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Abstract—Modern cellular networks are becoming denser, less
regularly planned, and increasingly heterogeneous, making per-
formance analysis challenging. We develop a flexible and accurate
model of such heterogeneous networks (HetNets) consisting of
K tiers of randomly located Base Stations (BSs), with differ-
ent densities, transmit powers and Radio Access Technologies
(RATs). Our main goal is to understand the impact of flow level
dynamics on such a system, assuming non-saturated users that
randomly generate download requests (“flows”). We do so by
deriving analytically the per flow delay, the load, the utilization
and the congestion probability of BSs in different tiers.

We base our analysis on stochastic geometry, to understand
the impact of topological randomness and intra- and inter-
tier interaction, and queueing theory, to model the competition
between concurrent flows within the same BS, for each RAT.
This allows us to model the interference more realistically as a
function of network load. We apply our model to the case of
a 2-tier network based on LTE and WiFi and study different
user inter-tier association criteria, such as Off-load, Max-SINR
association, and Min-Delay association. Our results provide some
interesting qualitative and quantitative insights about the impact
of these association policies and different traffic intensities.

Index Terms—Stochastic Geometry; Queueing; HetNets; LTE;
WiFi; User Association; Load-based Interference;

I. INTRODUCTION

MOBILE data traffic has been increasing exponentially,
and this trend is expected to continue for the fore-

seeable future [1]. To alleviate the overloaded macro-cell
network, operators are additionally deploying small cells to
capture traffic in hot spots. One promising scenario for such
heterogeneous networks (HetNet) is the combination of LTE
macro cells with WiFi small cells. Already today it is possible
to integrate WiFi access points into the core network of cellular
systems, and perform off-loading of traffic from LTE to WiFi.
In future releases of 3GPP (release 13 and above) a tighter
integration of WiFi and LTE technologies is foreseen that will
also allow the aggregation of the two technologies.

HetNet architectures offer numerous advantages, but they
also lead to denser, irregular, and more heterogeneous deploy-
ments, due to the often unplanned and incremental deployment
of new (small cell) BSs [2], as well as the potentially different
Radio Access Technologies (RAT). As a result, analyzing such
networks, e.g., for protocol comparison or network planning,
becomes increasingly challenging. What is more, the usually
considered metrics in such analyses, like SINR or capacity,
often fail to capture the actual user experience, because they
do not take into account the heavy load of modern cellular
networks [3], [4]. A better metric might be latency, as one of
the key goals of 5G technologies is to minimize latency at the
user or application level [5], [6].

To this end, we have developed a flexible and accurate
model for the performance of future HetNets, in order to
understand the impact of important network parameters. Our
model consists of K orthogonal tiers of randomly located
Base Stations (BSs), with different densities, transmit powers
and Radio Access Technologies (RATs), as well as randomly
placed users. Users are assumed to be non-saturated, randomly
generating requests for new file/flow downloads of varying
sizes, and they perceive performance in terms of the average
delay to finish such a download. In other words, we are
interested in the flow-level dynamics or flow-level performance
of this system [4], [7]–[9]. Furthermore, BSs are modeled
as queueing systems, that schedule concurrently arriving user
flows according to the respective RAT scheduler, and network-
related performance is measured in terms of the stationary load
imposed on each BS, and the probability (or percentage) of
BS being congested.

Our analysis is based on the combination of two key
theoretical tools that have recently provided many insights on
cellular network performance: (i) We use queueing theory to
model the performance of dynamic flow arrival and service
via the respective scheduler, at the level of a single BS; (ii)
We utilize stochastic geometry, in order to understand the
impact of topological randomness and interaction/competition
between BSs at the network level, in order to derive statistics
about the number of users associated with a base station
at each tier, and the modulation and coding schemes (MCS)
offered at each BS. Both these quantities serve as key inputs
to the BS queueing model: the former to define the total traffic
intensity (in terms of flow arrivals) a given BS has to serve, and
the latter to define the average service rate (in terms of flow
departures) that a BS is able to offer. We combine these two
mathematical tools in order to provide an analytical framework
that analyzes the flow level dynamics in large, random placed,
multi-tier heterogeneous networks. Summarizing, our main
contributions are:

(a) We derive the probability of coverage of a typical
randomly located user in a randomly placed wireless network
without assuming saturated BS or users.

(b) We propose an analytical model for LTE/WiFi HetNets,
in a system where interference from nearby base stations is
constant, as usually assumed in most related work. Our model
captures both physical layer performance, providing statistics
for coverage maps and MCS distributions, as well as flow-
level performance as perceived by the user (mean flow delay)
and the network operator (network’s utilization, congestion
probability).

(c) We extend this model to the challenging, yet more realis-
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tic setup, where interference from nearby base stations depends
on their load (e.g., a BS with no active transmissions will
not interfere), and demonstrate that modeling this load-based
interference has an important impact on both quantitative and
qualitative conclusions.

(d) We compare our results to the current state-of-the-art
performance frameworks [10], [11] and show that our model
offers significantly higher accuracy in the medium and high
load regimes (our scheme has up to 40 times better accuracy),
while being at least as accurate for all loads and scenarios.

(e) We use our analytical framework to study the impact of
popular user association policies like Off-load (all users within
range of a WiFi AP are associated to the WiFi network), Max-
SINR (a user is associated with the BS offering the best SINR,
among any tier), and Min-Delay (a user is associated with the
tier which offering the best combination of throughput and
load in order to minimize the average delay [9]). Our results
provide some interesting qualitative and quantitative insights.

The rest of the paper is organized as follows. In the next
section, we provide a brief discussion of related work. Then,
in Section III we present our model for performance at the
BS level. In Section IV, we discuss our PHY Layer model,
and in Section V, we derive the user cardinality distribution
for our topology, which plays a key role in our model, and
we compute the arrival rate. Section VI presents the analytical
steps to specify the service rate, which includes both pure
analytical formulas and technical details for each one of the
chosen RAT. Section VII considers some scenarios of interest
and applies our analytical results to obtain insights. Section
VIII presents the future steps of our work.

II. RELATED WORK

There are a number of seminal works employing stochastic
geometry. The distribution of the coverage areas is studied in
[12], and the distribution of the interference in [13]. The same
framework has been widely used for studies of large and het-
erogeneous networks, because it not only avoids the problem
of ideal and simplistic hexagonal or linear topologies but also
it provides closed form expressions. As some such examples,
[14] models the K-Tier downlink of heterogeneous cellular
networks, [15] analyzes Carrier Aggregation in heterogeneous
cellular networks, [16] tackles the problem of off-loading.
Additionally, [17] models the downlink coverage probability
in MIMO HetNets, [18] studies the problem of fractional
frequency reuse for heterogeneous cellular networks, and [19]
further considers the backhaul network. The main drawback
of these works is the unrealistic assumptions of saturated users
(i.e., not considering flow dynamics) and saturated BSs (i.e.,
assuming that all BSs interference at full power, all the time).
Regarding the latter shortcoming two notable exceptions are
[20] and [21], where the authors consider variable cell loads
and load-aware interference models, in order to calculate the
feasible network throughput w.r.t. cell load. However, these
works also consider saturated users.

