptation” (eIMTA) has been standardized in LTE-A Release 12 [46] for this opportunity, it is
not clear which allocation scheme is the best option under different scenarios and how it should
interact with user association.
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We underline that such dynamic allocation schemes shall not only be considered in the radio
access TDD resources. Backhaul resource allocation policies (see C.2) should interact with the
various (e.g., user association and flexible TDD) radio access policies, in order to satisfy the
UL and DL traffic demands that the latter generate. E.g., as showed in the previous Chapter
(depending on user associations and related dynamics), if the downlink traffic on the radio
network level is lighter than the uplink (e.g., due to the asymmetry between (i) transmit power
of BS-UE as well as (ii) corresponding file-sizes) the backhaul should distribute more resources
to DL to improve performance.

Figure 4.1: Different types of cross-interference: downlink-to-uplink (DL-to-UL) and uplink-to-
downlink (UL-to-DL) in dynamic TDD systems.

By this token, in this section we stress that the success of future HetNets not only depends
on a good enough access/backhaul TDD flexible scheme and decent user association rules, but
on their optimal interplay. To that end, we propose an optimization framework that considers
all these dimensions in one complex problem. To our best knowledge, this is the first work to
attempt it. Our main contributions can be summarized as follows:

(1) We propose an analytical framework to study the interaction between (i) user association, (ii)
radio access resource allocation with cross-interference management, and (iii) backhaul resource
allocation, significantly extending Chapters 2 and 3.

(2) We show that the joint problem is non-convex, unlike variants studied in the past [10,72,93,
95], but possesses some “hidden” convexity properties that allows its decomposition into three
subproblems. These subproblems can be solved through convex optimizers, at possibly different
elements (e.g. UE, BS, backhaul link), and at different timescales, facilitating a hierarchical
implementation.

(3) Using extensive simulations, we highlight complex trade-offs involved between the different
subproblems, and show that significant performance improvements could be achieved compared
to current standards.

The reminder of the Chapter is organized as follows. In Section 4.2 we provide a high-level
tutorial about biconvex optimization problems and some related insights that we will need later.
In Section 4.3 we provide the system model of our framework. In Section 4.4 and 4.5 we present
the complete biconvex optimization problems for under- as well as over- provisioned backhaul
networks, and attempt to tackle them using decomposition properties. Simulation results that
promise significant improvements compared to schemes with fixed allocations are illustrated in
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Section 4.6.

4.2 Bi-convexity

Many networking problems fall into the category of convex optimization problems. Such prob-
lems (as the ones studied in Chapters 2 and 3) can be efficiently and quickly tackled by standard
convex solvers centrally or distributively (e.g., through Lagrange multipliers, Newton descent
method or distributed-gradient techniques ,see [92]). However, more realistic and multi-variable
problems usually create partially non-convexities and thus end up being non-convex. This pro-
hibits the usage of convex solvers, and require more sophisticated solvers that usually cannot
guarantee convergence in a reasonable amount of time (e.g., famous solvers for such NP-hard
problem are pruning, branch and bound).

Nevertheless, many of such problems usually have some “hidden convexities” that when re-
vealed, they can be solved efficiently. Biconvex optimization problems fall into this category. We
are going to offer some insights for such optimization problems, and reveal interesting properties.
For an analytical survey on such problems, we refer the interested reader to [103].

Let X ∈ Rn and Y ∈ Rn be two non-empty convex sets and let F ⊆ X × Y . We define x−
and y− sections of F as follows

Fx := {y ∈ Y : (x, y) ∈ F},Fy := {x ∈ Y : (x, y) ∈ F}. (4.1)

Definition 6. The set F is called a biconvex set, if Fx is convex for every x ∈ X, and if Fy is
convex for every y ∈ Y .

Definition 7. A function f : F → R on a biconvex set F is called a biconvex function if

fx(�) := f(x,�) : Fx → R

is a convex function on Fx for every fixed x ∈ X and

fy(�) := f(�, y) : Fy → R

is a convex function on Fy for every fixed y ∈ Y .

Definition 8. An optimization problem of the form

minimize
x,y

{f(x, y) : (x, y) ∈ F} (4.2)

is said to be biconvex optimization problem, if the feasible set F is biconvex and the objective
function is biconvex on F .

One of the most traditional ways to tackle such a problem is the Block-Coordinate Decent
(BCD) multi-convex method (or, Alternate Convex Search (ACS)), where the feasible set and
objective function are convex in each block of variables. Mainly, it minimizes the original
objective cyclically over a certain block through a convex solver, by keeping the remaining ones
fixed [104]. It guarantees convergence to a stationary point, that could be a saddle point, a
local or global optimal [105]. Nevertheless, strictly quasi-convexity, pseudo-convexity [106] or
Geometric Programming (GP) transformation [107] of the original cost function can guarantee
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the uniqueness of global optimum. Note that, such a decomposition, dates back to 1950 [108]
and is closely related to the Gauss-Seidel and SOR methods for linear equation systems.

Eventually, we stress the fact that that the analysis above can be extended to “multi-convex”
sets, objective functions and optimization problems when we have to deal with a higher number
of optimization (sets of) variables.

4.3 System Model and Assumptions

In this Chapter our focus is on the BS loads ρ (that direct user associations) as well as ζ and Z.
We remind to the reader, that ζi is the access resource allocation parameter for BS i (see B.2).
In particular, ζi reflects the amount of radio resources (e.g., time, frequency, space) available
for downlink transmissions. Without loss of generality, we now focus on time resources, as e.g.,
in the context of the envisioned flexible TDD standard. Although traditional LTE systems
only allow some fixed and predefined values for ζi (depending on the TDD configuration), we
relax them to be more generally applicable. Likewise, Z(j) reflects the corresponding portion of
downlink resources for the j-th link (see C.2).

While in Chapters 2 and 3 we assumed these splits to be fixed, in this Chapter we want to
consider their flexible adaptation (depending on the current traffic loads and system dynamics)
as an additional degree of freedom. Such a suppleness shall affect our system model for the radio
access network in a twofold manner.

(B.11 - BS load under flexible ζ) Our first observation is that the load of BS i is
strongly coupled by the tuning of resources ζi. For instance, when a BS decreases by two the
downlink resources (i.e., when ζi → ζi

2 ), the corresponding downlink utilization shall double (i.e.,
ρDi → 2 · ρDi ), given that the serving traffic loads remain unchanged (see B.1 - B.5). To make
this relation explicit, we define our next assumption.

In the remaining of the chapter we will use the load variables ρDi to portray the load corre-
sponding to BS i when all resources are used for DL (similarly for UL). We are interested in the
flow-level dynamics of this system, and model the service of DL flows at each BS as a queueing
system with effective load (or utilization) ρi

ζi
.

(B.12 - UL/DL cross interference avoidance) Secondly, cross-interference can be gen-
erated in neighboring BSs with UL/DL overlapping slots. For instance, if for BS i, the ζi = 80%
of its time is scheduled for DL, while a neighbor BS j, 1− ζj = 70% is scheduled for UL, we can
clearly see that at least half (50%) of their scheduled slots will be cross-interfered. This threatens
SINR (due to the increased interference, especially the DL-to-UL interference) and invalidates
our assumption B.3. To make this constraint explicit, we define the next assumption.

Without loss of generality, we assume that each BS i cross interferes with a subset of other
BSs Ci ⊆ B \{i}. In practice, a distance based rule, or alternatively the cell cluster concept, can
be used to determine these sets. If i is on the DL and a BS j ∈ Ci on the UL (or vice versa)
then these BSs might cause severe interference to each other (that invalidates assumption B.3).
We refer to this as cross interference. A sufficient condition to avoid cross-interference is

ρDi + ρUj ≤ 1,∀i ∈ B, j ∈ Ci. (4.3)

We explain the above condition here. Consider two such BSs i and j. If ζi = ζj then there
is no cross-interference, because i and j can synchronize their DL (and UL) slots to avoid it. If
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ζi 6= ζj , cross-interference might occur, but it also depends on the effective loads. ζi slots are at

most used for DL. But out of these only
ρDi
ζi
·ζi = ρDi will be busy (since

ρDi
ζi

is the utilization of the

downlink resources, according to B.5-B.7). The rest of the DL slots (1− ρDi
ζi

) · ζi = ζi− ρDi could
be blanked with ABS frames (see also Fig. 4.2). Similarly, the percentage of slots that j will be

active on the UL is
ρUj

1−ζj ·(1−ζj) = ρUj slots. Hence, if
ρDi
ζi
·ζi+

ρUj
1−ζj ·(1−ζj) ≤ 1, there are enough

different slots in a frame to schedule all DL and UL of i and j without any overlap. Taking
care for all such links on the interference graph, gives us Eq.(4.3). Finally, we stress that this
constraint applies to the long-term allocation policy of resources. The actual MAC scheduling
may still allocate resources in those time slots to transmissions that are non-interfering.

Figure 4.2: A frame example for a certain BS where the total sub-frames are allocated between
downlink and uplink. The sub-frames on the DL (or, uplink) that are not busy, can be muted
through ABS.

As for the backhaul network, we claim that cross interference is not a major issue, and add
the following assumption.

(C.5 - Interference-free Backhaul) Modern backhaul architectures are developed using
(highly) directional P2P or P2MP static architectures [109]. These are planned topologies and
thus cross interference between BH links with asymmetric UL/DL schedules can be considered
negligible. However, our one can apply similar assumptions and constraints in scenarios where
backhaul cross interference is under scrutiny, as did in (B.12).

Since we have already seen and analyzed the tradeoff between Split and Joint UL/DL asso-
ciation, in the following we only focus on the Split association scenario that is able to achieve
the highest performance in both dimensions simultaneously.

4.4 TDD Access Allocation and User Association Optimization

We start our discussion by ignoring the backhaul network (assuming it is provisioned), and at-
tempt to solve the (i) user association, and (ii) access resource allocation problems, jointly. More
specifically, we are interested in finding the optimal values for the variable ζi and ρDi , ρ

U
i ,∀i ∈ B.

In Section 4.4.1 we define the corresponding optimization problem. In Section 4.4.2 we sketch a
convergent algorithm that decomposes it in smaller problems that can be efficiently tackled as
shown in Section 4.4.3.
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4.4.1 Feasible set, Objective Function and Optimization Problem 3.

The feasible region for our problem can be delimited by the requirement that the effective load
of no BS being exceeded (see B.5).

Definition 9. (Feasible set) If ε is an arbitrarily small positive constant, the feasible region
of (ρD; ρU ; ζ) = ((ρD1 , ρ

D
2 , . . . , ρ

D
‖B‖); (ρU1 , ρ

U
2 , . . . , ρ

U
‖B‖); (ζ1, ζ2, . . . , ζ‖B‖)) is

F =
{

(ρD, ρU , ζ) | ρyi =

∫
L
pyi (x)ρyi (x)dx, (4.4a)∑

i∈B
pyi (x) = 1, (4.4b)

0 ≤ pyi (x) ≤ 1, ∀x ∈ L, y ∈ {U,D}, (4.4c)

0 + ε ≤ ζi ≤ 1− ε, (4.4d)

0 ≤ ρDi
ζi
,
ρUi

1− ζi
≤ 1− ε, , ∀i ∈ B, j ∈ Ci

}
(4.4e)

Lemma 4. The feasible set F is convex.

Proof. The proof for the feasible set F without the last two constraints can be found in [10].
Constraints (4.4d are linear, and constraint (4.4e) refers to the image of ρ under different per-
spectives. So they preserve convexity [92], and the complete feasible set remains convex.

Following Chapter 2 we extend the proposed objective to also include the resource allocation
variables ζi,∀i ∈ B (see B.2).

Definition 10. (Objective function) Our objective is

φα(ρ, ζ) =
∑
i∈B

τ
(1− ρDi

ζi
)1−αD

αD − 1
+ (1− τ)

(1− ρUi
1−ζi

)1−αU

αU − 1
, if αD, αU 6= 1. (4.5)

If αD is equal to 1, the respective fraction must be replaced with log(1− ρDi
ζi

)−1.

Lemma 5. The objective function φα(ρ, ζ) is a biconvex function, i.e., it is convex in ρ for fixed
ζ, and versa.

Proof. The objective function is the sum of the basic α function
(1− ρ

ζ
)1−α

α−1 over different BSs, with
(ρ, ζ) ∈ F . When ζ is fixed this is the simplest form of the well known α-fair function which is
clearly convex in ρ. And so is the corresponding sum over all BSs (sum preserves convexity). For
fixed ρ, the basic α function is also convex in ζ (it has non-negative second derivative, namely
2ρζ−3(1− ρ/ζ)−α + αρ2ζ−4(1− ρ/ζ)−α−1 ≥ 0), and so does its sum.

Definition 11. (Optimization Problem 3) The joint user association and radio resource
allocation problem can be expressed

minimize
ρ,ζ

{
φα(ρ, ζ)|(ρ, ζ) ∈ F

}
,

subject to ρDi + ρUj ≤ 1, ∀i ∈ B, j ∈ Ci.
(4.6)
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Lemma 6. Problem 3 is a biconvex minimization problem.

Proof. This is a biconvex optimization problem since the objective function is biconvex on the
(bi)convex feasible set F , and the constraints are affine functions.

Our aim is to minimize φα(ρ, ζ) i.e. our α-fair objective function tuned by the various
resource allocation parameters ζi subject to the various cross interference constraints. Since we
are interested in the Split DL/UL scenario, there is no need consider additional constraints.

4.4.2 Decomposition Algorithm for Optimization Problem 3.

Our nonconvex objective is block separable in ρD, ρU . Indeed, if we fix ζ, the problem decom-
poses in two simpler problems with variables ρD and ρU , that are coupled from constraint (4.3),
and so we call ζ the complicating variable. Therefore, it makes sense to decompose the objective
into two levels of optimization, following the primal decomposition method [110]. Specifically,
at the lower level there are two subproblems that run in parallel, that aim to find the optimal
values of ρ∗D and ρ∗U , namely ρ = [ρ∗D; ρ∗U ], upon a fixed ζ. At the higher level we encounter
the master problem, where we attempt to update (and eventually optimize), the complicating
variable ζ. Note that constraint (4.3) only depends on ρ and thus does not affect the master
problem. Formally, the subproblems and the master problem are

min
ρ
{φα(ρ, ζ)} subj. to Eq.(4.3) (sub-problems) (4.7)

min
ζ
{φα(ρ, ζ)} (master problem) (4.8)

The above decomposed problems are convex since Optimization Problem 3 is biconvex (see
Lemma 6). Thus, they can efficiently be tackled through convex optimizers.

