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ABSTRACT

The weighted sum rate (WSR) maximizing linear precoding al-
gorithm is studied in large correlated single stream multiple-
input multiple-output (MIMO) interference broadcast channels
(IBC). We consider an iterative WSR design which exploits the
connection with Weighted sum Minimum Mean Squared Error
(WMMSE) designs as in [1], [2], focusing on the version in
[1]. We propose an large system approximation of the signal-
to-interference plus noise ratio (SINR) at every iteration. The
large system approximation of the SINR depends only on the
slow fading terms or second order statistics of the channels. In
this work, the large system approximation is used to establish a
property of the Multi-users single stream MIMO communica-
tions. Simulations show that the approximations are accurate.

Index Terms— random matrix theory, beamforming,
weighted sum rate maximization, single stream MIMO

1. INTRODUCTION

We consider the MIMO IBC with linear precoding at the
transmitter. A cellular network of C base stations (BS) is con-
sidered where each one of them possesses M antennas and
serves K users multi-antenna receivers. The precoding matrix
that maximizes (local optimum) the WSR for IBC is obtained
from an iterative algorithm proposed by Luo et al. and Slock et
al. in [1] and [2] respectively which is called the IBC WMMSE
algorithm. In this contribution, we carry out a large system
analysis of this latter. Herein, we extend the work based on [3]
and presented in [4], that presents the deterministic equivalent
expressions of the SINR of the WMMSE iterative algorithm
for IBC in the case of multiple-input single-output (MISO) sys-
tems in [3], and we inspire from the works in [5] and [6] which
present Massive MISO deterministic equivalents of the SINR
corresponding to the sub-optimal zero-forcing (ZF) and regu-
larized zero-forcing (RZF) precoders and , all for large M and
K. Although our work will inspire from the works in [5] and
[6] and will be an extension of the work in [4], however it is
not straightforward and needs careful attention when dealing
with single stream MIMO systems instead of MISO systems.
Other works on large systems exist, e.g. [7], [8], [9], [10] and
[11], where a multi cell RZF denoted iaRZF is presented in [8],
this latter maximizes the sum rate as our precoder does but is
not optimal for all existing scenarios, e.g. the scenario where
many users are located on the cell edges, in fact, it corresponds
to an optimal beamforming only in the case of identical intra-

cell channel attenuation and identical inter-cell channel atten-
uation. Algorithms that minimize the total transmit power for
large systems are presented in [9], [10] and [11], however, they
are different than the WMMSE approach that maximizes the
total sum rate instead of minimizing the total power. Further-
more, the deterministic limits of the SINRs corresponding to
the iterative IBC WMMSE process leading to the optimal WSR
are presented, which makes it possible to evaluate its perfor-
mance more easily and compare with other algorithms and pre-
coders. Simulations show that the proposed SINR approxima-
tion is close to the real performance, i.e. the performance of the
IBC WMMSE algorithm. Moreover, an analysis of the SINR
approximation for simple cases is conducted in order to prove
some properties in the multi-user (MU) massive MIMO com-
munications. In this work, we show that the achievable SINR of
a single stream MIMO broadcast channels (BC) system scales
with the number of antennas so for N-antennas users the achiev-
able SINR equals N times the achievable SINR for MISO BC
systems. We extend this result to IBC systems. Simulations
show the correctness of this theoretical result. Notation: The
operators ()H , tr(.) and E[.] denote conjugate transpose, trace
and expectation, respectively. The M × M identity matrix is
denoted IM and log(.) is the natural logarithm.

2. SYSTEM MODEL

In the following, we analyze a cellular downlink IBC single
stream MIMO scenario where C cells are presented, c=1...C,
each of the C cells consists of one BS associated with a number
K of N-antennas receivers. We assume transmission on a single
narrow-band carrier. the received signal yc,k at the kth user in
cell c reads

yc,k =

C∑
m=1

K∑
l=1

Hm,c,kgm,lsm,l + nc,k (1)

where the user symbols are chosen from a Gaussian codebook,
i.e, sm,l ∼ NC(0, 1), are linearly precoded and form the trans-
mit signal; gm,l ∈ CM is the precoding vector of user l of cell
m, Hm,c,k ∈ CN×M is the channel vector from the mth trans-
mitter to the kth user of cell c, and the elements of the N × 1