In a different research thread, there are a lot of works that
have studied the flow-level dynamics in cellular systems. [8]
and [22] use queuing models to take into account the random

nature of traffic arrivals and departures, in order to obtain
the flow-level performance of different schedulers. [4] and [7]
apply such queueing results to model wireless network systems
such as 3G/3G+ and derive expressions for the flow-level
performance. However, these only consider simple cellular
topologies (e.g., line networks, or small hexagonal topologies),
and assume a known rate distribution and always ON inter-
ference. [23] attempts to take into account the performance
dependency between nearby BSs, when one considers load-
based interference, and propose a methodology to derive some
performance bounds. Nevertheless, this work also considers
simple topologies.

To the best of our knowledge, the following recent works are
closest to ours, attempting to also combine more sophisticated
topologies with flow-level performance. [24] provides an an-
alytical framework that calculates the stability of a Poisson
Bipolar network. However, in a Poisson Bipolar network,
each BS has a dedicated receiver at a random distance,
so it cannot be used to examine the impact of users with
different rates, associated to the same BS. Additionally, this
work does not consider other flow-level metrics (e.g. delay)
besides stability. In [25] the authors assume homogeneous
PPP topologies for both BS and users in order to capture
uplink performance, considering flow-level traffic dynamics.
However, the authors assume a saturated interference scenario,
not capturing the interplay between load-based interference
and flow-level performance. In [10] and [26] the authors also
model flow-level performance in a randomly placed network
(h-PPP) using results from queuing theory as well. However,
the BS and user spatial coordinates are assumed as input
(rather than considering any specific model, stochastic or not).
What is more, the user MCS distribution is further assumed
as another input to the problem, in order to avoid the key
coupling problem between the MCS distribution and network
load, which is at the core of this analytical problem. Hence,
while useful, this framework can only be considered as a
helpful tool that may accelerate the simulation process, rather
than an analytical framework for an arbitrary, randomly placed
network. Finally, in [26] and [11] the same authors perform a
mean-cell analysis towards deriving analytically the mean BS
load of a randomly placed network. The mean-cell approxima-
tion assumes that all BSs serve exactly the same number of
users, so all BSs produce the same amount of interference.
Due to the simplicity of the mean-cell approximation, the
framework is accurate only for the low load case (as we will
see in the result section). As a remark, we note that all the
aforementioned works [10], [11], [26] assume that the number
of users in a cell is constant (uniform distribution of users)
which does not allow to capture load distribution statistics and
congestion probability for a BS. Unlike our work, [27] models
the system at packet-level rather than flow-level, and would
lead to a non work-conserving (and thus inefficient) system if
applied to flows. Furthermore, the coupling of BS queues that
interfere with each other only when they are active, is handled
using a simple first order approximation, where the load and
performance of a BS in question is affected by load dependent
interference from the rest N −1, but the performance of these
N −1 is assumed as independent (and equal to the best case).
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Summarizing, the technical novelty of our work compared
to the few related attempts to derive flow-level performance
for large random networks consist of one or more of the
following: (i) Our framework models the number of users
in a cell as a random variable, allowing us to derive the
probability distributions for performance metrics of interest
(load, utilization, congestion probability, delay) across BSs in
the network, rather than just a ”mean” BS. (ii) We provide an
explicit analysis and formula for both the mean delay and load
of a base station, that is significantly more accurate even in the
average sense, compared to mean-cell analysis. (iii) The state-
of-the-art models of [11] assume that the MCS distribution,
necessary to derive flow-level performance metrics, is actu-
ally given. We derive this MCS distribution analytically. (iv)
Finally, unlike related works, we consider different queueing
models for LTE and WiFi BSs to capture the respective MAC
better.

As a final note, the seminal work of [9] addresses the
optimal user association problem in a single tier from a
flow-level dynamics point of view, proposing a load-based
association algorithm. While optimal user association within a
tier is not considered in this paper, we use a similar load-based
approach for choosing between tiers, during our evaluation.

III. PERFORMANCE AT THE BS LEVEL

We assume that each BS experiences a dynamic traffic load
and we would like to study the performance at flow-level. We
state here our assumptions regarding a single randomly chosen
BS, and comment where necessary.

A.1: Each connected user to a BS generates new flow
requests randomly, and independently of other users, according
to a Poisson Process with density λf .

A.2: A flow is a sequence of packets corresponding to the
same user or application request (e.g., a file or web page
download). Each flow has a random size, in terms of bits,
drawn from a generic distribution with mean value 〈s〉.

A.3: The number of users n associated with a BS is a
random variable with probability mass function (pmf) fN (n)
that depends on the density of the BSs, the density of users,
and the association criteria. This pmf will be derived in
Section V.

The following Lemma follows easily, by using a simple
Poisson merging argument [28].

Lemma 3.1: If n users are associated with a given BS, the
aggregate flow arrival process to that BS is Poisson(nλf ).

Remark: While a Poisson arrival model is pretty standard
in related literature, note that if the number of users n at
a BS is relatively large, assumption (A.1) can be relaxed
to more general traffic arrivals, and we can then use the
Palm-Khintchine theorem [28] to support Lemma 3.1 as an
approximation.

A.4: In the absence of other flows, a single flow will be
served at full rate, with the maximum Modulation and Coding
Scheme (MCS) that the BS can offer to that UE, which in turns
depends on the SINR-BLER (block error rate) specifications
for that RAT. The rate of the arbitrary user could be assumed
as a random variable and the corresponding pmf, fR(r), is
derived in Section VI.
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Fig. 1: Comparison between MCS-base rates per RAT and
Shannon’s limit for an AWGN channel

We note here that it is common, when analyzing wireless
networks, to use the Shannon’s theorem to derive SINR-
rate relationship, as actual RATs do not provide an elegant
way to calculate the user’s MCS and related rate. When a
single network is analyzed, this assumption does not affect
the validity of the qualitative results. However, in the case
of HetNets, and especially HetNets operating with different
RAT, this assumption does not hold, as the offered user rate
does not scale the same with respect to SINR, for different
RATs. For instance, Fig. 1 presents the outcome of the PHY
modeling procedure for the case of LTE and WiFi, as will
be described in [29]. It is evident that LTE is, on average,
37% closer to the Shannon rate compared to WiFi, for their
common operating SINR range. Hence, if we were to model
the SINR-rate relation for both LTE and WiFi according to
the Shannon formula, we would significantly overestimate the
performance of the WiFi tier.

We will assume a single MIMO layer and a single carrier
in our analysis. Increased rates due to spatial multiplexing and
carrier aggregation can be included in the model with a proper
physical abstraction models.

A. Queueing Model for BS Schedulers

When more than one flows are served in parallel by a
BS, the BS operates as a queueing system. The service rate
for a flow is generally smaller than what assumption (A.4)
predicts, and depends on the number of active flows (BS
load), and the centralized scheduler (in the case of 3G/4G)
or distributed media access control (MAC) protocol (in the
case of WiFi) which decides how the available resources will
be distributed between flows. While a number of different
scheduling algorithms exist, the majority of them tries to
allocate the available resources between competing flows (e.g.
LTE resource blocks, WiFi channel) in a fair or proportionally
fair manner.