Our proposed iterative algorithm is sketched in Alg. 1. At the (k) iteration step the master
problem allocates the available resources by directly giving each subproblem the amount of
resources that it can use (ζ(k) for the DL and (1− ζ(k)) for the UL traffic), as it is usually done
in primary decomposition methods [Algorithm 1 line 3]. Then, we solve the two subproblems
(derive ρ∗D, ρ∗U ) based on their given resources and the coupling constraint [Algorithm 1 line
5-6]. In the next iteration (k + 1), we update the complicating parameter (derive ζ(k+1)), and
re-solve the two subproblems. We repeat the process until the stopping criterion [Algorithm 1
line 1] is satisfied, and ζ(k) converges to a stationary point ζ∗. Usually, such a stopping criterion
is of the form of ‖ζ(k)−ζ(k−1)‖ < ε, where ε is an arbitrary small positive constant. Convergence
and stability are guaranteed if the two subproblems are solved on a faster timescale than the
higher level master problem, so that at each iteration of a master problem both subproblems at
a lower level have already converged [110]. In Section 4.4.3.1 we show how one can derive the
optimal values ρ∗, whereas in Section 4.4.3.2 the sequence ζ(k).

Lemma 7. Algorithm 1 converges to the global optimal point of Problem 3.

Proof. Our proposed decomposition algorithm falls into the category of Alternate Convex Search
(ACS) [103, 105], that is a special case of the popular Block Coordinate Decent method [104].
There, starting from an initial feasible point, one attempts to minimize the objective by cyclically
iterating through the different optimization directions with respect to one coordinate direction
at a time. Precisely, in our case at the end of the k iteration it is

φα(ρ, ζ(k)) ≺ φα(ρ, ζ(k−1)).
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Algorithm 1 Decomposition Sketch of Optimization Problem 3.

1: Repeat until ‖ζ(k) − ζ(k−1)‖ < ε.
2: (Update the master problem (Section (4.4.3.2)).)
3: Resource allocation: ζ → DL, 1− ζ → UL.
4: (Solve the two subproblems (Section (4.4.3.1)).)
5: Derive ρ∗D given the available resources (ζ).
6: Derive ρ∗U given the available resources (1− ζ).

This will continue until convergence to a stationary point, where the gradient vanishes and the
above inequality approaches equality. ACS algorithms in its simplest form suggest that the
stationary point could be a saddle point, a local or global optimal [105]. However, Alg. 1
guarantees convergence to the global optimum due to the following two points.

(1) Uniqueness of optimum point: Optimization Problem 3 can be converted to a geometric
programming (GP) problem, since both its objective and constraints can be written as a sum
of posynomials terms composed of positive monomials, according to the transformation in [107].
Such problems have a single optimum. (The GP equivalent form of our problem is not convenient
for decomposition, so we use this argument only to prove uniqueness, but not to solve the joint
problem.)

(2) Saddle point escape: Our proposed algorithm can escape from potential saddle points,
as discussed in Section 4.4.3.2.

4.4.3 Subproblems and Master Problem.

We now analytically discuss how the decomposed (convex) problems defined in Eq. 4.7 and 4.8
can be tackled.

4.4.3.1 Subproblem Optimization (Eq. (4.7))

We present here the DL subproblem only. The UL problem is symmetric. An discussed, an
efficient way to tackle the coupling constraints in a distributed implementation setup is to
directly include the constraints in the objective as penalty functions that increase the objective
when a cross-interference constraint is violated [92]. We can then solve the new unconstrained
problem

minimize
ρ

{
Φ(ρ, ζ) = φα(ρ, ζ) + γ

∑
i∈B

∑
j∈Ci

Iij(ρDi + ρUj − 1)2

}
, (4.9)

where Iij is the indicator variable that reveals whether BS i cross interferes with BS j. Specifi-
cally (see also B.12)

Iij =

{
1, when ρDi + ρUj > 1

0, otherwise.
(4.10)

Parameter γ can be again chosen as a large constant, introducing a “soft” constraint (i.e.,
cross-interference could be slightly exceeded, if this really improves our main objective), or be
increased progressively, so as to converge to a “hard” constraint [98].
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Theorem 4.1. If ρ∗ = (ρ∗1, ρ
∗
2, · · · , ρ∗||B||) denotes the optimal load vector, the optimal DL asso-

ciation rule for location x is

iD(x) = arg max
i∈B

 cDi (x)︸ ︷︷ ︸
user knowledge

·
BS broadcast message︷︸︸︷

PDi

 (4.11)

where

PDi =
ζi ·
(

1− ρ∗Di
ζi

)αD
1 + 2γ

(
1− ρ∗Di

ζi

)αD ∑
j∈Ci
Iij(ρ∗Di + ρ∗Uj − 1)

.

Proof. Problem (4.9) is convex. Let ρ∗ be its optimal solution. A sufficient condition for opti-
mality is if 〈∇Φ(ρ∗),∆ρ∗〉 ≥ 0 for all ρ ∈ F , where ∆ρ∗ = ρ − ρ∗. To write the remaining of
the proof compactly with respect to the coupling constraints, we denote (only within the proof)
ζD = ζ, ζU = 1 − ζ, I(D) = Iij , I(U) = Iji and assume that L is either D or U (L ∈ {D,U})
with complementary value L̃. Let p(x) and p∗(x) be the associated routing probability vectors
for ρ and ρ∗, respectively. Using the deterministic DL and UL cell coverage generated by (4.11)

the respective optimal rules are p∗Li (x) = 1

{
i = iL(x)

}
.

Then, the inner product 〈∇φ (ρ∗) ,∆ρ∗〉 is equal to

∑
L

∑
i∈B

 1

ζLi

(
1− ρ∗Li

ζLi

)αL + 2γ
∑
j∈Ci

I(L)(ρ∗Li + ρ∗L̃j − 1)

 (ρLi − ρ∗Li ) =

∑
L

∑
i∈B


1 + 2γ

(
1− ρ∗Li

ζLi

)αL ∑
j∈Ci

I(L)(ρ∗Li + ρ∗L̃j − 1)

ζLi

(
1− ρ∗Li

ζLi

)αL

 ·
∫
L
ρLi (x)

(
pLi (x)− p∗Li (x)

)
dx =

=

∫
L

∑
L

λL(x)

µL(x)

∑
i∈B


1 + 2γ

(
1− ρ∗Li

ζLi

)αL ∑
j∈Ci

I(L)(ρ∗Li + ρ∗L̃j − 1)

ζLi c
L
i (x)

(
1− ρ∗Li

ζLi

)αL

 · (pLi (x)− pL∗i (x)
)
dx.

Note that in the DL i.e. L = D (similarly in UL)

∑
i∈B

pDi (x)


1 + 2γ

(
1− ρ∗Di

ζi

)αD ∑
j∈Ci
Iij(ρ∗Di + ρ∗Uj − 1)

ζicDi (x)
(

1− ρ∗Di
ζi

)αD

 ≥

∑
i∈B

pD∗i (x)


1 + 2γ

(
1− ρ∗Di

ζi

)αD ∑
j∈Ci
Iij(ρ∗Di + ρ∗Uj − 1)

ζicDi (x)
(

1− ρ∗Di
ζi

)αD



holds because p∗Di (x) is an indicator for the minimizer of

1+2γ

(
1− ρ

∗D
i
ζi

)αL ∑
j∈Ci

Iij(ρ∗Di +ρ∗Uj −1)

ζicLi (x)

(
1−

ρ∗D
i
ζi

)αD . So,

〈∇Φ(ρ∗),∆ρ∗〉 ≥ 0.
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When the interference constraints for the BS i are not violated (i.e., Iij = 0,∀j ∈ Ci),
the above rules state that the optimal downlink associations are the same as the one in [10].
However, when the BS i cross interferes with another BS, an additional term is added in the
denominator that penalizes BS i making it less preferable to users at location x. Note that
the amount of penalization depends on the amount of total cross interference (sum term) from
nearby BSs. This penalization makes sense, since additional users to that BS would increase its
effective load as well as its DL busy slots, and thus increase the cross interference. Eventually,
as γ increases penalties will be monotonically decreased until they totally vanish, and we end
up to a feasible point (as explained in Chapter 3 for backhaul constraints).

4.4.3.2 Master Problem Update (Eq.(4.8))

Descent methods suggest:

ζ(k+1) = ζ(k) + t(k)∆ζ(k), (4.12)

such that φ(ρ∗, ζ(k+1)) < φ(ρ∗, ζ(k)), where ∆ζ(k) is a descent direction, and t(k) a step size. The
master step update for ζ could be performed centrally (e.g. at an SDN controller), or distributed
(e.g., each BS calculates their optimal update independently from each other).

Nevertheless, since our objective is differentiable, we chose to apply the Newton method that
provides the steepest descent direction in local Hessian norm, in order to speed up convergence.
We also apply backtracking line search that determines the maximum amount to move along the
search direction [92]. We start with a relatively large estimate of the step size, and iteratively
shrink it until a decrease of the objective function is observed that adequately corresponds to
the decrease that is expected, based on the local gradient. Finally, when stationarity is reached,
we ensure that this is not a saddle point through a “noisy” gradient criterion: a noise vector
with mean 0 is added to the gradient direction of stationary points that provably pushes them
away from saddle points [111].

4.5 TDD Access/ Backhaul Allocation and User Association
Optimization

Here, we investigate the complete problem setting of optimizing the (i) user association, (ii)
access and (iii) backhaul resource allocation jointly. Specifically, we include to our aims the
optimal derivation for the variables Z(j), ∀j ∈ Bh, by adding to our feasible set F the convex
constraints discussed in C.4, and 0 < Z(j) < 1. Since the algorithmic sketch is the same as
the one in Section 4.4, we skip the details here. And we immediately present the Optimization
Problem 4, and the corresponding convergent decomposition algorithm.

Definition 12. (Optimization Problem 4) User association and Access and Backhaul Re-
source Allocation can be expressed as
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minimize
ρ,ζ,Z

{
φα(ρ, ζ) |(ρ, ζ, Z) ∈ F

}
,

subject to ρDi + ρUj ≤ 1, ∀i ∈ B, j ∈ Ci,

subject to
∑
i∈B(j)

ρDi c̃
D
i

Z(j) · CDh (j)
< 1, ∀j ∈ Bh.

(4.13)

Lemma 8. Problem 4 is multi-convex optimization problem.

Proof. This is a multiconvex optimization problem since the objective function and the con-
straints are multiconvex on the (multi)convex feasible set F .

To keep the complexity decreased, decomposition optimization theory suggests to hierarchi-
cally decouple these three problems (related to ρ, ζ, Z) in three different optimization levels [110],
as depicted in Algorithm 2. In the two lower levels [Algorithm 2 lines 5], we encounter Algorithm
1. There, as discussed previously the coupled (i) access resource allocation and (ii) user associa-
tion problems (referred as secondary master problem and subproblems, respectively) are solved.
In the highest level [Algorithm 2 line 3], we encounter the master problem of (iii) backhaul
resource allocation, where we update Z, upon the convergence of the two lower level problems
until the stopping criterion, that now considers Z, is satisfied. In such multi-level optimizations
convergence and stability are guaranteed if the lower level master problem is solved on a faster
timescale than the higher level master problem, so that at each iteration of a master problem
all the problems at a lower level have already converged. Note that, one can alternate the de-
composition order and tackle the three problems in different timescales, based on his freedom
degrees.

Algorithm 2 Decomposition Sketch of Optimization Problem 4.

1: Repeat until ‖Z(l) − Z(l−1)‖ < ε.
2: (Update the master problem and increase γ (Section 4.5.1).)
3: Backhaul Resource allocation: Z → DL, (1− Z)→ UL.
4: (Update the secondary master problem and solve the subproblems (Section 4.5.1, 4.5.2).)
5: Run Algorithm 1.

Similarly to Algorithm 1, Algorithm 2 converges to the global optimal point of the Optimiza-
tion Problem 4. Now, it remains to show whether the additional backhaul constraints change
the different structural subalgorithms, and if so how.

Our first observation is that these backhaul constraints are function of Z, our third opti-
mization variable. Thus, in order to (i) keep being amenable on distributed user association
implementations and (ii) be able to sketch a gradient step for Z update, we still want to tackle
these constraints by including them in the objective through the penalty function method. And
then, to solve the corresponding unconstrained problem(s).

4.5.1 Secondary master and master problem

The update of access (ζ) and backhaul resource allocation Z can be realized using the same
intuition as in Section 4.4.3.2. However, note that for mesh backhaul tree topologies, the update
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of Z can only be achieved either (i) centralized in an SDN controller, or (ii) using a distributed
SDN controller environment upon allowance for coordination with the links of the same backhaul
path.

4.5.2 Subproblem optimization

The unconstrained minimization objective is:

minimize
ρ,ζ,Z

{
φα(ρ, ζ, Z) + γ

∑
i∈B

∑
j∈Ci

Iij(ρDi + ρUj − 1)2+

γ
∑
k∈Bh

JD(k)


∑

i∈B(k)

ρDi c̃
D
i

Z(k) · CDh (k)
− 1


2

+ J U (k)


∑

i∈B(k)

ρUi c̃
U
i

(1− Z(k)) · CUh (k)
− 1


2} (4.14)

where φα(ρ, ζ) is the basic α-fair objective function (see Definition 5) and the second term
illustrates the penalties for the interference constraints (defined in Eq. 4.3). The last term
refers to the penalties for the backhaul constraints (defined in Eq. 3.2). JD(k) is the indicator
variable that reveals whether the k-th backhaul link is congested (JD(k)=1) or not (JD(k)=0).
Precisely,

JD(k) =

{
0, when

∑
i∈B(k) ρic̃i

Z(k)Ch(k) < 1

1, otherwise.
(4.15)

The optimal user association rules that update ρ follow.

Theorem 5.1. If ρ∗ = (ρ∗1, ρ
∗
2, · · · , ρ∗||B||) denotes the optimal load vector, the optimal DL asso-

ciation rule for location x is

iD(x) = arg max
i∈B

 cDi (x)︸ ︷︷ ︸
user knowledge

·
BS broadcast message︷︸︸︷

PDi

 (4.16)

where

PDi =
ζi ·
(

1− ρ∗Di
ζi

)αD
1 + 2γ

( ∑
k∈Bh(i)

c̃Di
JD(k)

Z(k)·Ch(k)

( ∑
l∈B(k)

ρ∗Dl c̃Dl

Z(k)·Ch(k) − 1

)
+
∑
l∈Ci
Iij · (ρ∗Di + ρ∗Uj − 1)

) .

Starting within a feasible point ρ and using increasing values for γ, these rules can be iteratively
applied and will eventually converge to the optimal point ρ∗.

Proof. We now prove that the above rule indeed minimizes Optimization Problem 4. The proof
follows very similar steps with the case addressed in the previous Section where backhaul was
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assumed to be provisioned. Thus, we immediately proceed to the inner product 〈∇Φ (ρ∗) ,∆ρ∗〉

∑
L={D,U}

∑
i∈B

 1

ζL
(

1− ρ∗Li
ζLi

)αL + 2γ
∑
j∈Ci

Iij(ρ∗Di + ρ∗Uj − 1) + 2γ
∑

j∈Bh(i)

J L(j)

( ∑
k∈B(j) ρ

∗L
k c̃Lk

(ZL(j) · Ch(j))2
c̃Li −

c̃Li
ZL(j) · Ch(j)

) ·
· (ρLi − ρ∗Li ) =

=

∫
L

λL(x)

µL(x)

∑
L={D,U}

∑
i∈B


1 + 2γ

∑
k∈Bh(i)

c̃Di
JD(k)

Z(k)·Ch(k)

( ∑
l∈B(k)

ρ∗Dl c̃Dl

Z(k)·Ch(k)
− 1

)
+ 2γ

∑
l∈Ci
Iij · (ρ∗Di + ρ∗Uj − 1)

ζLi c
L
i (x)

(
1− ρ∗Li

ζLi

)α
 ·

·
(
pLi (x)− pL∗i (x)

)
dx ≥ 0,

due to the corresponding maximizers of p∗Di , p∗Ui .