1) Resource Fair Scheduler: Assume the BS allocates the
same amount of resources to all flows, and they are served si-
multaneously, e.g., with a round robin, TDMA-like algorithm.
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If the service time slot is small (e.g., of packet size) compared
to the total size of a flow, the flow level performance at that BS
can be approximated by a multi-class M/G/1 Processor Sharing
(PS) system. This model has already been used to analyzed
3G/3G+ BS performance [4], [7]. While each flow shares
the channel for the same amount of time (hence “resource
fair”), during that time it might transmit at a different rate,
depending on its SINR and resulting MCS (hence the “multi-
class” service).

LTE schedulers are significantly more complex, allocating
competing flows both time and frequency resources (Resource
Blocks), possibly taking into account the queue backlog of
each flow and flow priority, and also attempting to take advan-
tage of instantaneous SINR variations in time and frequency
to achieve further multi-user diversity [30]. While a large
number of algorithms have been proposed (see e.g., [31] for
an extensive survey), in the lack of special priority traffic,
most implemented schedulers lead to a proportionally fair
throughput allocation between flows [30] and can also be
approximated by a similar multi-class M/G/1 PS queue. The
following is a direct application of the multi-class M/G/1/PS
result [32].

Lemma 3.2: For a BS with n users generating flows of
mean size 〈s〉, with instantaneous transmission rates drawn
from distribution fR(r), and allocated resources by a resource
fair scheduler, the effective service rate of the cell is

〈µ〉rf =

(∑
i

fR(ri) · 〈s〉
ri

)−1

flows/sec, (1)

and the mean flow delay is given by

E[T ]rf =
1

〈µ〉rf − nλf
. (2)

We further define the BS’s load as

ρ =
input job rate

service job rate
=
nλf
〈µ〉rf

, (3)

when the system is stable ρ < 1 . Performance gains from
opportunistic scheduling can be included in the above equation
as a multiplicative factor in front of 〈µ〉rf.

2) Throughput Fair Scheduler: Some schedulers attempt to
achieve fairness more aggressively, by trying to equalize per
flow throughput for all nodes. For example, if two concurrent
flows experience different channel conditions (say one being
“far” and one being “near” the BS) a throughput fair scheduler
will attempt to give more resources to the flow with the worse
channel (e.g., more resource blocks in the case of LTE, or
schedule the far flow more often in the case of 3G). This can
be seen as a Generalized or Discriminatory Processor Sharing
system (a generalized version of the M/G/1/PS) [22], with
different weights per flow that, for throughput-fair systems,
can be taken as inversely proportional to the average rate
experienced by that flow.

It is known that throughput fair schedulers perform poorly
compared to proportionally fair ones, and thus are not often
considered [8]. Nevertheless, throughput fair scheduling turns
out to be a good approximation of how the 802.11 WiFi MAC
allocates resources between flows [33]. In WiFi, all nodes

compete for the channel and when they do get access, in the
basic implementation, they send a single frame and then have
to retry. WiFi like LTE supports rate adaptation, therefore each
frame might be transmitted at a different rate, depending on
the maximum MCS that can be offered to the respective node.
Nevertheless, due to the random access MAC, each node gets
access with equal chance, regardless of their distance from
the AP. If each flow corresponds to a large number of frames
(usually a good assumption given the small max size of a
frame), this essentially equalizes the long-term throughput of
each flow, regardless of its MCS. Hence, the WiFi scheduler
for a single BS could be seen as throughput-fair, and can be
modeled as a Discriminatory Processor Sharing (DPS) queue.

The following lemma presents the mean service time (E[T ])
for such a throughput-fair scheduler in a system with rate
adaptation.

Lemma 3.3: The mean per flow delay for a throughput fair
system with input flow rate λ, and flows being served with
rates drawn from a pmf fR(rk), can be calculated according
to

E[T ]tf =
∑
k

fR(rk)
[ 〈s〉 /rk

1− λ/ 〈µ〉tf

+

∑
j fR(rj)λ(1− rj

rk
)(〈s〉 /rj)2

2(1− λ/ 〈µ〉tf)2

]
,

(4)

where 〈s〉 is the mean flow size and

〈µ〉tf =

(∑
k

fR(rk) · 〈s〉
rk

)−1

. (5)

Proof: Let us first consider a throughput fair system, and
derive the mean service rate, Eq. (5). Consider a long time
interval during which N packets get transmitted, correspond-
ing to different flows. Assume each packet is of equal size
S (e.g., the max WiFi frame size) but is transmitted with
a possibly different rate r drawn from pmf fR(r) with K
discrete values, depending on the MCS used for transmitting
that packet. Assume that out of these N packets, Ni are
transmitted with rate ri, (

∑
iNi = N ). Hence, the average

transmission rate in terms of bits/sec for these N packets is

bits in N pkts
transmission time for N pkts

=
N · S

N1
S
r1

+ · · ·+NK
S
rK

.

(6)
However, as N goes to infinity, the Ni converges to its mean
value fR(ri) · N by the law of large numbers, hence the
denominator of Eq. (6) converges to

lim
N→∞

(N1
S

r1
+N2

S

r2
+ · · ·+NK

S

rK
) =

∑
i

fR(ri) ·N ·
S

ri
.

(7)
Since 1

x is continuous and all ri > 0, we can use the
Continuous Mapping Theorem [34](Th. 5.23) to show that
Eq. (6) converges to

1∑
i fR(ri) · 1

ri

. (8)

Eq. (8) gives the average transmission rate of the scheduler
over a sufficiently long sample path of packets. Since the
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system is ergodic, we can divide with the mean flow size 〈s〉
to get Eq. (5).

To go beyond the mean load and derive the mean delay
for this system, we use the approximation from Avrachenkov
et al. [35] for DPS systems, which to our best knowledge,
provides the most accurate solution, assuming large enough
flow sizes. Specifically, for a given network load, the expected
delay for flows of class k having size x, denoted as E[Tk(x)],
asymptotically converges to

lim
x→∞

(
E[Tk(x)]− x

1− λ/ 〈µ〉tf

)
=

∑
j λj(1−

wk
wj

)E[X2
j ]

2(1− λ/ 〈µ〉tf)2
.

(9)
We applied the equation above to our system, by having
classes corresponding to different MCS and weights wi = 1/ri
inversely proportional to the service rate. E[X2

i ] is the second
moment of service requirement (flow sizes normalized in
seconds) for flows of class i, which we approximate with
E[X2

i ] ≈ (〈s〉 /ri)2. The incoming job rate λi of class i:
assuming that the probability of an incoming job to be of
class i is fR(ri) then λi = fR(ri) · λ.

Putting everything together gives us Eq. (4).
Note that the above analysis, when applied to 802.11, ig-

nores the impact of collisions and RTS/CTS frames, analyzed
in [36], and thus is an upper bound. Nevertheless, in light
of the high speeds and features of 802.11n\ac, such as frame
aggregation or block of ACK transmissions (by a single node),
implies that the impact of such overhead can be safely ignored.
(we refer the interested reader to [29].)

It is interesting to observe that the above result implies that
the mean service rate, in the long run, for a WiFi system with
rate adaptation, turns out to be the same as that of a resource-
fair system (Eq. (1)). Nevertheless, this does not imply that the
mean flow delay is also the same, as the scheduling discipline
is different (DPS instead of PS). Unfortunately, there does
not exist a closed form solution for the mean flow delay
of a throughput fair system. We will therefore consider the
following two approximations.

Approximation 1: When the BS load is low (i.e., λ
〈µ〉 → 0),

flows rarely “compete” with each other, and it is easy to see
that the mean delay is approximately equal to the resource
fair case, i.e., Eq. (2). This is also a lower bound on the
delay, for higher load values. Furthermore, the observed poor
performance of WiFi [33] has led researchers to propose slight
modifications of 802.11, taking advance of the new feature of
frame aggregation [37], in order for WiFi to operate closer to
a resource fair scheduler.

Approximation 2: For general loads, we can use
Avrachenkov’s approximation as presented in Eq. (4). As we
mentioned, this result is an asymptotic as the service rate (flow
size) is going to infinity, but even for small flow sizes our
simulation results show that the approximation is decent.

Fig. 2 shows the simulated mean delay of a throughput fair
system as well as the two analytical approximations (resource
fair and [35]) for flow size 〈s〉 = 12.5 MBytes, respectively.
For small flow sizes the performance of a throughput fair
system lies in between the two approximations and as the size
is increasing the performance of the system is approaching the
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Fig. 2: Delay vs load for a WiFi throughput fair system

approximation of [35], that we use in this paper.

B. Network-wide Performance

So far we have focused on a single BS. Our goal in this
paper is to consider a network of a large number of such
BSs, possibly belonging to different orthogonal HetNet tiers,
and understand the performance of this network along to main
dimensions:
• Stability (congested probability): We would like to know

the percentage of BS whose input load n ·λf exceeds the
available service capacity 〈µ〉 (i.e., ρ > 1) thus exhibiting
per flow delays that grow to infinity.

• Utilization: Network utilization expresses the probability
of a randomly chosen BS to be active at a random time
instance or the percentage of network’s active BS at
an arbitrary moment. It can be defined as the average
utilization over all BSs, U = E[UBS i], where UBS i =
min(ρi, 1) is the percentage of time that i-th BS is active,
ρi according to Eq. (3).

• Per flow delay: we would like to know the expected
network-wide delay for a randomly chosen user flow,
when this flow is served by a stable BS.

Based on the previous discussion, for a single tier it is clear
that these metrics depend on the same two key parameters:

1) The cardinality n of the users associated at a BS, which
is a random variable with pmf fN (n) that depends on
the topology of BS and user density.

2) The probability that each user is served with a given
rate r, namely the rate distribution fR(r) for this BS
that depends on the topology and interference between
nearby BSs.

We derive fN (n) in Section V. We then derive fR(r) in Sec-
tion VI. In the case of multiple tiers, the above quantities also
depend on the association policies between tiers, Section VII.

IV. PHY LAYER MODELING

Before we proceed with the derivation of the cardinality and
rate probability distributions, we state here our assumptions
about the network topology and physical layer model.
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A.5: Users are distributed according to an independent
Poisson Point Process with density λu.

A.6: We assume a network with k independent tiers of
BSs. The number of BSs of tier j inside an area S follows a
homogeneous Poisson Point Process (PPP), ΦBSj , with density
λBSj , and independently of other tiers. Hence, the number of
BSs of tier j in an are S

P (Nj = n | S) =
(λBSjS)ne−λBSjS

n!
, n = 0, 1, . . . . (10)

We assume that each tier operates at different frequency.
Thus, tiers are orthogonal, i.e., interference at each BS orig-
inates only from BSs of the same tier 1. It can be argued
that the above model does not exactly capture current cellular
networks, consisting mostly of macro eNodeBs that are usually
carefully planned to maximize coverage, and could perhaps
be better modeled by standard hexagonal or grid topologies.
Nevertheless, in the case of WiFi access points or future,
considerably more dense networks consisting mostly of pico-
or femto-cells, topologies are expected to be considerably
more random and uncoordinated, with BSs having a non-
zero probability to be very close. We can consider the afore-
mentioned two topologies as ideal and worst case scenarios
respectively, in terms to interference. As shown in [13], the
coverage probability in terms of the SINR threshold, in real
BS deployments, lies in most cases roughly midway between
the coverage probability in the two extreme cases above.

A.7: A standard power loss propagation model is used. We
assume a path loss exponent α > 2 (for α ≤ 2 the denominator
of SINR goes to infinity), Rayleigh fading at the channel with
mean 1 and constant transmit power of Ptx. So, the received
power at distance d from the BS is given by Prx = hd−α

where h follows an exponential distribution, h ∼ exp (Ptx).
Hence, the SINR is given by

SINRi =
Prxi∑

n 6=i
Prxn + σ2

, (11)

where σ2 is calculated w.r.t the bandwidth (BW ) from σ2
dBm =

−174 + 10 log10(BW ) [38].
A.8: We assume that all BS of the same tier have equal

transmit power, but transmit power might differ between
tiers. Similarly, all BSs at the same tier implement the same
scheduling policy (either Resource Fair or Throughput Fair),
but different tiers might have different policies.

A.9: When more than one tiers exist in the network, a user
association policy decides which tier a given user will be sent
to. We consider the following association policies:
• Off-loading: In the simplest scenario, the operator might

steer to a preferred tier (e.g. WiFi or 4G) all users that
can connect (i.e., receive a sufficiently high SINR) to this
tier. Such off-loading can be achieved by broadcasted
Absolute Priorities to all nodes in RRC IDLE state or
dynamically through Dedicated Priorities indicated to
nodes in RRC CONNECTED state [30], [39].

1In the case of two tiers sharing the same frequency, we could model this
as a single tier with possibly different transmission powers or rates (e.g., for
small cells and macro-cells).
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Fig. 3: Voronoi Tessellation example, 2-tiers, solid lines corre-
spond to tessellations in respect to 4 network and dash lines
to × network

• Max-SINR: A user choses to associate with the tier that
provides the best SINR.

• Min-Delay Association: The load of each tier is also
taken into account when associating, in order to minimize
the average delay of the system. While a number of
load-based association algorithms have been considered,
here we assume a simple version of the association rule
proposed in [9].

Within a given tier, we assume the user association criterion
is maximum SINR, which is standard. A number of recent
works [9], [40] have shown that this criterion is sub-optimal
and more sophisticated criteria (e.g., load-based, as in the
case of inter-tier association) could be applied for intra-tier
association, in order to improve performance. Nevertheless,
these results are equally applicable to every tier, and our focus
in this paper is relative impact of using multiple tiers, rather
than the optimal performance of each tier itself.

Assuming all of the above and additionally, that on average,
the received power is monotonic in respect to distance, our
criterion is simplified to the closest distance criterion, so, the
BSs’s coverage areas could be represented by Voronoi Regions
(Tessellations), Fig. 3 shows two orthogonal networks and their
Voronoi regions.

V. CARDINALITY OF ASSOCIATED USERS

We are now ready to consider the pmf of the user cardinality
per BS, fN (n), which as explained earlier decides the total
input traffic to each BS. We first consider a single BS tier.
Even in this case, deriving this cardinality for an arbitrary cell
is not trivial. Observe that the size of an arbitrary cell is a
random variable, depending on the random BS topology, and
the number of users given a specific cell size is also a random
variable. The proof for the following theorem can be found in
[41] or [42]. Additionally [41] presents an approximation that
is accurate and significantly less computationally demanding
in terms complexity and memory allocation.