Note that, when the capacity constraints for the backhaul links k are not violated (e.g.,
JD(k) = 0), the above rules state that the optimal associations are the same as the one in
Eq. (4.11). However, when it becomes congested, an additional term is added in the denominator
that penalizes that BS making it less preferable to UEs at location x. Note that this penalty
considers the whole backhaul path Bh(i) that traffic from BS i traverses, and adds a penalty
for every link along that path that is congested (outer sum in the denominator). Overall, these
rules provide the optimal association for a user at x, by optimally weighting (i) access network
performance, (ii) cross interference avoidance, and (iii) backhaul congestion.

Remark 1. Note that these rules are still “device centric” and maintain all the desired
properties in this context (scalable, simple and flexible performance).

Remark 2. We analytically proved that the rules for optimal user association in DL and
UL can be applied in a parallel fashion independently from each other (despite the coupling
constraint (4.3)), and convergence to the global optimum is guaranteed. This takes some support
from the ACS method, when it comes to the distributed gradient. At each iteration step: instead
of cyclically optimizing each block of variables, we now suggest to cyclical update them based
on the local distributed gradient until convergence to the single optimum.

Remark 3. The hierarchical decomposition can be done by a number of different decompo-
sition orders and all would converge to the global optimum under the mentioned certain circum-
stances (e.g., as discussed in Algorithm 1 or 2). Specifically, upon n optimization problems there
are n! (factorial of n) possible decomposition orders; for us this would be 3! = 2 ∗ 3 = 6 different
decomposition orders. However, we believe that the proposed decomposition order lends itself
to a natural implementation between different network elements. User association is proposed
to run in the fastest timescale to adapt to the high traffic fluctuations across different locations
and users. The load of a single BS depends on the sum of its attached users and is subject
to fewer fluctuations. It only has to react to (slower) traffic shifts of the aggregate loads, by
updating its ζ parameter accordingly. Finally, a backhaul link further aggregates the traffic of
multiple BS, and can update its optimal allocation at an even slower timescale.
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4.6 Simulations

In this section, we evaluate our proposed algorithms on example scenarios, and discuss related
insights.

Since there are multiple non-trivial tradeoffs, we will now consider two network topologies.
Firstly, we will consider a simple scenario with only one macro BS and three SCs, in order to
better elucidate the qualitative behavior of our algorithm compared to standard practices, as
well as better trace its performance benefits and where these come from. We then consider a
larger network scenario and demonstrate that similar benefits can be observed there as well.
Nevertheless, we are going to re-evaluate our previous schemes (analyzed in Chapters 2 and 3)
with the fixed resource allocation policies, for comparison reasons.

Scenario 1: We consider a 2 × 2 km2 area. Fig. 4.3 shows a color-coded map of the het-
erogeneous traffic demand λ(x) (flows/hour per unit area) with 3 hotspots (blue implying low
traffic and red high). We assume that this area is covered by three SCs (referred with BS
numbers 1-3), and one macro cell (BS number 4). Without loss of generality, we assume that
each SC offloads its traffic through a dedicated backhaul link (corresponding BH link numbers
1-3) to the macro BS, and that the macro BS cross interferes with all SCs (i.e., C4 = {1, 2, 3},
C1 = C2 = C3 = {4}, see B.9). We set αD = αU = 1 to optimize user throughput.

Figure 4.3: Traffic Arrival Rate (blue colour implying low traffic and red colour implying high
traffic demand).

Coverage Snapshots: We first look at the coverage maps that different schemes create.
Figure 4.4(a), 4.4(b) depict the optimal user associations for fixed LTE-TDD configuration 1
that assumes static UL/DL timeslot ratio 4 : 4 i.e., fixed ζi = 0.5, ∀i ∈ B. Similarly for the BH
links Z(j) = 0.5,∀j ∈ Bh. As a first note, we see that in DL most users are associated with
the macro BS, and a few to SCs (macro BS attracts more DL users due to the higher transmit
power). In the UL, users tend to form Voronoi cells (to minimize path loss and improve UL
SINR). Secondly, we note that the DL coverage areas of the various SCs are decreased according
to the corresponding traffic arrival intensity: e.g. SC 1 that serves the most intense hotspot
see Fig. 4.3 has the smallest coverage area, while SC 3 which sees lower traffic intensity has the
largest). The main reason is that the SCs have limited DL backhaul capacities that force some
users to the far away macro BS. This alleviates the backhaul link congestion but hurts overall
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performance. At the same time, a high amount of the pre-configured UL backhaul resources
might remain wasted (due, to asymmetry in DL/UL traffic intensity for example).

Summarizing, the observed coverage maps for this scenario demonstrate two possible short-
comings of pre-configured TDD: (a) asymmetry in the DL/UL coverage areas and corresponding
transmit powers suggest that a TDD allocation other than 50-50% could improve performance;
(b) some (usually DL) user associations could be suboptimal, dictated by backhaul capacity lim-
itations arising from the preconfigured fixed allocation on the BH, even if the total BH resources
would suffice for the sum of both UL and DL traffic.

To explore these possibilities, we now relax the allocation variables ζ and Z (see B.2 and C.2)
and apply our proposed algorithm. Clearly, in this simple example, a single-step improvement
in either direction described above ((a) or (b)) could improve performance. We remind the
reader that our proposed algorithm goes beyond this single step, alternating between optimizing
coverage maps and TDD resource allocation, until it finds the best possible combination. The
resulting coverage maps (i.e. optimal ρ values) and radio/BH allocations (optimal ζ and Z
values) are shown in Fig. 4.4(c), 4.4(d). We first note that macro BS increases its ζ4 = 0.77 to
serve more DL users, and SC increase their UL resources 1 − ζ1 = 0.54, 1 − ζ2 = 0.84, 1 − ζ3 =
0.79 to serve more UL, bewaring to avoid cross interference. Interestingly, such an allocation
simultaneously improves both UL and DL performances (we will explicitly show this later).
Also, the DL BH allocated resources (Z(j)) are increased to accommodate more DL traffic,
while ensuring not to exceed a maximum value that would congest the UL.

User performance: We now go beyond the above qualitative behavior and evaluate the
quantitative benefits. We first focus on user-centric performance and consider various τ val-
ues (we remind the reader that τ is a parameter that balances the importance of DL vs UL
performance). We compare the performance of the following main schemes. (ProposedAlg):
our proposed algorithm; (TDD Fixed): the optimal allocation algorithm of [95] with equal, pre-
confiigured UL/DL resources on both radio access and BH. To better understand the importance
of considering the cross-interference and BH capacity constraints, we also include results for the
following schemes. (AlgNoCross): jointly optimal allocation, but not taking cross-interference
into account. If there is an eventual asymmetry in the optimal UL/DL schedules, potential
cross-interference is included in the SINR to capture its impact. (AlgNoBH ): jointly optimal
allocation without considering the backhaul constraints. Here, we assume that all BSs associated
with a BH link that is congested decrease their performance proportionally to the amount of
congestion.

In Figures 4.5 and 4.6 we depict the DL and UL user throughput as a function of τ in different
scenarios. It is easy to see that our ProposedAlg significantly outperforms the TDD fixed policy
by up to 2.5 − 3×. What is more, for most intermediate τ values, it is able to simultaneously
improve both DL and UL performance. As τ increases further, the emphasis of ProposedAlg
moves exclusively to the DL (and vice versa) which is consistent with our expectations, unlike the
fixed TDD scheme where DL and UL performances are optimized independently of τ (decoupled
objective).

Regarding the impact of the cross interference constraint, AlgNoCross can still offer some
improvement on the DL for τ > 0.5, compared to the baseline (TDD Fixed). However, it
does so with a significant penalty on UL performance (up to 3× worse), which is the most
sensitive to cross-interference (this DL-to-UL interference is a key problem for future Flexible
TDD [112]). This underlines the importance of directly considering cross interference constraints
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(c) DL associations (flexible TDDs).
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Figure 4.4: Optimal user associations in the following scenarios: (a) downlink associations when
fixed TDD resource allocation (50%-50%) (b) uplink associations when fixed TDD resource
allocation (50%-50%), (c) downlink associations with flexible TDD resource allocation, (d) uplink
associations with flexible TDD resource allocation. (τ = 0.5).

in our optimization framework through Eq.(4.3). Finally, the performance of AlgNoBH shows
similar behavior, where it can sometimes provide better performance for the DL or the UL
(compared to TDD fixed) but not both.

Summarizing, the following important conclusions can be drawn from the above analysis:
(a) jointly optimal allocation of user association and DL/UL radio resources can actually lead to
considerable performance degradation, unless cross-interference is taken explicitly into account;
(b) a jointly optimal allocation, even with cross-interference taken into account, might still be
quite suboptimal, if the DL/UL resources on the BH are not also optimized to conform to the
new load requirements imposed by the BSs; (c) joint optimization of all these dimensions is
feasible, and can offer significant performance improvement for both DL/UL.
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Figure 4.5: User-centric Performance: Downlink user throughput for various fixed and flexible
TDD resource allocation schemes (in Mbps).
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Figure 4.6: User-centric Performance: Uplink user throughput for various fixed and flexible
TDD resource allocation schemes (in Mbps).

Network performance. Table 4.1 considers the performance improvements in the same
comparison scenario (ProposedAlg and TDD Fixed [95]), but now from the network perspective
when τ = 0.5. We consider two metrics: Spectral Efficiency (SE) in terms of bits/s/Hz, and
Load Balancing (LB) in terms of mean square error between different BS loads, similar to what is
assumed in [95]. DL/UL spectral efficiency improve up to 44% since flexible TDD better allocates
the resources with respect to the heterogeneous transmit powers that help physical data rates
improve (see B.2-B.3). It also considers related traffic statistics and asymmetries across users
(see A.1-A.2) by diminishing the BS load fluctuations (e.g., BS under/over utilizations) and thus
LB is improved. It is interesting to note that simultaneous improvement of these metrics implies
improvement in user performance, as showed previously and explained in B.7.
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Table 4.1: Network performance in terms of Spectral Efficiency (SE) and Load Balancing (LB)
(when τ = 0.5)

Downlink Uplink

Performance. SE LB SE LB

Percentage % of improvement. 42 16 44 54

Scenario 2: Having highlighted the different tradeoffs and sources of performance improve-
ment in the basic scenario above, we now turn our attention to a larger network topology
consisting of 4 macro BSs and 13 SCs. Without loss of generality, we now consider uniform
traffic demand. Considerable performance improvements can be observed in this scenario as
well as seen in Table 4.2 (e.g. 86% better UL user performance). Relative lower improvement
values compared to the smaller Scenario 1 are mainly due to: (a) not all BSs experience bad
performance now so even if ProposedAlg considerably improves the performance of the problem-
atic BSs, average performance is not as affected; (b) the additional cross interference constraints
posed from the neighboring clusters.

Table 4.2: User and network performance improvements in terms of Throughput, Spectral Effi-
ciency and Load Balancing (when τ = 0.5)

Downlink Uplink

Scenario. UE SE LB UE SE LB

Percentage % of improvement. 29 39 4 86 42 51

4.7 Discussion and Conclusions

In this Chapter, we formulated a novel algorithm that carefully studies the coupled problems of
(i) user association, TDD (ii) access, and (iii) backhaul resource allocation under the emerging
backhaul and cross interference constraints. Using optimization theory we proved that under
certain circumstances it converges to the global optimum. Simulation results corroborate the
correctness of our framework and reveal promising qualitative and quantitative results, e.g.,
simultaneous and significant performance improvements on both UL and DL dimensions.

Note that the proposed algorithm of this Chapter (Algorithms 1 and 2) supplement the
frameworks analyzed in Chapter 2 and 3, by including additional degrees of freedom. We high-
light the importance of these degrees of freedom, since as showed can reveal various performance
improvements up to 3 times.
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Chapter 5

Energy Optimizations subject to
user QoS constraints.

5.1 Introduction

As discussed, the growing demand for Internet-enabled wireless devices, and bandwidth-hungry
multimedia services from the increasing number of “heavy” users and smartphones create signif-
icant capacity problems. The latter motivated the operators to build very dense deployments
that suffer with high load fluctuations. Thus, in Chapters 2, 3 and 4 we claimed that user
association and dynamic TDD allocation problems need to be revisited in such scenarios, and
we offered some initial insights about the involved tradeoffs.

Note that, the intense spatio-temporal fluctuations usually imply that a significant number
of BSs will carry no traffic or only a low traffic-load, by questioning their actual contribution.
Currently, 15-20% of all sites carry about 50% of the total traffic [113]. Hence, a considerable
number of sites waste energy (for staying ON, as well as for cooling), despite serving little or no
traffic [114]. Chapter 5 is devoted for this problem.

As pointed out in Chapter 1, a large research effort has been initiated recently in the area
of “green” networks. Nevertheless, most past studies are performed in the context of large
macrocells under homogeneous traffic profiles, and with large time-scales (e.g. turning off BSs
during the night [87]). Furthermore, usually simple QoS requirements are considered when
applying such techniques, e.g. signal quality as in [86], or traditional blocking probabilities
as in [17]. In modern and future cellular networks, dealing with energy consumption issues
becomes more challenging. Significantly more opportunities arise for switching off BSs in smaller
time scales (e.g. in the order of some minutes), due to (a) coverage overlaps stemming from
heterogeneous and/or independent deployment of cells, (b) larger spatio-temporal load variations
due to the smaller number of users associated to each cell, and (c) power-proportional and
load-dependent BSs. Yet, exploiting such opportunities must be done without violating agreed
QoS performance for users. The evaluation of the latter is a rather daunting task, due to the
diversity of user traffic (streaming, voice, web, file download, etc.) and service and performance
requirements offered to users. As a result, a number of interesting questions arise: Which QoS
metric(s) should be used in such future HetNets? Which types of users and BSs should one
consider when making a power management decision? Should the duration of switching-off
period, affect our decision, and if so, how?
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Towards answering these questions, in this Chapter we identify three QoS constraints, related
to different ways that the performance of a UE could deteriorate [115]. We then derive analyt-
ically the probability of violating each of them, as a function of user and network parameters
and planned switch-off duration. Specifically, we consider the following BCD constraints:

• Blocking probability for dedicated flows, i.e., the probability that a flow that requires
a certain amount of (dedicated) bandwidth, is blocked due to the lack of the available
resources (Section 5.2.2).

• Coverage Failure Probability, i.e., the probability that a random UE experiences poor
signal quality when it needs to use the network (e.g. making a call, or sending a web
request). (Section 5.2.1).