Theorem 5.1: Consider a single tier of BSs distributed in 2D
as a homogeneous PPP with density λBS, and offering coverage
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to a set of users distributed as another PPP with density λu.
Assume further that user association within this tier is done
using the closest-distance rule, as explained in Section IV.
The ratio between users and BS density is defend as ζ = λu

λBS
.

Then, the probability of having exactly n users in an arbitrary
cell, fN (n), is given by:

fN (n) =
343

n!15

√
7

2π

ζn

(ζ + 7
2 )n+ 7

2

Γ(n+
7

2
) , (12)

where Γ is the gamma distribution. The first and second
moments of Eq. (12) are

〈n〉 = ζ and varn = ζ +
2

7
ζ2 . (13)

Finally, if we take into account the asymptotic behavior
of the Gamma function, lim

n→∞
Γ(n+α)
Γ(n)nα = 1, and apply the

definition Γ(k) = (k − 1)!, Eq. (12) can be significantly
simplified to

fN (n) = Aζu
n
ζ n

5/2 , (14)

where uζ = ζ
ζ+7/2 . Due to this asymptotic step, we need to

renormalize the pdf, with Aζ serving as the new normalization
factor, which depends on ζ as well.

We should mention that because of the memoryless property
of h-PPP there is no correlation in users cardinality among
adjacent cells.

We next move to the calculation of the MCS-rate distri-
bution, and the impact of inter-tier association on both user
cardinality and rate distribution.

VI. MCS DISTRIBUTION FOR EACH RAT

We are interested in the maximum rate (or MCS) a user
can receive data at from the BS it is associated with, given
a desired BLER. Our goal is to derive the rate distribution
fR(r) in order to calculate the service rate 〈µ〉 in terms
of flows/sec for the average BS. This rate depends on the
SINR for that user. For a given SINR, the offered MCS
is well defined in the specifications of a given RAT. The
SINR in turn depends on both the distance of the user to
the serving BS and the interference from other nearby BS of
the same tier. Furthermore, a nearby BS might not interfere
if it is actually not transmitting at that time, which further
complicates analysis. For this reason, we will first consider
a “saturated” scenario where interfering BS are assumed to
always be ON and interfering. We will then consider the case
of load-based interference, where a BS only interferes if it is
currently active serving at least one user.

A. Rate Distribution for Always ON Interference

We will assume again that BSs and users are distributed
according to independent homogeneous PPPs, and focus on a
specific network tier. In [13], the authors present an approach
to derive the “coverage probability” of a randomly located
user, i.e., the probability that the user’s SINR is above a
certain threshold. In doing so, it is assumed that interfering
BSs always transmit with a power Ptx. This assumption is
a good approximation when the load of the system is high,

in which case the utilization of most BS is close to 1 (i.e.,
are serving users most of the time). It can also be a valid
assumption if the SINR at the user is measured with respect to
Reference Signals (i.e., “pilots”) that are transmitted at specific
times slots by all BS, regardless of whether a BS is serving
users or not at that time [30]. Nevertheless, this is not always
the case. As a result, in scenarios where BS utilization is lower,
this assumption might lead to fairly pessimistic results. We
consider this in Section VI-C.

For the sake of completeness, we mention here again the
results from [13] that are applicable to our problem. Given
a BS density λBS , and path loss constant α, the coverage
probability for an SINR threshold T is

pc (T, λBS , α) , P [SINR > T ]

= πλBS

∫ ∞
0

e−πλBSu(1+β(T,α))− 1
µTσ

2uα/2du ,
(15)

where β (T, α) = T 2/α
∫∞
T−2/α

1
1+uα/2

du .
If we assume that additive noise is negligible w.r.t. interfer-

ence (a reasonable assumption for the dense modern networks)
Eq. (15) can be significantly simplified as pc (T, λBS , α) =
1/ (1 + β (T, α)). Furthermore, if we assume that α = 4, we
obtain

pc (T, λBS , 4) =
1

1 +
√
T
(
π/2− arctan

(
1/
√
T
)) . (16)

Finally, assuming and SINR threshold τi for each MCS
(mcsi), the pmf of the MCS fMCS(mcs) can be obtained
at Eq. (17) through the coverage probability.

fMCS(mcsi) = pc (τi, λ, α)− pc
(
τ(i+1), λ, α

)
. (17)

Given the MCS, the actual rate can be easily calculated based
on the total bandwidth of the system in question. Increased
rates due to spatial multiplexing and independent carriers can
be included in the model with a proper physical abstraction
models.

B. Multi-tier Association
In the case of a multi-tier network, the user density λu and

pmf of MCS fMCS(mcs) of each tier also depend on the inter-
tier association policy. We present here how to calculate those
two parameters for the basic association schemes considered.
We should clarify that the association rules below denote the
tier that the user will be associated with and not the BS. Given
the tier, the user is associated with its closest BS. Let’s assume
there are two tiers, with f iMCS(mcs) and pic (T, λBS , α) be the
MCS distribution and the coverage probability of each tier
i = {1, 2} as derived in Eq. (15) and Eq. (17) respectively.

Lemma 6.1 (Off-load): For the Off-load case, the user is
associated with tier-2, if the achieved SINR for that tier is
higher than a coverage threshold τ0. Then, the pmf of MCS
and the density of users for tier-1 are given by

p
′

1(mcs) = f1
MCS(mcs)

(
1− p2

c (τ0, λBS , α)
)
,

λ1
u = λu

(
1− p2

c (τ0, λBS , α)
)
,

(18)

where the term
(
1− p2

c (τ0, λBS , α)
)

denotes the non-
coverage probability, meaning the probability that the user’s
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SINR in tier 2 is less than the threshold τ0. Due to the
tiers’ orthogonality, the probability of achieving MCSi at
one tier and the non-coverage probability at the second are
independent. Finally, due to Poisson thinning, the density of
first tier is the initial density λu thinned by the non-coverage
probability at tier two.

Lemma 6.2 (Max SINR): For the Max-SINR case, the user is
associated with the tier providing the maximum SINR. Thus,
pmf of the MCS and the corresponding density of users for
tier-1 are as follows (similar for tier-2)

p
′

1(mcs) =

∫ τi+1

τi

p1
c(τ)

(
1− p2

c (τ0, λBS , α)
)
dτ ,

λ1
u = λu

∫ ∞
0

p1
c(τ)

(
1− p2

c (τ0, λBS , α)
)
dτ .

(19)

The above tier-association rules are the two most common
ones considered. However, these rules purely depend on cover-
age statistics and ignore the load of the network which plays
an equally, if not more, important role on performance. We
therefore propose a third tier-association rule that takes this
load into account. The distributed association algorithm of [9],
proves that each user, in a single tier, in order to minimize the
delay should be associated with the BS j that maximizes the
metric Cj(1 − ρj)2, were Cj is the user’s throughput on BS
j and ρj is the corresponding BS load. Here we provide a
modified version for the multi-tier association.