• Delay for best-effort flows, i.e., the ongoing delay for the flows that are multiplexed and
have to compete for resources. (Section 5.2.3).

Our general methodology is to, first, identify the key parameters for each QoS constraint, and
then use analytical tools, mostly coming from queueing theory, to evaluate the probability of
violating each one of them, if a BS is switched-off. Our goal in this direction is to strike
a tradeoff between realistically capturing some features of new, data-centric cellular systems,
while maintaining a certain analytical tractability to provide insights into the QoS vs. Energy
savings. The novelty of our methodology is that we can select even a small time-interval, for
the sleeping period X, and evaluate the energy-QoS tradeoff by switching to transient analysis
(rather than stationary analysis) of the stochastic model in hand (Section 5.2). Based on these
QoS constraints and the time duration X, we perform a preliminary study and show that
significant energy savings can be achieved even for switching-off periods of the order of some
minutes (Section 5.3).

5.2 System Model and Problem Formulation

Since we are interested in short sleeping mode durations, i.e. in the short-term (rather than
long-term) dynamics of the system, the standard stationary analysis presented in Chapters 2, 3,
4 as well as the ones proposed in the literature can become incorrect. Thus, we present a new
system model and corresponding assumptions that conform to the needs of our new requirement
for short-time scale analysis.

We will follow a similar presentation as did in the previous Chapters. Specifically, in (A.1 -
A.2) we present our system model related to the user and traffic differentiation, as well as the
radio access network. In ((B1)CD- (B3)CD), B(C1)D- B(C3)D) and (BC(D1)- BC(D2))) we
present our model for each one of the three QoS constraints.

Note that our focus is on the radio access network, since BSs are the main energy killers in
a cellular network [116], and our major concern is on the DL (similar analysis can be done for
UL).

(A.1 - User Classification) Our first observation is that in the short-term different users
will affect the considered constraints differently. For example, ensuring good signal quality
for a UE that has some ongoing traffic (e.g. doing a VoIP call, or streaming a video), is more
important (and more challenging) than for a UE currently“on”the network but idle. If the former
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Table 5.1: Notation

Variable Meaning

X Duration of the switch-off period.

zd, zb Probability that a random flow is dedicated or best-effort.

ζdi , ζ
b
i Resource allocation parameter for dedicated or best-effort flows.

pf Threshold for Failure Probability while switching-off BSs (Proposition 1).

pblock Threshold for Blocking Probability while switching-off BSs (Proposition 2)

Dmax Threshold for service delay while switching-off BSs (Proposition 3)

Rb, Rtotal Available peak bit rates for “dedicated‘” flows, for “best effort” flows.

λAU, λCU, λDU Data rates for AU,CU,DU.

B, 1/µb Dedicated flows demand (in bps), and best-effort flow length (in bits).

experiences poor signal quality, the communication session might be dropped immediately. We
consider three different types of users:

• Active users (AU): users that are connected to a BS and have one or more on-going traffic
flows currently. These users reside in EMM (EPS-Mobility Management) REGISTERED
and ECM (EPS Connection Management) CONNECTED states.

• Connected users (CU): users associated with a BS but without any ongoing traffic
sessions1. These users are in EMM REGISTERED and ECM IDLE states.

• Disconnected users (DU): users in the vicinity of the BS, but currently not ON (or
in airplane mode); while their exact number and location cannot be known their impact
should be estimated, especially when the switch-off duration increases, as one of them
might decide to switch on the UE and use the network. These users are in the EMM
DEREGISTERED and ECM IDLE states.

(A.2 - Traffic Differentiation and Bandwidth Allocation) In addition to the above
classification of users, we also need to classify the flows between dedicated and best-effort, since
different flows shall affect differently the transient cell load and thus our decision for switch-off.
As discussed in Section 2.2, the probability that the next flow generated by a user is a dedicated
or best effort flow depends on the aggregate traffic mix (e.g., percentage of VoIP calls vs. video
streaming vs. simple browsing, etc.). We maintain the same notation (zd vs. zb, respectively).
For simplicity, we assume that each BS has a peak data rate Rtotal to allocate among all flows
from all serving users, and 0 < ζi < 1 is the spiting parameter such that: Rd = ζi · Rtotal and
Rb = (1− ζi) ·Rtotal are allocated to dedicated and best effort flows, respectively2.

Our aim is to decrease energy consumption of this cellular network, by dynamically switching
off one or more of small cells, during a defined time-duration of X minutes, referred to as

1For simplicity, we will ignore background traffic as it usually less delay-sensitive, and often “lightweight” (e.g.
email client polling, social network notifications, etc.).

2The actual values are operator-specific, which is why in our analysis it is considered as an input parameter.
Note also that, depending on the deployment, the available rate Rtotal might not be bounded by the radio access
capacity, but rather by the backhaul capacity, as discussed in Chapter 3.
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switch-off period, hereafter3. To do so, we shall avoid violating each one of the following three
constraints.

In the following we start with the more generic constraint i.e. the Coverage Failure probabil-
ity constraint since is easier to tackle. Then, we formulate the blocking probability and service
delay constraints, by modifying accordingly the k-loss and PS system.

5.2.1 Coverage Constraint

When the decision to switch off a BS with users is made, those users will have to be handed-over
to an available neighboring BS. This will often result into a weaker than average signal level.
Hence, before a decision to switch off a target BS is made, we must ensure that it will not lead
to a disconnection or unacceptable quality for one or more handed-over users. To this end, as
our first QoS constraint we will consider the probability that a user, originally associated with
a switched-off BS, will experience low-signal quality (e.g. a deep fade) if it needs to use the
network during the switch-off period.

It turns out this probability changes for different types of users, namely AU, CU, and DU.
Specifically, an AU with a current ongoing session will be immediately affected by a signal quality
drop. In contrast, a CU or DU will be affected only if both the following events occur: (i) it
becomes active (e.g. initiates a new call or data session) during the switch-off period X, and (ii)
the signal quality is low. Consequently, we need to calculate the following quantities:

• the outage probability, which is the probability that the signal strength of user is not
sufficient to maintain an ongoing service,

• the activation probability, which is the probability that a user covered by the BS in question
(e.g. a CU or a DU) becomes active during the next X minutes, and

• the coverage failure probability, which depends on both the outage (AU, CU, DU) and
activation probabilities (CU, DU), and is the quantity we are interested in.

(B(C1)D - Outage probability) For simplicity, we use the SNR to calculate the outage
probability4. Following Chapter 2, we assume that the SNR for the lth UE associated with the
jth BS, is given by:

SNRlj =
GljRljpj
N0

. (5.1)

The noise power is denoted as N0, and the transmission power of the jth BS is pj . Glj represents
the nonnegative path loss between the jth BS and the lth UE (it may also encompass antenna
and coding gains) that is often modeled as proportional to r−nlj (n is the power fall-off factor and
rlj denotes distance). Note that now, we include the Rayleigh fading, as usually done in outage
probability consideration (e.g., see [86]). Rlj corresponds to a Rayleigh fading component, and
is exponentially distributed with unit mean. The distribution of the received power from the jth

BS at the lth UE is then exponentially distributed with mean value E[GljRljpj ] = Gljpj .

3“Idle” power consumption (related to both electronics, but also cooling) is a major component one could thus
save. The additional “load-dependent” power consumption would essentially be shifted over to a neighboring base
station, not leading to significant further gains. We defer exploring more complex power management techniques
(e.g. cell zooming [117]) to future work.

4The use of SINR could also be introduced in this constraint, but would make our analysis more complex.
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Thus, the outage probability for the lth AU or CU associated with the jth BS is:

Pout(rlj) = P (SNRlj < γ) = 1− e
− γN0
Gljpj = 1− e

− γN0

r−n
lj

pj . (5.2)

The above formula is applicable for AUs and CUs, as their actual distance rlj is known. In
the case of DUs, their location and the total number is unknown. Assuming that there are ρDU
DUs per m2, and the transmission range of a base station is rmax, the expected number of DUs
in the considered cell is:

NDU = ρDUπr
2
max. (5.3)

If we now consider a specific DU that becomes active, and whose “local” BS is switched off,
it will try to connect to one of the neighboring cells. Let rd denote the distance of the chosen
BS from the local BS (its mean value is a function of deployment density). Thus, we can replace
rlj in Eq.(5.2) with rd to get an estimate for the DU outage probability:

PDUout =

(
1− e

− γN0
(rd)−npj

)
. (5.4)

(B(C2)D - Activation Probability) We now consider the probability that a CU or DU
becomes active during the next X minutes. We denote these probabilities as PCUact (X) and
PDUact (X), respectively. For simplicity, we assume that the time until a CU or a DU generates
a new session (call, data session, etc.) is exponentially distributed with rate λCU and λDU ,
respectively (we assume λDU ≤ λCU ). Hence, we can calculate the activation probabilities as
follows:

PCUact (X) = 1− e−λCUX , (5.5)

PDUact (X) = 1− e−λDUX . (5.6)

The above equations can be easily extended to general user session interarrival distributions.
However, Poisson arrivals are often assumed for user-initiated sessions [14].

(B(C3)D Coverage Failure Probability) Assume that the candidate BS serves NAU

active and NCU connected users. We denote the set of active and connected users as NAU and
NCU , respectively, and we assume that some DUs are also in the covered region, whose number
is given by Eq.(5.3). If the BS is switched off, then let J(i) denote the BS that user i is handed-
over to5. Finally, assume that the desired QoS is described by a maximum failure probability
pf , chosen by the operator or indicated in a Service Level Agreement (SLA). Then, the following
Proposition captures the first system constraint:

Proposition 1. (Constraint I) A BS cannot be switched off if the average user associated with
it will experience a coverage failure probability, during the switch-off period X, that exceeds a
threshold pf . This probability is given by6:

5Note that in the real system, this is done using RSSI and RSRP measurements coupled with the received
system information assuming that the terminal is eligible. In our analysis, we will assume that either maximum
SNR or, simply, distance is used as the criterion.

6Instead of this weighted average approach, one could also consider a very conservative, worst-outage proba-
bility minimization approach, that has been considered in [118], using the Perron-Frobenius theorem.
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∑
i∈NAU

Pout(riJ(i)) +
∑

i∈NCU
PCUact (X)Pout(riJ(i)) +NDUP

DU
act (X)PDUout

NAU +NCU +NDU
. (5.7)

Impact of switch-off duration X: The above analysis gives qualitative insight about the
impact of the switch-off duration. If X is short, compared to the average inactivity time for
CUs (DUs), one can more aggressively switch off BSs as a smaller percentage of node is affected.
However, for large X Eq.(5.5) and (5.6) converge to 1. In that case, all users in the vicinity of
a BS must be considered, and the decision only depends on the average outage probability.

5.2.2 Dedicated flows: Blocking Probability Constraint

In this subsection, we focus on dedicated flows. Specifically, we are interested in the impact of
switching off a BS on the admission control mechanism of the neighboring BSs, where users with
dedicated flows will have to be handed over.

As discussed in Chapter 2, for such flows we consider the k-loss system. There, a BS is
allocated a finite set of k resources (or, servers). If a user initiates a new session (e.g., call)
when the BS is already using all its k resources, this session will be blocked. We are interested
in calculating this blocking probability, and trying to keep it lower than a pre-defined threshold.

While in stationary systems (e.g., as the ones defined in Chapters 2,3 and 4) this probability
can be given by the well-known Erlang-B formula [14], for systems that have not yet converged
this formula can become incorrect.

To that end, we now focus on (i) the arrival/service rate under the system model discussed
earlier, and (ii) explain how k can be approximated in such a system where our focus is on the
short-term statistics. Then, (iii) by using Transient Analysis theory we calculate the desired
blocking probability and construct our QoS constraint. In the remaining discussion, when we
consider a given BS, we use the term “handed over” or “remote” (sub-/superscript “HO”) to refer
to users that have been “transferred” to this BS from a neighboring BS that is switched off,
and “local” (sub-/superscript “l”) for existing users of this BS. Handed-over users are generally
further away from the BS than local ones.

((B1)CD - Arrival and service rate of dedicated flows) Consider a given BS being
switched off, whose users are handed over to (different) neighboring BSs. Consider now one
of this neighboring BSs, and let us denote as N l

i , and NHO
i the number of local and remote

users, respectively, of type i (i ∈ {AU,CU,DU}), associated with this BS. Let further λi denote
the flow arrival rate per user of type i. The total load for this BS is the sum of all flow rates
across these users, and we’ll assume that the actual arrival process is Poisson with the sum rate.
This assumption is motivated by the Palm-Khintchine theorem, which states that the sum of
many independent arrival processes becomes Poisson in the limit [14]. Finally, assume that each
arriving flow requires dedicated resources with a probability zd. Then, due to Poisson splitting,
the arrival process remains Poisson with total rate λd, given by:

λd = zd

λAU · (N l
AU +NHO

AU ) + λAU ·
∑

i∈{CU,DU}

(N l
i +NHO

i ) · λAUP iact(X)

 , (5.8)

where P iact(X) are the activation probabilities defined in (5.5) and (5.6). We will also assume
that the flow sizes are exponentially-distributed with parameter µd, that is, approximately, the
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average one between dedicated flows. Thus, we can replace λ and µ in the Markov chain of
Fig. 5.1, with λd and µd, for the case of dedicated flow admission control.

Figure 5.1: Continuous Time Markov chain (CTMC) for the considered k-Loss queueing system
of the dedicated flows being served at a given base station.

((B2)CD - Resource constraint k) As explained earlier, k is the resource constraint in
the k-loss system related to countable resources (e.g., servers). In the context considered, the
available peak rate for dedicated flows Rd, is a flexible resource, whose allocation is a function
of the number of flows, respective dedicated rate demand, and user channel quality. Thus, we
apply a “softer”, estimated value of k in our loss system.

Assume that Bd is the average bit rate demand per dedicated flow. If a peak rate Rd is
available at the BS, the resource constraint k could be approximated in the k-loss system as Rd

Bd
,

since an “average” flow consumes a percentage Bd
Rd

of the available rate. However, this nominal
peak rate is only available when the SNR is ideal, or more simply, within a certain distance
from the BS (assuming e.g., a simple log-distance path loss model). Hence, to better estimate
the maximum number of “average” dedicated flows that can be served, we need to also consider
the (potential) distances of different users generating these flows. For this purpose, we adopt a
simple and low-complexity model associating peak rate to distance, proposed in [76,119], stating
that the peak rate available drops with distance rij from a BS j as:

c(rlj) =

{
1, rlj ≤ r0

( r0rlj )n, otherwise
(5.9)

where r0 is some threshold range within which the maximal rate is obtained, and n, is the
attenuation factor.

Hence, if all dedicated flows where requested from a distance rlj , then the total rate available
to them would be only c(rlj)Rd (≤ Rd), or stated differently, the effective rate requirement per
average flow would be higher at a large distance r and given by

B(rlj) =
Bd
c(rlj)

. (5.10)
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We can now approximate the peak rate drop factor c(r) based on the combination of UEs and
distances, e.g. using again a weighted average. Specifically, our estimated resource constraint k
for dedicated flows is given by

k =
Rd

B̃d
, (5.11)

where

B̃d =

NAU∑
l=1

B(rlj) +
NCU∑
m=1

B(rmj)

NAU +NCU
, (5.12)

and Ni = N l
i + NHO

i , i ∈ {AU,CU}, denotes the total number of users, local and remote, of
type i. We can thus replace k with the approximated value of k in the loss system of Fig. 5.17.
Finally, note that we have assumed that DUs will not affect the peak data rate of the considered
BSs (but only affect this constraint through Eq.(5.8), where we assume that DUs might also
switch on and generate some flows during X).

((B3)CD - Transient analysis of k-loss system) So far, we have shown how to calculate
the necessary parameters for the Markov chain of Fig. 5.1. However, to calculate the probability
that a newly arrived flow that needs dedicated resources will be blocked, it does not suffice
to replace these parameters in the Erlang B formula. The latter gives the stationary blocking
probability, that requires the respective chain to be converged, and thus corresponds to large
values of X. Instead, we need to apply transient analysis to this system, and estimate the
blocking probability via the occupation time in state k during the intended switch-off duration
X.

The initial state for the Markov chain, at time 0 (the beginning of the switch-off period),
corresponds to the current number of active dedicated flows. Denoted as s, it is:

s = zd · (N l
AU +NHO

AU ) · ξ, (5.13)

where we use ξ to denote the expected number of ongoing flows per AU (this is an input
parameter). Starting from s, the occupation time in state i, denoted as Oi(X) (0 ≤ i ≤ k),
is the time that the MC spends in state during the next X minutes (or time units). We are

interested in deriving the quantity E[Ok(X)]
X . This corresponds to the percentage of time that

the system is in state k (all resources are used), during the switch-off period X and starting
from state s. Hence, due to the PASTA (Poisson Arrivals See Time Averages) property, this
also corresponds to the probability that a newly arrived dedicated flow will be blocked due to
non-available capacity.

7We should stress that, as mentioned earlier, this is only an estimate. In practice, there will be a few times
when the system is serving more than k dedicated flows (e.g. when all users are close-by or flows require lower
rates than average), and times when a new flow might be blocked even if less than k flows are served. However,
since we are interested in the short time-scale statistics where the system dynamics do not change significantly,
we believe that this chance is quite small.
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Figure 5.2: Discrete Time Markov chain (DTMC) for the considered k-Loss queueing system of
the dedicated flows being served at a given base station.

We can estimate this percentage of time either by uniformization in CTMC (Continuous
Time Markov Chain) [120], or by converting it to DTMC (Discrete Time Markov Chain), as
an approximation. To simplify our discussion, we follow the second approach. Let ∆t be a
small time inteval. The DTMC depicted in Fig. 5.2, is the discrete-time approximation of our
system continuous-time k-loss system, where a state transition occurs every ∆t time units. If
Pij denotes the probability that the chain goes from state i to state j (0 ≤ i, j ≤ k), then it
follows from standard properties of the Poisson distribution [120] that (see Fig. 2):

p = λd ·∆t, Pi,i+1 = p, 0 ≤ i < k

q = µd ·∆t, Pi,i−1 = i · q, 0 < i ≤ k

Pi,i = 1− Pi,i+1 − Pi,i−1, 0 ≤ i ≤ k

Hence, if P = {Pi,j} denotes the probability transition matrix, and Pn = {Pni,j} the n-step
transition matrix (Pn = (P)n), then the expected occupation time is given by:

E[Ok(X)] =

X
∆t∑
n=0

Pns,k, (5.14)

where s denotes the initial state (initial number of active dedicated flows) and X
∆t the total

switch-off duration (counted in discrete time steps of duration ∆t).

Proposition 2. (Constraint II) Assume a desired maximum blocking probability is given for
dedicated flows, defined as pblock. A given BS can be switched off only if the following inequality
holds for all neighboring BSs to which users of the switched-off BS are handed-over:∑ X

∆t
n=0 P

n
s,k

X/∆t
≤ pblock. (5.15)
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Impact of switch-off duration X. The computational complexity of Proposition 2 can
be traded off with accuracy by increasing the time step ∆t. In addition, as X becomes large
(specifically, larger than the mixing time for the MC of Fig. 5.2), the condition of Eq.(5.15)
converges to the Erlang-B formula.

Remark 1. When X →∞, the condition of Eq. (5.15), converges to

(λd
µd

)k/k!

k∑
j=0

(λd
µd

)j 1
j!

≤ pblock. (5.16)

Proof.

lim
∆t→0

lim
X→∞

E[Ok](X)

X/∆t
= lim

∆t→0
lim
X→∞

∑ X
∆t
n=0 P

n
s,k

X/∆t

= lim
∆t→0

πk(∆t) = πk,

where πk(∆t) is the stationary probability for state k in the DTMC approximation with unit
step (∆t). As ∆t → 0 this quantity converges to πk, the stationary probability of state k for
the CTMC corresponding to the standard k-loss loss system of Fig.5.1, which is the Erlang B
formula [14].

5.2.3 Best-effort flows: Service Delay Constraint

As our last constraint, we consider the delay for a best-effort flow, i.e. a flow that requires
elastic resources. Consider again a given BS being switched-off, whose users are handed over to
different neighboring BSs, and let’s pick one of them and focus on it. As before, this BS will
have some local users and some remote users, that were handed over from the switched-off BS,
all of which might generate (new) best effort flows. While there are no guarantees for such flows,
we might still want to keep their expected delay below a certain threshold. Our goal is to model
and analytically bound this delay.

As discussed in Chapter 2 such best-effort flows are usually scheduled under a PS scheduling
discipline. To analyze the delay of such a system we need to know λb, the arrival rate of best-
effort flows, and µb the service rate for best-effort flows.

(BC(D1) - Arrival and service rate of best-effort flows) Let zb denote the probability
that a new flow arrival is best effort. It follows that incoming “best-effort” flows are Poisson
distributed with total rate:

λb = λ− λd. (5.17)

To find the service rate for best-effort flows, let Rb denote again the peak bit rate for best-effort
flows. As explained before, if a single best effort flow exists in the system for a user at distance
rlj , then the actual bit rate received is only c(rlj)Rb, where c(rlj) is given by Eq.(5.9). The
actual average peak rate is:

R̃b = Rb ·

NAU∑
l=1

c(rlj) +
NCU∑
m=1

c(rmj)

NAU +NCU
, (5.18)
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where Ni = N l
i +NHO

i , i ∈ {AU,CU}. The above estimated rate corresponds to a single flow. If
there are n total best-effort flows currently in the system, then PS would split this rate equally,

and each flow would be served with a bit rate R̃b
n .

To find the actual service rate µb of the PS queue, the number of flows served per time unit
(note that this is not equal to R̃b, which is just the effective bit rate), we also need to know
the average length of best effort flows. If we assume that the sizes of the best-effort flows are

exponentially distributed with mean Yb, then µb = R̃b
Yb

. When the system is stationary, i.e. when
X is quite large, the expected delay for a newly arriving flow corresponds to the delay of a PS
queueing system:

E[Db] =
1

µb − λb
(X →∞).

(BC(D2) - Transient analysis of PS system) However, for general values of X, the
Markov chain corresponding to the PS system is not stationary. Thus, we must again apply
transient analysis, assuming an initial state. Let s again denote the initial number of best-effort
flows in the BS, at the beginning of the switch-off period X, where s = zb · (N l

AU + NHO
AU )ξ,

similar to Eq. (5.13). Consider now a new flow of size 1/µb arriving at some time t ∈ [0, X].
The number of active best effort flows in the system that has to share the PS capacity with, is
a random variable, denoted as n. Our approach will be to find the expected delay conditional
on this value of n, and then take the average.

If our flow of size 1/µb finishes transmitting while in state n (i.e. no new flows arrive and
no existing flows finish), the service rate remains fixed at Rn = R̃b/n and the expected delay

for this flow is 1/µb·n
R̃b

. However, if a state transition occurs before all 1/µb bits are transmitted,

then the remaining bits will be transmitted at a lower (R̃b/(n+ 1)) or higher rate (R̃b/(n− 1)),
if a new flow arrived, or an existing finished, respectively. Let us denote as Tn the time spent
in this state until the next transition. This time is exponentially distributed with rate λb + µb,
so E[Tn] = 1

λb+µb
. Hence, putting everything together, we can define the following recursion to

derive the (conditional) delay of a flow of 1/µb bits finding another n ongoing flows when it
arrives. Rn denotes the transmission rate at state n.

Dn(1/µb) =



1/µb

Rn
, if 1/µb

Rn
≤ E[Tn]

E[Tn] +Dn+1(1/µb −Rn · E[Tn]), if 1/µb

Rn
> E[Tn]

and n→ n+ 1

E[Tn] +Dn−1(1/µb −Rn · E[Tn]), if 1/µb

Rn
> E[Tn]

and n→ n− 1

(5.19)

It is: P (n→ n+ 1) = λb
λb+µb

, and P (n→ n− 1) = µb
λb+µb

.
However, the actual number of initial active flows n at time t is also a random variable,

which depends on the evolution of the system, starting at initial state s until time t. To find
these probabilities, we will again use a DTMC approximation and n-step transitions as before.
Since the procedure is symmetric as for the dedicated flows, we omit here the details and give
the final result which is

E[Db] =

X/∆t∑
t=0

∞∑
n=1

P
t/∆t
s,n Dn(1/µb)

X/∆t
, (5.20)
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In practice, we can add up only a finite number of terms in the inner sum, to reduce the
calculations.

Proposition 3. (Constraint III) Assume a desired maximum delay for best effort flows, Dmax.
A given BS can be switched off only if the following inequality holds for all neighboring BSs to
which users of the switched-off BS are handed-over:

X/∆t∑
t=0

∞∑
n=1

P
t/∆t
s,n Dn(1/µb)

X/∆t
≤ Dmax.

Impact of switch-off duration X. The computational complexity of Prop. 3 can be traded
off with accuracy by increasing the step ∆t. Also, as X becomes large, the individual probabil-
ities of (5.20) converge to their stationary distribution.

5.3 Simulation Results

In this section we briefly present some numerical results and discuss some initial insights they
offer.

To evaluate our QoS constraints, we consider a network composed of 120 small cells , and
2 macro cells that are uniformly distributed in an area of 45km2. The simulation parameters
remain similar as the ones adopted in Section 2.4. Specific differences will be elaborated when
necessary.

We assume that there are 500 AUs and CUs, plus 120 DUs. We also assume total peak
rate Rtotal= 70 Mbps; average length and bit-rate for best-effort and dedicated flows 1/µb = 20
Kbytes and B = 200 kbps, respectively; coverage threshold γ = 50dB8; λAU, λCU, λDU 10, 2, 1
and 0.1 flows/hour, respectively. Finally, the maximum number of concurrent users that each
SC can handle is set to9 11.

We are interested in investigating how the different values of the predefined thresholds pf
(failure probability), pblock (blocking probability) and Dmax (service delay) affect the portion
of energy savings10. In Fig. 3(a), 3(b) and 4(a), we assume switching-off duration X = 10
minutes. Each figure contains two curves; the “top” curve corresponds to the portion of energy
saved when we consider only a certain constraint active, while the “bottom” curve considers all
constraints to be active, at fixed thresholds (when not explicitly mentioned, we assume them to
be pf = 0.3, pblock = 10−3 and Dmax = 50msec).

In the “top” curve of Fig. 3(a), on the x-axis we increase the pf and plot the savings. It
can be seen that, increasing the threshold (making the constraint less strict) increases savings,
as it allows for more BSs to be switched off. For instance, we can save up to 68% for pf = 0.4.
As for the “bottom” curve, savings increase too, but less sharply, as the other two constraints
can overrule the switch-off decision, especially for large pf . For example, with pf = 0.4 and the
other two thresholds fixed, the energy savings can be up to 30%.

8The threshold γ is an input parameter and is chosen to ensure the coverage constraint with a relatively good
signal quality.

9This number can vary, depending on the type of the small cell [121], and does not affect the blocking
probability.

10This portion is equal to the energy we can save, divided by the energy needed for all BSs switched-on during
X i.e.

EALL−Epart

EALL
, where EALL is the energy needed if all BSs are switched-on, and Epart is the (decreased)

energy needed if we safely switch-off some BSs based on our policies.
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Figure 5.3: Portion of Energy Saving versus the Failure probability in the considered HetNet
scenario when switching-off duration is X = 10 minutes.

Similarly, Fig. 3(b) and 4(a) depict the portion of the energy saved, by taking into account
the blocking probability and service delay constraints. For example the top (bottom) curve of
Fig. 3(b), shows that the portion of energy savings can be up to 50% (28%), by considering
only the blocking probability constraint (plus the other two with fixed). Finally, Fig. 4(a) shows
that the portion of energy savings for the delay constraint can be 70% by maintaining only the
Dmax in 100msec, and 30% by holding the other two fixed.
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Figure 5.4: Portion of Energy Saving versus the Blocking probability in the considered HetNet
scenario when switching-off duration is X = 10 minutes.

75



CHAPTER 5. ENERGY OPTIMIZATIONS SUBJECT TO USER QOS CONSTRAINTS.

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
or

tio
n 

of
 E

ne
rg

y 
S

av
in

g

D
max

 

 
All Constraints

Only Delay Constraint

Figure 5.5: Portion of Energy Saving versus the Service delay (sec) in the considered HetNet
scenario when switching-off duration is X = 10 minutes.

Another interesting parameter is X, the switch-off duration. Fig. 4(b) depicts the portion of
energy saved for different values of X with fixed constraint thresholds (pf = 0.4, pblock = 10−3,
Dmax = 200msec). To be more precise, energy savings are maximum when X is relatively small,
but start decreasing and eventually flatten out, as X increases. The reason is that, for small X,
one needs to only consider the impact of AUs when evaluating the constraint and the impact of
hand overs to neighboring BSs. However, as X increases, there is a higher chance that CUs and
DUs will add traffic to the total transferred load (see Eqs .(5.8) and (5.17)), which might prevent
us from switching off a BS. Finally, the plot corresponding to each constraint is not always linear,
as some additional phenomena, such as convergence to stationarity for the stochastic systems
we use in constraints 2 and 3, also affect systems’ behavior.

Thus, smaller switch-off duration X promises larger energy savings, but also implies that
the system will (a) have to re-evaluate the state of the system and repeat its decision quite
frequently (computation complexity) and (b) it might lead to some additional energy wastage
(and performance degradation) due to the fixed power (and delay) needed to switch off and back
on a BS. This suggests an interesting trade-off that we plan to explore in future.
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Figure 5.6: Portion of Energy Saving versus switching-off period in the considered HetNet
scenario when the various constraint thresholds are pf = 0.4, pblock = 10−3, Dmax = 0.2sec.

5.4 Conclusion

In this chapter, we considered the problem of energy saving in future HetNets by switching off
underloaded BSs while focusing on short sleeping durations.