Lemma 6.3 (Min Delay): Let us assume that the arbitrary
user could operate with any of N different MCS at tier 1,
according to pmf f1

MCS(mcs), and M different MCS at tier 2,
according to f2

MCS(mcs). We can form a new set L of N ×M
values of the combinations of the two initial pmfs. Each of
those N ×M possible sub-sets of users will associate to the
tier i according to the following criterion:

i(x) = argmax
j∈B

cj (1− Uj)2
,∀x ∈ L , (20)

where B is the set of all tiers (in our case {1, 2}), cj is the
rate that tier j is able to provide at users of type x ∈ L and Uj
is the utilization of each tier. This association rule is applied
iteratively among all classes, until convergence (for our RATs
and topology, two iterations are needed).
It is easy to see that the above lemmas can be easily extend
to more than two tiers.

C. Rate Distribution for Load-based Interference

As mentioned earlier, the previous results assume that all BS
are interfering all the time. In practice, when the load ρ of a BS
A is low, e.g., ρ = 0.5, then BS A would be transmitting and
causing interference only 50% of the time 2. This implies that
another nearby BS B will be actually serving users at higher
rates than the ones predicted in the saturated case. This, in
turn, means that BS B will also have a higher 〈µ〉 and thus
lower utilization than the one predicted, which in turn creates
less interference for BS A. At flow level, this creates a system

2Even if the SINR estimate is based on the pilot signals, which are always
transmitted at the designated LTE resource elements, the actual interference
experienced during transmission will be lower in practice, leading to better
effective rates (e.g., due to fewer HARQ retransmissions required).

of dependent PS queues, which is notoriously hard to analyze
at Markov chain level (see e.g. [23] for an attempt to derive
some performance bounds). We choose to take here a different
approach and use an iterative algorithm in order to calculate
〈µ〉 of those dependent BSs.

Let us assume that we knew the correct 〈µ〉lb and expected
utilization U of the network, assuming a load-based interfer-
ence as described above. Then, the following lemma extends
the previous analysis based on stochastic geometry, in order
to approximate the coverage probability for this load-based
interference scenario (Due to space limitation, the proof of
this lemma can be found in [43]).

Lemma 6.4: The coverage probability of an arbitrary user in
a random cellular network (assuming thermal noise negligible
compared to interference), when the average utilization of BSs
is U , and each BS is interfering only for the amount of time
that it is serving users (i.e., for a percentage of time U ≤ 1)
is given by

plbc (T, λ, α) =

Nmax−1∑
n=0

(
fN (n)

1

1 +AU

)
+ FN (Nmax)

1

1 +AU=1
. (21)

Where AU = (TU)
2/α ∫∞

(TU)2/α
1

1+uα/2du, we remind that
U = min(nλf/ 〈µ〉 , 1) and FN is the ccdf of users’ cardinal-
ity, Section V. Assuming path loss exponent α = 4, Eq. (21)
could further be simplified by replacing AU and AU=1 with

AU =

√
T

Nmax
n · arccot

 1√
T

Nmax
n

 ,

AU=1 =
√
T · arccot

(
1√
T

)
.

Combining Eq. (21) with the aforementioned Eq. (17) we
obtain again the user’s MCS distribution. But, taking into
account that Nmax = 〈µ〉 /λf , we can observe from Eq. (21)
that in contrast to the always ON case the coverage probability
depends on service rate 〈µ〉. Thus, MCS distribution depends
on the 〈µ〉 as well. On the other hand, 〈µ〉 is dependent on
the MCS distribution as we can see from Eq. (5).

Due to the aforementioned dependencies we can re-write
Eq. (5) as

〈µ〉 =

(∑
mcsi

fR(mcsi| 〈µ〉) · 〈s〉
r(mcsi)

)−1

. (22)

To prove analytically the convergence of the fixed point
problem of Eq. (22) is not trivial. A study about the coupling
of load and rate distribution is presented in [21] where
authors provide results related to computational aspects for
numerically approaching the solution. In the cases of our
interest, the relationship between MCS thresholds and rates
defined according to LTE and WiFi systems or Shannon’s
formula. For those cases the left part of equation Eq. (22)
is a strictly increasing function with derivative equal to one,
and the right part is again a strictly increasing function with
respect to 〈µ〉 but its derivative is strictly smaller than one
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Fig. 4: Left and right part of the Eq. (22) for the cases were
the relationship between SINR and the corresponding data rate
calculating according to i) LTE RAT and ii) Shannon’s formula

(calculated computationally, [44]), Fig 4. Thus there is exactly
one solution for the Eq. (22) and could be approached by
simple gradient methods.

D. Rate for each RAT

Two parameters are missing in order to derive 〈µ〉. Firstly,
we need SINR thresholds τi for each MCS mode to calculate
fMCS from Eq. (17) and secondly, the corresponding rate of
each MCS.

The supported MCS modes are RAT depended and always
defined at the corresponding protocol description documents
[45], [46]. The operation threshold for each mode is not always
defined in the protocol since it heavily depends on the receiver
implementation characteristics. For the 2-tier example that we
demonstrate in this paper we will need one SINR table for
the LTE modes and one for the WiFi. The reference receivers
which were used are the OpenAirInterface platform (for more
details see [47], [29]). The results of this procedure depicted
in Fig. 1, where every marker corresponds to an MCS and
the x-coordinates of them are the SINR threshold τi and
the y-coordinates are the corresponding rates ratei. For the
WiFi case we consider the effective throughput of the access
points, taking into account the overhead of this RAT like sniff,
ack/nak, RTS/CTS, coalitions, etc [29].

VII. RESULTS

Already today it is possible to integrate WiFi networks
into the core networks of cellular systems, and perform off-
loading of traffic to WiFi access points. In future releases of
3GPP, a tighter integration of WiFi and LTE technologies is
expected. For this reason, we choose a heterogeneous RAT
scenario consisting of LTE and WiFi orthogonal tiers, as a
case study. We will consider the following “fixed” parameters
for the two networks: (i) pathloss α = 4, (ii) thermal noise
σ2 = −100 dBm (iii) BWLTE = BWWiFi = 20 MHz, (iv)
one antenna per eNodeB and one spatial stream per WiFi AP.
Finally, we should mention that if the thermal noise is much
smaller than the interference (which is the case in our system),
the value of Ptx does not affect the results, as shown in [13].

The rest of the parameters will act as variables, and we’ll
discuss their value range per scenario.

For the WiFi network, a number of different setups and
802.11 standards could be considered. The traditional WiFi
protocol is tuned to a roughly 20 MHz channel. The newer
versions of WiFi (n/ac) have the capability of channel bonding
in order to operate with 40 to 160 MHz. Larger bandwidths
could also be considered via carrier aggregation in LTE. All
of those additional channel capabilities are orthogonal to our
model and out of the scope of this paper, so we assume
for simplicity and fairness that both networks operate with
20 MHz.

Finally, as explained earlier, current WiFi implementation
operate closer to a throughput fair scheduler. However, as
mentioned in Section III, the WiFi scheduler could be modified
to avoid the “WiFi anomaly” problem and operate as resource
fair [33]. We will therefore consider WiFi with both types of
schedulers, in order to better understand their impact.

A. Model Validation

As a first step, we would like to validate our basic theoretical
results for a single tier, against simulation results, in both
saturated and load-based interference scenarios. Additionally,
we compare our method with the analytical approach of [11]
that provides closed form results about the network load for
the saturated case. We remind the reader that [11] assumes
that the MCS distribution is somehow known, we fill this
gap by using the MCS distribution as it calculated in our
framework. An LTE network is considered for this purpose
(but can be expanded to any RAT with the proper model of
its PHY and MAC characteristics). The performance metrics
from the simulated scenarios that are used for the comparison
are (i) network’s utilization3 and (ii) average flow delay of the
median BS4.

Our packet-level simulator generates BSs and users ran-
domly placed in a large surface with given densities (λBS ,
λu). Users are associated with the closest BS and generate
flows according to a Poisson distribution with density λf and
average flow size 〈s〉 = 5 Mbits (625 Kbytes). The flows
are forwarded to the corresponding BS which is modeled as
a multi-class M/G/1/PS. The service rate of each flow for
every time quantum is calculated via the SINR-MCS relation
for LTE. We will consider two interference scenarios: (1)
always ON case, where all the neighboring BS are contribute
to the interference (corresponding to Section VI), (2) load-
based case, where we calculate interference by taking into
account only the base stations that are ON at this time quantum
(corresponding to Section VI-C). We further consider only the
users whose SINR is higher than the threshold of the lowest
MCS for the always ON case (otherwise a user connected
in one quantum might be outside of coverage in the next).
Fig. 5 (a) and (b), present network’s utilization U w.r.t. λf and

3It turns out that congestion probability, average delay, interference, etc.
depends more on utilization than on load.

4The latter is computed by calculating the mean delay for each BS in
the simulation and then taking the median among the BSs. We choose the
simulated median rather than the average, as the latter grows to infinity even
if a single BS is congested.
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Fig. 5: Comparison of theory and simulation results for the case of single tier LTE network

λBS respectively, for both scenarios λu = 200. Three general
comments from those plots are: (i) The Blaszczyszyn et al
framework, because of the mean value approximation is able
to predict accurately the performance of the system only when
it is under-utilized. The prediction error depends on the BS
congestion probability, which for low loads is P (ρ > 1) ≈ 0.
Mean value analysis essentially fails due to Jensen’s inequality,
using the mean load directly, and implicitly averaging some
congested BSs (with load ρ > 1). Due to the concavity of
the function, the utilization turns out to be higher than the
average utilization of a cell. For example, in Fig. 5 (a) for
a λf = 0.2 the prediction error of utilization according to
[11] is 20% and ours model is 0.5%, roughly 40 times less.
While the utilization is a relatively simple metric, it is easy to
see that mean value analysis can have an equally important
(if not bigger) impact on delay, especially in the case of
load-based interference. Clearly, the amount of interference
a neighboring BS contributes depends on the percentage of
time it is active, i.e. it’s utilization. Hence, overestimating
this utilization will overestimate the neighboring interference
and underestimate the respective service rates (of the coupled
queues), hence further failing to predict delays. Hence, mean
value analysis like the one used in [11] could be seen as a first
order approximation useful for low loads (and relatively large
networks) only. (ii) Both of our theoretical results match the
simulation results quite well. (iii) The gap between the always
ON and load-based interference scenarios are extremely high,
underlining the importance of the latter.

In Fig. 5 (a), for λf = 0.02 the always ON prediction is that
the network is 70% loaded instead of 30% of the load-based.
That means that the network could be much more robust w.r.t.
data traffic than the studies that assume saturated BSs predict.

In Fig. 5 (b), for high density of BS always ON model pre-
dicts 50% utilized network, while load-based only 15%. The
gap between always ON and load-based prediction increases
w.r.t. density of the network. This happens because saturated
analysis is able to capture only the gain coming from the
fact that an arbitrary BS on average serves less users at a
denser network, but not the gain coming from the fact that
surroundings BSs will be less loaded, and therefore will cause

less interference. Thus, the gain to deploy a denser network is
much higher than predicted by an analysis that does not take
the load-depended interference into account.

Fig. 5 (c), shows the median delay of the packet-level
simulator as well as the theoretical predictions for saturated
and load-based cases. Again it can be seen that the theoretical
predictions are quite accurate, and that always ON interference
over-estimates delay by orders of magnitude.

B. Comparing Different RATs

Having validated our theoretical results, we proceed now
with their direct application to different scenario of interest,
in order to obtain insights regarding the congestion probability
of a BS (the probability that a BS’s load is ρ > 1) and flow
delay statistics in large random topologies. We first study the
impact of the following elements on flow-level performance:
(a) the MCS-SINR relation (which differs between WiFi and
LTE), (b) the scheduler (throughput fair and resource fair), and
(c) the type of interference (always-on or load-based). We do
this first for single-tier systems, before moving on to multi-
tier systems. This will also facilitate our subsequent discussion
of 2-tier systems, where multiple factors affect performance
concurrently.

At this point, is useful to introduce the following abbrevia-
tions for the legends in all figures: (ON) or (LB) refer to the
always ON or load-based interference case respectively. Ad-
ditionally, for WiFi tiers (app1) refers to the resource-fair and
(app2) to the throughput-fair scheduling policy approximation
(see section III).

Fig. 6 and 7 present compactly the performance (congestion
probability and delay) for the two networks of interest (LTE,
WiFi) for the same density of connected users (λu = 100)
and for average flow size 〈s〉 = 12.5 Mbytes. As already
mentioned at Section III, two different approximations for
the MAC performance of WiFi are assumed: (i) similar MAC
performance with LTE (i.e., resource fair scheduler), which is
the best case scenario for WiFi; this is a valid approximation
for very low loads or assuming a modified WiFi scheduler,
and (ii) an asymptotic approximation which is accurate for
real, throughput-fair WiFi schedulers, as flow sizes increase.
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We stress here that the respective congestion probabilities are
the same for both WiFi schedulers, as this only depends on
the incoming job rate and the average service rate 〈µ〉, which
are the same in both cases, as we showed in Section III.

Looking at the mean delay, in Fig. 7, and comparing the two
different cases of the WiFi schedulers, it is clear that resource-
fair version of WiFi outperforms the throughput fair one, as
expected. For the load-based case, when the network load
causes 10% of congestion probability, the average flow delay
of the throughput fair WiFi system is 25% higher compared
to the resource fair one.

Focusing now on the saturated (Always ON) case, it seems
somewhat surprising, at first, that the LTE network performs
worse than resource fair WiFi, if we take into account that for
the same SINR, LTE tends to operate with higher rate (See
also [29]). The reason for this are the edge users. A number of
users with low SINR that are regarded as ”out of service” and
not taken into consideration for the WiFi network, are instead
covered by a similar density LTE network. E.g., for the always
ON case, the coverage area was 0.67 and 0.47 for the LTE

and WiFi networks respectively5. Hence, the “edge” users in
a WiFi BS end up getting better rates than the “edge” users in
LTE (This is also evident from Fig. 1, where the lowest MCS
for WiFi - the lowest green triangle - provides higher rates
than the lowest MCSs for LTE - the lowest blue crosses).