Specifically, we have shown how the potential degradation of user QoS could be analytically
captured and bounded along different dimensions, namely coverage probability, blocking proba-
bility (for dedicated flows), and delay (for best effort flows). We used transient analysis tools to
encompass the feature of the short-time system dynamics. Based on the proposed framework, we
then showed how a significant amount of energy could be saved while maintaining some desired
QoS levels. We also investigated through extensive simulations the tradeoff between power sav-
ings and duration of sleeping mode. While there is inefficient research to draw the importance
of this tradeoff, in this work we highlight its importance since it stresses an arisen opportunity
in future and dense HetNets.
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Chapter 6

Conclusions and Future Research.

Nowadays, operators believe that the aggressive densification of network deployments, overlaying
the conventional macro-cells, with a high number of small cells is the only way of dealing with
the arising traffic crunch. Such a densification increases the spatio-temporal fluctuations of the
traffic load within the network, by strongly affecting the dynamics of the system and thus system
performance. This suggests that a plethora of radio access functionalities, that were rather
simplistic in the conventional networks, shall be revisited for the next-generation networks (e.g.,
in 5G systems).

Such revisions shall not only (i) address the arising trends, challenges and bottlenecks that
such dense networks born, but also (ii) better understand the corresponding performance im-
provements of such deployments and the conditions under which they hold. As a first step
in all of the chapters of this dissertation, we considered various models, we investigated net-
work optimization problems, as well as we performed the required analysis and provided the
corresponding solutions using tools mostly coming from probability, queueing and optimization
theory. The derived expressions can be used from the operators to design efficient network
protocols, scheduling algorithms, and various distributed implementations.

Our contributions are summarized as following:

• We begin with Chapter 2 by revisiting the famous user association problem while being
focused on the radio access network. Having the popular α-fair objective function as
our starting point [10] we significantly extended it to realistically capture some features
of the next-generation, data-centric cellular systems. These features include: (i) traffic
differentiation between best-effort (traffic that demand for elastic resources) and dedicated
(traffic that demand for non-elastic resources) flows, (ii) joint uplink and downlink traffic
performance, as well as (iii) both Split and Joint UL/DL association schemes. We thus
sketched a complete optimization framework capturing all the above characteristics, and
eventually we derived various “device centric” user association rules. Interestingly, when
considering multiple objectives these rules resemble a weighted version of the harmonic or
arithmetic mean of the individual rules. This suggests that one can flexibly add different
flow types or dimensions in our framework, and flexibly derive the optimal user association
rules, without any analytical calculations.

• Later, in Chapter 3, motivated by the emerging bottlenecks arising in the backhaul net-
work, we extend our objective function to capture the backhaul network limitations. Our
aim is to better understand the impact of backhaul (i) link capacities, and (ii) network
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topology, in under-provisioned backhaul scenarios. In particular, we extend our optimiza-
tion problem by adopting appropriate penalty functions to capture the various additional
constraints and avoid congested backhaul links. Eventually we analytically derive novel
backhaul-aware and “device centric” user association rules, by handling the penalty con-
straints in either a “soft” or “hard” manner. Simulation results corroborate the correctness
of our framework, and provide not only qualitative insights on the emerging backhaul bot-
tleneck, but also offer quantitative results to better illustrate its impact on the wide user
and network performance.

• While in the previous chapters we assumed static and fixed bandwidth allocation (e.g.,
between UL and DL for a BS, or a backhaul link), in this chapter we explore the opportunity
for a more flexible and dynamic allocation, in the context of TDD. Thus, we include the
related resource allocation parameters in the objective function and include the (i) flexible
TDD allocation between UL/DL for BSs, (ii) TDD allocation for backhaul links, along
with the (iii) user association problem. We derive a novel algorithm that decomposes
this problem into three different levels, possibly running into different elements (e.g., at
the UE, BS, backhaul link), and using optimization theory we prove that this algorithm
converges to the global optimum. Simulation results show performance improvements up
to 3 times, when the operator is allowed to flexibly allocate its resources between DL and
UL depending on the traffic statistics.

• Eventually, in Chapter 5, we present a novel framework that studies the load fluctuations
in dense HetNets in order to improve energy efficiency. Specifically, one of our key param-
eters is the duration of the switching-off period, and we claim that short sleeping periods
in small cells can promise high energy savings. To that end, we propose a framework that
switches off BSs subject to three sophisticated QoS constraints: coverage failure proba-
bility, blocking probability, service delay. These constraints are derived by considering
the short time-scale system dynamics, and are related to different ways that system per-
formance could deteriorate. Simulation results show that significant energy savings can
be achieved, as a function of (i) the three different QoS constraints, (ii) the switching-off
period. The latter reveals a novel and promising way for energy savings in future networks.

6.1 Future Work

In the context of future heterogeneous networks, various optimizations have been proposed and
studied in the radio access network part. Nevertheless, there is a rather insufficient research
into the backhaul network. Thus, the maximum performance improvements as well as the
arising dependencies between the access-backhaul networks for next generation systems (e.g.,
5G) are not clear yet. Having proposed a tractable and analytical framework for joint access
and backhaul network optimization, the future research directions we are planning to focus on
in this context follow.

• Joint radio and L3 backhaul routing. Mesh backhaul topologies with multiple available
routing paths are expected to be the rule, rather than the exception in future networks.
Our assumption of fixed, L2 backhaul routing is restrictive, and as we saw in Chapter 4, it
also penalizes performance. It would be interesting to jointly optimize (a) the BS that each
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user should be associated with, as well as (b) the routing path up to an aggregation point
(L3 routing). Our goal is twofold: to consider (a) per-BS offloading, where each BS should
offload all flows by using the same routing path upto an aggregation point, (b) per-location
offloading, where flows at different locations of a certain BS can follow different routing
paths to improve system performance. It remains to be investigated whether these two
options retain the convexity and other desirable properties of the original problem.

• Dual Connectivity operation of LTE-A networks allows control plane signaling to be main-
tained on the macro layer while aggregating SCs to provide them extra (user plane) back-
haul capacity. Within our framework, this is applicable since regardless of the backhaul
topology and path, all traffic is routed through an (high coverage area) eNB. So, one can
consider the amount of traffic related to the control plane, and offload it directly to the
macro eNB, by eventually lighten both the SC and the corresponding backhaul link capac-
ities and allow them to “carry” more user-plane traffic. This is a promising way to improve
performance.

Other future work steps, include the consideration of C-RAN, or distributed SDN-based
control to achieve higher performance improvements.

• Fronthaul Network and C-RAN. In the proposed framework we only considered the back-
haul network and the constraints related to it. However, modern networks tend to increas-
ingly focus on Centralized-Radio Access Network (C-RAN) architectures, fact that has
lead fronthaul networks to be rather under-provisioned and their architecture to be revis-
ited. Thus, the introduction of the fronthaul in our framework, along with the potentially
influenced by, backhaul network, and their interaction is another promising extension.
Furthermore, the investigation of C-RAN functionalities that can be flexibly centralized,
depending not only on simple current fronthaul-network status, but also on other factors,
as the backhaul constraint, or the expected system performance, the overall expected net-
work performance, as initially investigated in this paper, along with radio access, backhaul
and fronthaul resources utilization.
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Chapter 7

Résumé.

Les réseaux cellulaires sans fil sont généralement constitués d’un ensemble d’équipements util-
isateurs (User Equipments – UE) et d’une collection de stations de base (Base Stations – BS)
qui se connectent au coeur du réseau (Core Network – CN) par l’intermédiaire d’un ensemble de
liens backhaul (BH). Dans les réseaux traditionnels, l’intensité du trafic et la demande à travers
différents UE restent généralement similaires. En outre, les BS ont des niveaux de puissance
d’émission semblables, des modèles d’antenne ainsi que la connectivité backhaul au core.

De nos jours, la demande de trafic crôıt de façon exponentielle pour les services UE provenant
de différentes applications [1]. En particulier, les applications de «réalité augmentée», de réseau-
tage social, ainsi que les diverses applications de Machine Type Communication (MTC) (par
exemple, le suivi des systèmes de soins de santé ou des systèmes énergétiques) présentent des
exigences élevées de capacité et de latence. Les opérateurs qui luttent pour faire face à cette aug-
mentation du trafic tendent à construire des déploiements de réseaux plus denses pour améliorer
la réutilisation spatiale. Plus précisément, ils construisent des petites cellules (small cells – SC)
additionnelles avec les macro BS (MBS) déjà existantes. Les niveaux de puissance du MBS sont
généralement entre 5 et 40 W, ceux pour les SC sont seulement 0.25 et 2 W. Les réseaux com-
posés d’un mélange de différentes BS avec des niveaux de puissance différents (et donc des tailles
de cellules différentes) sont appelés reseaux hétérogènes – (Heterogeneous Networks – HetNets).

Alors qu’une topologie HetNet dense représente une opportunité prometteuse pour répondre
à la demande croissante de trafic, elle nécessite une planification et une maintenance des backhaul
méticuleuses pour desservir le grand nombre de SC. À cette fin, les recherches actuelles semblent
étudier les nouvelles exigences de backhaul en termes de dépenses en immobilisations (Capital
Expenditure – CAPEX) et de dépenses d’investissement (Operational Expenditure – OPEX),
de couverture, de capacité, de sécurité, de latence, de synchronisation, de conception physique
et de gestion en comparaison aux exigences traditionnelles posées par les macrocellules.

7.1 Motivation et contributions de la thèse

Cependant, beaucoup de choses restent plutôt floues pour de tels HetNets. Dans cette thèse,
nous nous concentrons sur divers problèmes importants de ces réseaux:

• l’ association d’utilisateurs,

• l’ accès et le backhaul de l’allocation TDD,
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• la gestion de l’énergie.

Notre principale motivation est de mieux refléter certaines lacunes, les bouleversements et
les hypothèses traditionnelles que nous rencontrons habituellement dans le travail existant. Plus
précisément, les chapitres de cette thèse sont organisés selon:

Chapitre 2 - Association des usagers qui considèrent le trafic (Ici nous essayons de capturer
la différenciation du trafic)

Chapitre 3 - Association d’utilisateurs qui considèrent le backhaul (Ici nous essayons de
capturer les limitations de backhaul comme un problème fondamental pour les réseaux 5G)

Chapitre 4 - Association des utilisateurs et allocation TDD (Ici nous essayons de capturer
la TDD dynamique)

Chapitre 5 - Minimisation d’énergie (Ici nous essayons de capturer la minimisation d’énergie
pour les nouvelles générations HetNets).

Dans la suite, nous donnons un bref résumé de chaque chapitre et soulignons nos principaux
résultats.
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Chapter 2 - Association des usagers qui considèrent le trafic.

Dans ce chapitre, nous voulons dériver les règles d’association utilisateur pour les réseaux de
la génération prochaine et se concentrer sur la différenciation du trafic.

(A. Modèle). Nous pouvons résumer ici nos hypothèses/ modèle:

Les probabilités des différents types de flux sont

• ζb est la probabilité d’un meilleur flux d’effort (par exemple, une page facebook ou youtube),

• ζd = 1− ζb est la probabilité d’un flux dédié (ou dévoué) (par exemple un appel VoIP).

Aussi, les probabilités des flux descendantes (downlink – DL) ou montantes (uplink – UL) sont

• ζD est la probabilité pour un flux descendante,

• ζU = 1− ζD est la probabilité pour un flux montante,

Ainsi, il existe 4 processus indépendants d’arrivée de flux de Poisson avec des taux (figure
7.1):

• λD,b(x) = zD · zb · λ(x),

• λD,d(x) = zD · zd · λ(x),

• λU,b(x) = zU · zb · λ(x),

• λU,d(x) = zU · zd · λ(x).

Figure 7.1: Les 4 processus.

Nos symboles peuvent être résumés ci-dessous.
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Table 7.1: Notation

Variable Meilleur d’effort (Flux) Dévoué (Flux)
descendante montante descendante montante

Exposant D,b U,b D,d U,d

Probabilité zD · zb zU · zb zD · zd zU · zd
Bandwidth BS i wi · ζi · ξDi wi(1− ζi) · ξUi wi · ζi(1− ξDi ) wi(1− ζi)(1− ξUi )

Rate (taux) x λD,b(x) λU,b(x) λD,d(x) λU,d(x)

Max. rate | les serveurs – BS i cD,bi (x) cU,bi (x) kDi (x) kUi (x)

Charge – BS i ρD,b(x) ρU,b(x) ρD,d(x) ρU,d(x)

LB parameter ∈ [0,∞) αD,b αU,b αD,d αU,d

Total charge – i BS ρD,b ρU,b ρD,d ρU,d

Probabilité d’association pD,bi (x) pU,bi (x) pD,di (x) pU,di (x)

Taille de flux (bits) | durée (sec) 1/µD,b 1/µU,b 1/µD,d 1/µU,d

Demande de flux (bps) - - BD BU

BH Capacité j CDh (j) CUh (j) - -

BH j – congestion ID(j) IU (j) - -

(B. Optimisation) Nous présentons maintenant quelques définitions de notre problème
d’optimisation.

Definition 13. (Faisabilité) l ∈ {U,D}, t ∈ {b, d}, et ε est une petite constante positive. La set

f l,t des charges BS faisable ρl,t = (ρl,t1 , ρ
l,t
2 , . . . , ρ

l,t
‖B‖)

f l,t =
{
ρl,t | ρl,ti =

∫
L
pl,ti (x)ρl,ti (x)dx,

0 ≤ ρl,ti ≤ 1− ε,∑
i∈B

pl,ti (x) = 1,

0 ≤ pl,ti (x) ≤ 1,∀i ∈ B,∀x ∈ L
}
.

(7.1)

Lemma 9. Les sets fD,b, fD,d, fU,b, fU,d,[fD,b; fD,d], [fU,b; fU,d], [fD,b; fU,b], F = [fD,b; fD,d; fU,b; fU,d],
sont convexes.

Definition 14. (DL Objectif): Notre (descendant) objectif est

φαD(ρD) =
∑
i∈B

θ ·
(1− ρD,bi )1−αD,b

αD,b − 1
+ (1− θ) ·

(1− ρD,di )1−αD,d

αD,d − 1
, if αD,d, αU 6= 1. (7.2)

Si αD,b = 1, la fraction doit être remplacée par log(1− ρD,bi )−1.

Definition 15. (DL/UL Objectif) Notre (descendant et montant) objectif est

φα(ρ) = τ · φαD(ρD) + (1− τ) · φαU(ρU). (7.3)
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Lemma 10. φα(ρ) est convexe.

Definition 16. (Problème d’optimisation 1) Notre problème d’optimisation (en fait c’est prob-
lème de minimisation) est

minimize
ρ

{φα(ρ)|ρ ∈ F}. (7.4)

Lemma 11. Problème 1 est convexe.

Notez que les différentes valeurs d’ α optimisent les différentes métriques.

• α = 0: Optimisation de: efficacité spectrale,

• α = 1: Optimisation de: débit,

• α = 2: Optimisation de: latence,

• α→∞: Optimisation de: Efficacité de l’équilibrage de la charge.

Notez également que θ pèse le meilleur-effort (θ → 0) vs performance dédiée (θ → 1).

Maintenant, nous dérivons les règles optimales pour divers scénarios. Nous commençons par
le scénario plus simple: Split UL/DL. Dans ce scénario, un utilisateur peut s’associer à deux
BS : une pour DL et une pour UL.

Theorem 1.1. (Split UL/DL – Règles optimales) Si ρ∗ = (ρ∗1, ρ
∗
2, · · · , ρ∗||B||) désigne le vecteur

optimal, les règles optimales sont:

i(x) = arg max
i∈B

 ci(x)︸ ︷︷ ︸
Connaissances des utilisateurs

·
BS message de diffusion︷︸︸︷

Pi

 (7.5)

et chaque BS diffuse:

Pi =

(
1− ρ∗bi

)αb · (1− ρ∗di )αd
eb ·
(
1− ρ∗di

)αd
+ ed ·

(
1− ρ∗bi

)αb .
Notez que, eb = θzDzb

µbζiξDi
aussi bien que ed = (1−θ)zDzdBD

µdζi(1−ξDi )
.

Proof. Nous prouvons que la règle ci-dessus en effet minimise l’objectif. Comme nous l’avons
vu, le problème est convexe. Par conséquent, il convient de vérifier la condition

〈∇φ(ρ∗),∆ρ∗〉 ≥ 0 (7.6)

pour tous ρ ∈ f , ∆ρ∗ = ρ−ρ∗. p(x) et p∗(x) sont les vecteurs de probabilité de routage associés
pour ρ et ρ∗, respectivement. En utilisant équation 7.5, la règle optimale:

p∗i (x) = 1

{
i = arg max

i∈B
cDi (x)

(
1− ρ∗bi

)αb · (1− ρ∗di )αd
eb ·
(
1− ρ∗di

)αd
+ ed ·

(
1− ρ∗bi

)αb
}
. (7.7)

Le produit scalaire est:
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〈∇φ (ρ∗) ,∆ρ∗〉 =
∑

z={b,d}

∂φ

∂ρz
(ρ∗) (ρz − ρ∗z)

=
∂φ

∂ρb
(ρ∗)(ρb − ρ∗b) +

∂φ

∂ρd
(ρ∗)(ρd − ρ∗d)

= θ
∑
i∈B

1

(1− ρbi)α
b (ρbi − ρ∗bi ) + (1− θ)

∑
i∈B

1

(1− ρdi )α
d (ρdi − ρd∗i )

=
∑
i∈B

θ
∫
L ρ

b
i(x)(pi(x)− p∗i (x))dx

(1− ρbi)α
b +

(1− θ)
∫
L ρ

d
i (x)(pi(x)− p∗i (x))dx

(1− ρdi )α
d

=

∫
L
λ(x)

∑
i∈B

(pi(x)− p∗i (x))

(
eb(1− ρ∗di )α

d
+ ed(1− ρ∗bi )α

b

ci(x) · (1− ρ∗bi )αb(1− ρ∗di )αd

)
dx.

(7.8)

Notez que,∑
i∈B

pi(x)
eb(1− ρ∗di )α

d
+ ed(1− ρ∗bi )α

b

ci(x) · (1− ρ∗bi )αb(1− ρ∗di )αd
≥
∑
i∈B

p∗i (x)
eb(1− ρ∗di )α

d
+ ed(1− ρ∗bi )α

b

ci(x) · (1− ρ∗bi )αb(1− ρ∗di )αd
(7.9)

.

Nous explorons maintenant le scénario Joint UL / DL. Dans ce scénario, un utilisateur doit
s’associer à une BS pour le déchargement de trafic DL et UL.

Theorem 1.2. (Joint UL/DL – Règles optimales) Si ρ∗ = (ρ∗1, ρ
∗
2, · · · , ρ∗||B||) désigne le vecteur

optimal, les règles optimales sont:

i(x) = arg max
i∈B

1
PDi
cDi (x)

+
PUi
cUi (x)

(7.10)

et maintenant,

PDi =

∑
t∈{b,d}

eD,t
∏

c∈Ω6=(D,t)

((1− ρ∗c)αc)∏
c∈Ω

((1− ρ∗c)αc)

et
Ω ∈ {(D, d), (D, b), (U, d), (U, b)}

eD,b = τ
θDzDzb

µD,bζξD

eD,d = τ
(1− θD)zDzdBD

µD,dζ(1− ξD)

eU,b = (1− τ)
θUzUzbBU

µU,b(1− ζ)ξU

et

eU,d = (1− τ)
(1− θU )zUzdBU

µU,d(1− ζ)(1− ξU )
.
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Proof. Les étapes de la preuve sont similaires à celles du scénario de Split UL / DL, où l’on doit
aussi exiger pDi (x) = pUi (x). Ensuite, le produit scalaire:

〈∇φ (ρ∗) ,∆ρ∗〉 =
∑

z={b,d}

∂φ

∂ρz
(ρ∗) (ρz − ρ∗z)

= θD
∑
i∈B

1

(1− ρD,bi )αD,b
(ρD,bi − ρ∗D,bi ) + (1− θD)

∑
i∈B

1

(1− ρD,di )αD,d
(ρD,di − ρD,d∗i )

+ θU
∑
i∈B

1

(1− ρU,bi )αU,b
(ρU,bi − ρ

∗U,b
i ) + (1− θU )

∑
i∈B

1

(1− ρU,di )αU,d
(ρU,bi − ρ

U,d∗
i )

=

∫
L
λ(x)

∑
i∈B

(pi(x)− p∗i (x))

(
PDi
cDi (x)

+
PUi
cUi (x)

)
dx ≥ 0,

(7.11)

(C. Évaluation) Maintenant, nous faisons quelques simulations. Nos paramètres sont sur
Table 7.2.

Table 7.2: Paramètres de simulation

Variable Valeur

PeNB/PSC/PUE 43/24/12 dBm

w/W 10/10 MHz

N0 -174 dBm/Hz

ζDi , ζ
U
i 0.5/0.5

1
µD,b

/ 1
µU,b

100/20 Kbytes

BD(x)/BU (x) 512, 128 kbps

zb, zD 0.3,0.6

Nous considérons une zone 2 × 2 km2. La figure 7.2 montre une carte de couleur de la
demande de trafic hétérogène λ(x) (flows/hour par unité de surface) (bleu impliquant trafic
faible et rouge élevé) avec 2 hotspots. Nous supposons que cette zone est couverte par 2 BS
macro et 8 SC.

Couverture Nous décrivons la zone de couverture dans différents scénarios (α scénarios). Par
exemple:

• αD,b = αD,d = 0 : Figure 7.3(a),

• αD,b = αD,d = 10 : Figure 7.3(b).

Dans la Table 7.3, vous pouvez voir que différents scénarios optimisent (en effet) des métriques
différentes (i.e. le nombre de serveurs (dédiés) E[kD] et équilibrage de charge ou efficacité

89



CHAPTER 7. RÉSUMÉ.

Figure 7.2: Taux d’arrivée.
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Figure 7.3: Associations optimales.

Table 7.3: Résultats de performance (Figure 2.3).

Rates et serveurs équilibrage de charge
E[cD,b] (Mbps) E[kD] 1-MSED,b 1-MSED,d

Fig. 7.3(a) 16.3 32 0.77 0.78

Fig. 7.3(b) 14.3 27 0.96 0.995

d’utilisation 1-MSED,b ). En outre, dans la figure 7.4, vous pouvez voir comment θ affecte les
résultats.

Le travail de ce chapitre corresponde a la publication suivante

• N. Sapountzis, T. Spyropoulos, N. Nikaein, U. Salim, An analytical framework for optimal
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Figure 7.4: Impact de θ.

downlink-uplink user association in HetNets with traffic differentiation, in Proc. IEEE
Global Communications (GLOBECOM) Conference, San Diego, CA, USA, 2015.
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Chapter 3 - Association des usagers qui considèrent le backhaul.
Lorsque les capacités de backhaul ne sont pas suffisantes, les règles de la section précédente

sont (effectivement) incorrectes.
Ici, nous prenons en compte le backhaul. Et nous retrouvons les règles optimales. Pour plus

de simplicité, dans ce chapitre, nous ne considérons que les flux de meilleurs efforts.

(A. Modèle) Nous étendons notre modèle pour inclure le réseau de backhaul (Figure 7.5).

Figure 7.5: Topologie du backhaul.

La charge d’un lien backhaul j est

∑
i∈B(j)

ρDi
ζi
· (ζi · c̃Di )

Z(j) · Ch(j)
=
∑
i∈B(j)

ρDi · c̃Di
Z(j) · Ch(j)

. (7.12)

où c̃Di est le taux maximal de DL de BS i.
Contrainte: nous devons exiger pour chaque lien de backhaul∑

i∈B(j)

ρDi c̃
D
i

Z(j) · CDh (j)
< 1, ∀j ∈ Bh. (7.13)

(B. Optimisation) Maintenant, notre problème comprend les contraintes backhaul.

Definition 17. (Objectif avec backhaul contraintes) Notre objectif avec backhaul con-
traintes est

minimize
ρ

{
φα(ρ)|ρ ∈ F

}
,

subject to
∑
i∈B(j)

ρDi c̃
D
i

Z(j) · CDh (j)
≺ 1, ∀j ∈ Bh,

(7.14)
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Nous considérons les contraintes comme des fonctions de pénalité. Nous illustrons immédi-
atement les règles optimales.

Il existe deux topologies backaul: star (one-hop) et tree (multi-hop). Nous commençons par
la plus simple (star).

Theorem 1.3. (Star topologie – Règles optimales (backhaul-conscient) – Split UL/DL) Si ρ∗ =
(ρ∗1, ρ

∗
2, · · · , ρ∗||B||) désigne le vecteur optimal, les règles optimales sont:

i(x) = arg max
i∈B

 ci(x)︸ ︷︷ ︸
Connaissances des utilisateurs

·
BS message de diffusion︷︸︸︷

Pi

 , (7.15)

et

Pi =
(1− ρ∗i )α

1 + 2γ · (1− ρ∗i )α · c̃i ·
I(i)

Z(i)Ch(i) ·
(

ρ∗i c̃i
Z(i)Ch(i) − 1

) .
Proof. Les étapes de la preuve sont similaires à celles du scénario de Chapitre 2. Ensuite, le
produit scalaire:

〈∇φ (ρ∗) ,∆ρ∗〉 =
∑
i∈B

(
1

(1− ρ∗i )α
+ γI(i)

2ρ∗i c̃
2
i − 2c̃iZ(i)Ch(i)

Z(i)Ch(i)2

)
(ρi − ρ∗i )

=
∑
i∈B

1 + 2γI(i)(1− ρ∗i )α
(ρ∗i c̃

2
i−c̃iZ(i)Ch(i))

Z(i)Ch(i)2

(1− ρ∗i )α

∫
L
ρi(x) (pi(x)− p∗i (x)) dx

=

∫
L

λ(x)

µ(x)

∑
i∈B

1 + 2γ(1− ρ∗i )αc̃i
I(i)

Z(i)Ch(i)

(
ρ∗i c̃i

Z(i)Ch(i) − 1
)

ci(x)(1− ρ∗i )α

 (pi(x)− p∗i (x)) dx.

Notez que, ∑
i∈B

pi(x)

1 + 2γ(1− ρ∗i )αc̃i
I(i)

Z(i)Ch(i)

(
ρ∗i c̃i

Z(i)Ch(i) − 1
)

ci(x)(1− ρ∗i )α

 ≥
∑
i∈B

p∗i (x)

1 + 2γ(1− ρ∗i )αc̃i
I(i)

Z(i)Ch(i)

(
ρ∗i c̃i

Z(i)Ch(i) − 1
)

ci(x)(1− ρ∗i )α


.

Theorem 1.4. (Tree topologie – Règles optimales (backhaul-conscient)– Split UL/DL) Si ρ∗ =
(ρ∗1, ρ

∗
2, · · · , ρ∗||B||) désigne le vecteur optimal, les règles optimales sont:

i(x) = arg max
i∈B

 ci(x)︸ ︷︷ ︸
Connaissances des utilisateurs

·
BS message de diffusion︷︸︸︷

Pi

 , (7.16)

et

Pi =
(1− ρ∗i )α

1 + 2γ · (1− ρ∗i )α · c̃i
∑

j∈Bh(i)

I(j)
Z(j)Ch(j) ·

( ∑
k∈B(j)

ρ∗k c̃k

Z(j)Ch(j) − 1

) .
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Proof. Les étapes de la preuve sont similaires à celles du scénario de Chapitre 2. Ensuite, le
produit scalaire:

〈∇Φα (ρ∗) ,∆ρ∗〉 =

=
∑
i∈B

 1

(1− ρ∗i )α
+ 2γ

∑
j∈Bh(i)

I(j)

(∑
k∈B(j) ρ

∗
k c̃k

Z(j)Ch(j)2
c̃i −

c̃i
Z(j)Ch(j)

) (ρi − ρ∗i )

·
∫
L
ρi(x) (pi(x)− p∗i (x)) dx =

=

∫
L

λ(x)

µ(x)

∑
i∈B


1 + 2γ(1− ρ∗i )αc̃i

∑
j∈Bh(i)

I(j)
Z(j)Ch(j) ·

( ∑
k∈B(j)

ρ∗k c̃k

Z(j)Ch(j) − 1

)
ci(x)(1− ρ∗i )α

 ·
· (pi(x)− p∗i (x)) dx ≥ 0,

(7.17)

Enfin, nous voyons le scénario Joint UL/DL, pour la topologie generale (tree).

Theorem 1.5. (Tree topologie – Règles optimales (backhaul-conscient)– Joint UL/DL) Si ρ∗ =
(ρ∗1, ρ

∗
2, · · · , ρ∗||B||) désigne le vecteur optimal, les règles optimales sont:

i(x) = arg max
i∈B

1
PDi
cDi (x)

+
PUi
cUi (x)

, (7.18)

et gD = τ, gU = 1− τ ,

PDi =
eD · (1− ρU∗)αU

(1− ρ∗D)αD · (1− ρU∗)αU
,

PUi =
eU · (1− ρ∗D)α

D

(1− ρ∗D)αD · (1− ρU∗)αU
,

el =

zl

(
gl + 2γ

(
1− ρ∗li

)αl ∑
j∈Bh(i)

Il(j)
Z(j)Clh(j)

( ∑
k∈B(j)

ρ∗lk c̃
l
k

Z(j)Clh(j)
− 1

))
µl(x)

, l ∈ {D,U}.