The above low values for the coverage area originate from
two previous-mentioned worst case assumptions: (i) the ran-
dom BS placement; in the PPP model, it is possible that a BS
ends up asymptotically close to another; (ii) the interference
is calculated assuming that neighboring BSs are saturated. By
examining the load-based case, we notice how critical the
second assumption is, as for low load values the coverage
area was almost 1 for both RATs, while for a load around
ρ = 0.5 coverage areas were 0.9 and 0.7 for LTE and WiFi,
respectively.

Nevertheless, when one considers the more realistic case
of load-based interference, LTE outperforms WiFi (both the
throughput-fair and resource-fair versions). This is mainly due
to the LTE’s smaller granularity between the MCS, thus being
able to better take advantage of the SINR improvement, due
to lower average interference, for the same input traffic.

C. Cooperative 2-tier HetNets

In this last section, we move on to multi-tier HetNets which
is the main focus of this paper. Here, we are interested in
understanding the impact of coexistence of different RATs in
orthogonal frequencies (the case of coexistence in the same
band could also be handled with some modifications by our
model, but is part of future work). Particularly, our goal is to
capture the impact of different types of association criteria be-
tween different tiers, on the performance gains by introducing
a 2nd tier. As mentioned before, the tier-association criteria of
interest are:

Off-load: This is the simplest (and most aggressive off-load)
policy, where the user, if is able to establish connection with
the WiFi network, does it without any further criterion.

Max-SINR: Here, the user choses to associate with the tier
that provides the best SINR, thus attempting to improve his
channel conditions in order to achieve the highest possible
throughput.

Min-Delay: Here in this scenario, the user choses to asso-
ciate with load related criteria in order to minimize the average
delay of the system. In our case the association criterion,
between tiers, is the modified version of [9] as proposed in
Lemma 6.3.

First, we examine the simple Off-load policy. We assume
that LTE is the primary network and WiFi the secondary one
with the same density. Fig. 8 (a) presents two different cases
of this 2-tier HetNet. The difference between those two cases
is about the WiFi scheduler: one were the WiFi AP operate as
an “ideal”, resource-fair scheduler and one as throughput-fair.
Additionally, for comparison reasons, we include as “baseline”
plot a single-tier LTE network with double BS density (i.e.
the total number of LTE BS is equal to the sum of LTE

5This is also the reason why we had to normalize the user densities to
ensure that the absolute number of connected users per BS is the same for
each network.
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Fig. 8: Cooperative association schemes

BS and WiFi AP in the other two scenarios). Interestingly,
for the saturated case almost all scenarios perform the same.
What is particularly surprising is that the Off-loading case
performs almost the same as the single-tier LTE case: while
the total density of the BSs is the same for both cases, the Off-
loading scenario uses double the spectrum than the single-tier
LTE scenario. In order to sketch the explanation we mention:
1) Off-load association does not affect the MCS distribution
of each tier, 2) on the always ON interference the MCS
distribution of each tier does not depend on the BS’s density
(the gain of the probabilistic higher received power is equal
with the loss of higher interference). 3) In always ON case,
WiFi captures slightly less than the 50% of traffic. Taking
into account the aforementioned, the gain of the second tier is
only that the cardinality of the users to the BS decreasing, just
like the single-tier with higher BS density. The picture totally
changes in the load based case, because the extra spectrum
means less users per band and therefore, less interference.

Nevertheless, if we turn our attention to the load-based
interference cases, we see that: (i) the WiFi scheduler highly
affects the overall performance; (ii) the 2-tier network outper-
forms the LTE-only for both schedulers, which is more in-line
with what we would have expected. This further underlines the
importance of load-based analysis, which in this case not only
has a quantitative, but also a clear qualitative impact.

For the rest of this section, we only consider a best case
WiFi network (i.e., resource fair), in order to focus our
attention on association policies, and understand the limits of
performance improvements by introducing a WiFi tier. To be
more realistic we assume now denser secondary network than
the primary one. More precise, a secondary WiFi network with
λWiFi = 5, and a primary LTE network with λLTE = 1.
Congestion probability and per flow delay for different traffic
input rates λf , are depicted in Fig. 8 (b) and (c), respectively.

Looking at the Off-load and Max-SINR criteria for the
saturated case, the congestion probability of both cases is
almost equal and Max-SINR performs better, with respect to
mean delay. However, considering the load-based interference
cases, the Off-load policy is much more robust with respect
to congestion probability and outperforms Max-SINR with
respect to delay, as well.

This discrepancy between the saturated and load-based cases
originates from fact that saturated analysis is able to capture
only one side of the gain stemming from increasing network
density. On the one hand, the saturated case correctly captures
the fact that an “arbitrary” BS on average has to serve fewer
users, in a denser network (thus dealing with a smaller ρ
due to a decrease in the numerator, i.e., the input traffic).
On the other hand, it fails to capture that the surrounding
BSs will be less loaded as well, and therefore cause less
interference, which in turn, leads to even better performance
for the (fewer) users served (due to an increase in 〈µ〉 and
a resulting further decrease in ρ). As a consequence, the
saturated model underestimates association schemes that tend
to utilize the denser (WiFi) network more.

Last but not least, it is clear from Fig. 8 (c) that the Min-
Delay association policy significantly outperforms the other
two, by up to an order of magnitude or more, for high loads.
Unlike the other two policies that only consider PHY layer
performance (MAX-SINR) or naively try to reduce the load
of the primary network (Off-load), Min-Delay directly takes
into account the actual load experienced, which plays the key
role on the per-flow performance. It is also interesting to note
that, especially for low loads, the Min-Delay policy is also
quite stable in terms of congestion probability Fig. 8 (b). While
the considered association policies are admittedly abstracted
version of real detailed policies, we believe these results
make a strong case for sophisticated, load-based association
mechanisms in future HetNets, in order to better balance the
loads between tiers and ensure the best user experience.

VIII. CONCLUSION / FUTURE WORK

We have presented an analytical framework for an accurate
prediction of the flow-level performance of a large randomly
placed network. This analysis considers both the case of
always ON interfering neighboring BSs, as well as the case of
load-depended interference. It turns out that the performance
gap between the aforementioned cases could be rather high,
affecting not only quantitative insights, but often qualitative
conclusions as well, and thus should be carefully taken into
account during network design. Additionally, we have consid-
ered multi-tier topologies, modeling some common association



13

criteria, and evaluating their impact on both user- and network-
centric performance. This initial study was not meant to be
complete, given the large range of parameters and degrees
of freedom in such multi-tier scenarios, but rather to provide
some initial representative insights, and demonstrate the utility
of our proposed framework.

Three general conclusions should be mentioned: i) The
scheduling policy could strongly effect system’s flow-level
performance, even if the PHY characteristics are the same.
ii) The two different interference approaches, always ON
and load-based, change totally the performance of the system
(single-tier or multi-tier), so we should be very careful about
this assumption when model a system. iii) The gain of the
load related association policy is surprisingly high comparing
to the more traditional ones (Off-load Max-SINR).

As future work, we plan to apply our framework, together
with different association criteria, in Carrier Aggregation
scenarios. Additionally, as mentioned earlier, we believe our
framework could be modified to analyze scenarios of LTE and
WiFi coexistence, in the same band, as well as to consider
advanced LTE-A features such as Cell Range Expansion and
Almost Blank Subframes which are expected to play a key
role in future HetNets.
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