Proof. Les étapes de la preuve sont similaires à celles du scénario de Chapitre 2. Ensuite, le
produit scalaire:
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〈∇Φα (ρ∗) ,∆ρ∗〉 =

=
∑
i∈B

τ · 1

(1− ρ∗Di )αD
+ 2γ

∑
l∈Bh

ID(l)

(∑
j∈B(l) ρ

D
j c̃

D
j

Z(l)Ch(l)2
c̃Di −

c̃Di
Z(l)Ch(l)

) ρDi − (ρ∗Di ))+

+
∑
i∈B

(1− τ) · 1

(1− ρ∗Ui )αU
+ 2γ

∑
l∈Bh

IU (l)

(∑
j∈B(l) ρ

U
j c̃

U
j

Z(l)Ch(l)2
c̃Ui −

c̃Ui
Z(l)Ch(l)

) (ρUi − (ρU∗i )) =

=
∑
i∈B

τ · 1

(1− ρ∗Di )αD
+ 2γ

∑
l∈Bh

ID(l)

(
c̃Di (
∑

j∈B(l) ρ
D
j c̃

D
j − Z(l)Ch(l))

Z(l)Ch(l)2

) ·
·
∫
L
ρDi (x) (pi(x)− p∗i (x)) dx+

+
∑
i∈B

(1− τ) · 1

(1− ρ∗Di )αU
+ 2γ

∑
l∈Bh

IU (l)

(
c̃Ui (
∑

j∈B(l) ρ
U
j c̃

U
j − Z(l)Ch(l))

Z(l)Ch(l)2

) ·
·
∫
L
ρUi (x) (pi(x)− p∗i (x)) dx =

=

∫
L
λ(x)

∑
i∈B

 PDi
cDi (x)

+
PUi
cUi (x)

1

 · (pi(x)− p∗i (x)) dx.

(7.19)
Notez que, ∑

i∈B
pi(x)

{ PDi
cDi (x)

+
PUi
cUi (x)

1

}
≥
∑
i∈B

p∗i (x)

{ PDi
cDi (x)

+
PUi
cUi (x)

1

}
. (7.20)

(C. Évaluation) Maintenant, nous faisons quelques simulations.
Nous examinerons les deux cas de topologies de backhaul

• filaire – la capacité maximale est toujours garantie Ch(j),

• sans fil – la capacité maximale pour un lien de longueur ri tombe d(ri) · Ch(j):

d(ri) =

{
1, ri ≤ r0

( r0ri )
n, otherwise,

(7.21)

Nous décrivons la zone de couverture dans différents scénarios. Par exemple:

• Descendante (DL) zone quand backhaul Ch →∞ : Figure 7.6(a),
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• Descendante (DL) zone quand backhaul Ch → 400Mbps (filaire – Star topologie) : Figure
7.6(b),

• Descendante (DL) zone quand backhaul Ch → 400Mbps (sans fil – Star topologie) : Figure
7.6(c),

• Descendante (DL) zone quand backhaul Ch → 400Mbps (sans fil – Tree topologie) : Figure
7.6(d).
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(a) Backhaul Capacités: Provisionné.
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Figure 7.6: Associations optimales.

Maintenant, nous voulons voir des résultats quantitatifs pour comprendre l’impact des ca-
pacités de backhaul non-sifficient sur la performance. Nous supposons le scénario Split UL /
DL.

Dans la figure 7.7, 7.8, nous voyons comment Ch affecte DL et UL débit.
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Figure 7.7: Débit descendant pour différentes topologies de backhaul.
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Figure 7.8: Débit montant pour différentes topologies de backhaul.

Dans la figure 7.9, 7.10, nous voyons comment Ch affecte l’efficacité spectrale (spectral
efficiency) et l’efficacité d’équilibrage de charge (load balancing or utilization efficiency).
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Figure 7.9: Efficacité de la liaison descendante spectrale pour différentes topologies de backhaul
(Normalisé).
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Figure 7.10: Efficacité de la liaison descendante d’équilibrage de charge pour différentes topolo-
gies de backhaul (Normalisé).

Résultats similaires pour le scénario conjoint UL / DL (voir Table 7.4).

Table 7.4: Split Vs. Joint UL/DL

Performance τ = 0 τ = 0.5 τ = 1

Débit DL / UL 6% / 32% 4% / 35% 0% / 37%

DL / UL Spectr. Eff. 4% / 29% 3% / 31% 0% / 33%

DL / UL Uiliz. Eff. 7% / 34% 4% / 38% 0% / 41%
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Le travail de ce chapitre corresponde a la publication suivante

• N. Sapountzis, T. Spyropoulos, N. Nikaein, U. Salim, Optimal Downlink and Uplink User
Association in Backhaul-limited HetNets, in Proc. IEEE International Conference on
Computer Communications (INFOCOM), San Francisco, CA, USA, 2016.

– Best Presentation Award in Heterogeneous Networks Session.

• N. Sapountzis, T. Spyropoulos, N. Nikaein, U. Salim, User Association in HetNets: Impact
of Traffic Differentiation and Backhaul Limitations, pending major revision, IEEE/ ACM
Transactions on Networking (ToN), May 2016.
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Chapitre 4 - Association des utilisateurs et allocation TDD.

Dans ce chapitre, nous voulons résoudre ensemble les problèmes suivants:

• (Problème 1) Association d’utilisateurs,

• (Problème 2) Accès TDD allocation,

• (Problème 3) Backhaul TDD allocation.

(A. Modèle) Nous étendons notre modèle pour inclure les problèmes 2 et 3. Nous intro-
duisons les paramètres suivants

• (paramètre pour le problème: Accès TDD allocation) ζi est le paramètre qui capture la
portion de ressources prévue pour DL pour BS i. Donc, 1−ζi est le paramètre qui capture
la portion de ressources prévue pour UL pour BS i.

• (paramètre pour le problème: Backhaul TDD allocation) Zi est le paramètre qui capture la
portion de ressources prévue pour DL pour backhaul lien j. Donc, 1−Zj est le paramètre
qui capture la portion de ressources prévue pour UL pour backhaul lien j.

Nous devons faire attention en obtenant ζ. Nous devons éviter les “interférences croisées”
(cross interference), dans le cas où les BS voisins transmettent dans la direction opposée (Fig-
ure 7.11).

Figure 7.11: “Interférences croisées”, dans le cas où les BS voisins transmettent dans la direction
opposée.

Nous supposons que les liens de backhaul sont ”interférences croisées” libres.

(B. Optimisation) Nous commençons par résoudre les problèmes 1 et 2 (Association
d’utilisateurs et Accès TDD allocation).
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Definition 18. (Problèmes 1 et 2) Notre objectif pour association d’utilisateurs et accès TDD
allocation est

minimize
ρ,ζ

{
φα(ρ, ζ)|(ρ, ζ) ∈ F

}
,

subject to ρDi + ρUj ≤ 1, ∀i ∈ B, j ∈ Ci.
(7.22)

Lemma 12. Il s’agit d’un problème d’optimisation biconvexe.

Nous allons utiliser la théorie de la décomposition pour le résoudre de manière optimale. La
schema de l’algorithme est:

Algorithm 3 Decomposition.

1: Répéter jusqu’à ‖ζ(k) − ζ(k−1)‖ < ε.
2: (Mettre à jour le problème mâıtre.)
3: Allocation des ressources: ζ → DL, 1− ζ → UL.
4: (Résoudre les deux sous-problèmes).)
5: Dériver ρ∗D compte tenu des ressources disponibles (ζ).
6: Dériver ρ∗U compte tenu des ressources disponibles (1− ζ).

On peut montrer que cet algorithme converge. Et le point de convergence est l’optimum
global.

Mettre à jour le problème mâıtre (ζ). Les méthodes de descente suggèrent:

ζ(k+1) = ζ(k) + t(k)∆ζ(k), (7.23)

tel que φ(ρ∗, ζ(k+1)) < φ(ρ∗, ζ(k)), ∆ζ(k) est un direction de descente, et t(k) est la taille de pas.

Dériver ρ∗D, ρ∗U compte tenu des ressources disponibles (ζ, 1−ζ). Voir le théorème prochain.

Theorem 1.6. Si ρ∗ = (ρ∗1, ρ
∗
2, · · · , ρ∗||B||) désigne le vecteur optimal, les règles optimales sont:

iD(x) = arg max
i∈B

 cDi (x)︸ ︷︷ ︸
Connaissances des utilisateurs

·
BS message de diffusion︷︸︸︷

PDi

 (7.24)

et

PDi =
ζi ·
(

1− ρ∗Di
ζi

)αD
1 + 2γ

(
1− ρ∗Di

ζi

)αD ∑
j∈Ci
Iij(ρ∗Di + ρ∗Uj − 1)

.
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Proof. Ici, le produit scalaire:

∑
L

∑
i∈B

 1

ζLi

(
1− ρ∗Li

ζLi

)αL + 2γ
∑
j∈Ci

I(L)(ρ∗Li + ρ∗L̃j − 1)

 (ρLi − ρ∗Li ) =

∑
L

∑
i∈B


1 + 2γ

(
1− ρ∗Li

ζLi

)αL ∑
j∈Ci

I(L)(ρ∗Li + ρ∗L̃j − 1)

ζLi

(
1− ρ∗Li

ζLi

)αL

 ·
∫
L
ρLi (x)

(
pLi (x)− p∗Li (x)

)
dx =

=

∫
L

∑
L

λL(x)

µL(x)

∑
i∈B


1 + 2γ

(
1− ρ∗Li

ζLi

)αL ∑
j∈Ci

I(L)(ρ∗Li + ρ∗L̃j − 1)

ζLi c
L
i (x)

(
1− ρ∗Li

ζLi

)αL

 · (pLi (x)− pL∗i (x)
)
dx.

Notez que,

∑
i∈B

pDi (x)


1 + 2γ

(
1− ρ∗Di

ζi

)αD ∑
j∈Ci
Iij(ρ∗Di + ρ∗Uj − 1)

ζicDi (x)
(

1− ρ∗Di
ζi

)αD

 ≥

∑
i∈B

pD∗i (x)


1 + 2γ

(
1− ρ∗Di

ζi

)αD ∑
j∈Ci
Iij(ρ∗Di + ρ∗Uj − 1)

ζicDi (x)
(

1− ρ∗Di
ζi

)αD

 .

De même pour le problème 3 (Backhaul TDD Allocation) aussi. Nous devons ajouter une
troisième échelle de temps qui met à jour Z.

(C. Évaluation)

Maintenant, nous faisons quelques simulations. Nous considérons une zone 2 × 2 km2. La
figure 7.12 montre une carte de couleur de la demande de trafic hétérogène λ(x) (flows/hour par
unité de surface) (bleu impliquant trafic faible et rouge élevé) avec 2 hotspots. Nous supposons
que cette zone est couverte par 1 BS macro et 3 SC.
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Figure 7.12: Taux d’arrivée.

Couverture Nous décrivons la zone de couverture dans différents scénarios (ζ scénarios). Par
exemple:

• Descendante (DL) zone quand nous considérons le (fixé) scénario: ζi = 0.5 ∀i ∈ B : Figure
7.13(a),

• Montante (UL) zone quand nous considérons le (fixé) scénario: 1−ζi = 0.5 ∀i ∈ B : Figure
7.13(b),

• Descendante (DL) zone quand nous considérons le (dynamique) scénario: dynamique ζi
∀i ∈ B : Figure 7.13(c),

• Montante (UL) zone quand nous considérons le (dynamique) scénario: dynamique 1 − ζi
∀i ∈ B : Figure 7.13(d),

Maintenant, nous voulons voir des résultats quantitatifs pour comprendre l’impact des ca-
pacités de backhaul non-sifficient sur la performance.

Dans la figure 7.14, 7.15, nous voyons comment τ affecte DL et UL débit.
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(c) DL associations (TDD dynamique).
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Figure 7.13: Associations optimales et TDD fixe/dynamique (τ = 0.5).
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Figure 7.14: Débit descendant pour différentes valeurs de τ .
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Figure 7.15: Débit montant pour différentes valeurs de τ .

Le travail de ce chapitre corresponde a la publication suivante

• N. Sapountzis, T. Spyropoulos, N. Nikaein, U. Salim, HoP: Hierarchize then optimize:
A distributed framework for user association and flexible TDD allocation for access and
backhaul networks, Tech-Report RR-16-328, Eurecom, 2016.
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Chapter 5 - Minimisation d’énergie.
Dans ce chapitre, nous voulons minimiser l’énergie du réseau. Nous essayons donc de désac-

tiver BSs en considérant:

• (1) l’ échec de la couverture

• (2) la robabilité de blocage

• (3) la latence.

(A. Modèle) Donc, notre objectif est de construire 3 contraintes de QoS différentes qui
tiennent compte des métriques indicateurs ci-dessus. Nous utilisons principalement des châınes
de Markov pour les dériver.

Proposition 4. (Contrainte I) Une BS ne peut pas être désactivée si l’utilisateur moyen associé
à celle-ci subit une probabilité de panne de couverture, pendant la période de déconnexion X, qui
dépasse un seuil pf . Cette probabilité est donnée par:∑

i∈NAU
Pout(riJ(i)) +

∑
i∈NCU

PCUact (X)Pout(riJ(i)) +NDUP
DU
act (X)PDUout

NAU +NCU +NDU
. (7.25)

Proposition 5. (Contrainte II) Supposons que la probabilité de blocage maximale souhaitée est
donnée pour les flux dédiés, définis comme pblock. Une BS donnée ne peut être désactivée que
si l’inégalité suivante est valable pour toutes les BS voisines auxquelles les utilisateurs de la BS
déconnectée sont remis: ∑ X

∆t
n=0 P

n
s,k

X/∆t
≤ pblock. (7.26)

Proposition 6. (Contrainte III) Supposons un délai maximum souhaité pour les flux d’effort
optimal, Dmax. Une BS donnée ne peut être désactivée que si l’inégalité suivante est valable
pour toutes les BS voisines auxquelles les utilisateurs de la BS déconnectée sont remis:

X/∆t∑
t=0

∞∑
n=1

P
t/∆t
s,n Dn(1/µb)

X/∆t
≤ Dmax.

(B. Optimisation) Nous exécutons un algorithme itératif. À chaque étape, nous essayons
de désactiver une BS si les contraintes ci-dessus ne sont pas violées. L’ordre des BS est basé sur
la charge BS.

(C. Évaluation)
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Maintenant, nous illustrons quelques résultats quantitatifs. Nous commençons par illustrer
l’impact des seuils prédéterminés sur les économies d’énergie. Voir la figure 7.16 pour la première
contrainte.
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Figure 7.16: Économies d’énergie versus pf .

Un autre paramètre intéressant est la durée de la période d’arrêt. Nous illustrons son impact
sur les économies d’énergie à la figure 7.17.
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Figure 7.17: Économies d’énergie versus X.

Le travail de ce chapitre corresponde a la publication suivante

• N. Sapountzis, T. Spyropoulos, N. Nikaein, U. Salim, Reducing the energy consumption
of small cell networks subject to QoE constraints, in Proc. IEEE Global Communications
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(GLOBECOM) Conference, Austin, TX, USA, 2014.

• D. Wang, E. Karathanaras, A. Quddus, N. Sapountzis, L. Cominardi, F. Kuo, P. Rost,
C.J. Bernardos, I. Berberana, SDN-based Joint Backhaul and Access design for Efficient
Network Layer Operations, in Proc. IEEE European Conference on Networks and Com-
munications (EuCNC), Paris, France, 2015.
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