nc,k are independent complex Gaussian noise terms with zero
mean and variance σ2. Moreover, the precoders are subject to
an average power constraint and the channel Hi,c,k is correlated
as E [HH

i,c,kHi,c,k] = Θi,c,k thus

HH
i,c,k =

√
NMΘ

1/2
i,c,kXi,c,kΘr, i, c, k1/2 (2)



trGcG
H
c � Pc for c ∈ C (3)

where C is the set of all BSs, XH
i,c,k is an N ×M matrix with

i.i.d. complex entries of zero mean and variance 1
NM

and
the Θ

1/2
i,c,k and Θ

1/2
r,i,c,k are the Hermitian square-root of Θi,c,k

and Θr,i,c,k respectively. The correlation matrix Θi,c,k at the
transmitter side is non-negative Hermitian and of uniformly
bounded spectral norm w.r.t. to M. The correlation matrix
Θr,i,c,k at the receiver side can be taken as an identity matrix
for all BSs and users. For notational convenience, we denote
Θc, c, k as Θc, k.
Gc = [gc,1, gc,2, ..., gc,K ] ∈ CM×K is the precoding matrix and
Pc is the total available transmit power of cell c.
Treating interference as noise, user k of cell c will apply a lin-
ear receive filter fc,k to maximize the signal power (diversity)
while reducing any residual interference that would not have
been (sufficiently) suppressed by the precoder. Under the as-
sumption of optimal single-user decoding and perfect Channel
State Information (CSI) at the transmitters and receivers, the
achievable rate of the kth user of cell c is given by

Rc,k = log(1 + γc,k) (4)

γc,k =
|fHc,khc,c,kgc,k|2∑

(m,l)6=(c,k)

fHc,kHm,c,kgm,lg
H
m,lHm,c,kfc,k + fHc,kfc,kσ

2

(5)
where γc,k is the SINR of the kth of cell c.
The precoders maximize the WSR of all users so we are facing
an optimization problem which is the following

G∗ =argmax
G

C∑
c=1

K∑
k=1

uc,kRc,k

s.t. trGcG
H
c ≤ Pc for c ∈ C

(6)

where G is the short notation for {Gc}c∈C and where uc,k ≥ 0 is
the weight of the kth user of cell c. The optimization problem
in (6) is hard to solve directly, since it is highly non convex in
the precoding matrix G. To solve the problem in (6), we con-
sider the linear receive filters fc,k ∈ C, the error variance ec,k
after the linear receive filtering, given in (8), and we introduce
additional weighting scalars wc,k, so that the utility function (6)
can be modified and an equivalent optimization problem can be
formulated as in [1] and [2]

{G∗, {f∗c,k}, {w∗c,k}} =

arg min
G,{fc,k},{wc,k}

∑
(c,k)

wc,kec,k − uc,k log (u−1
c,kwc,k) (7)

s.t. trGcGc ≤ Pc for c ∈ C

with
ec,k = E[(fHc,kyc,k − sc,k)(fHc,kyc,k − sc,k)H ]. (8)

Denote ρc = Pc
σ2 , the signal-to-noise ratio (SNR) in cell c.

From (7), and after applying alternating optimization tech-
niques, which lead to solving simple quadratic or convex func-
tions, the precoders are obtained as the following

f∗c,k = gHc,kH
H
c,c,k(σ2IN +

C∑
m=1

K∑
l=1

Hm,c,kgm,lg
H
m,lH

H
m,c,k)−1

(9)

e∗c,k = (1 + γc,k)−1 (10)

w∗c,k = uc,k(e∗c,k)−1 (11)

g̃∗c,k = (
∑
i,j

HH
c,i,jfi,jdi,jf

H
i,jHc,i,j +

trDc
ρc

IM )−1HH
c,c,kfc,kwc,k

(12)

where g∗c,k = ξcg̃
∗
c,k with ξc =

√
Pc

trG̃c
∗
G̃c
∗H . Also we de-

fined Wc = diag(w∗c,1, ..., w
∗
c,K), Fc = diag(f∗c,1, ..., f

∗
c,K), Dc =

FHc WcFc. For notational convenience, we drop the superscript*
in the sequel. Subsequently fc,k and wc,k are computed, which
then constitute the new precoder gc,k. This process is repeated
until convergence to a local optimum.
UL/DL duality: the optimal Tx filter gc,k is of the form of a
MMSE linear Rx for the dual UL in which trDc

ρc
plays the role

of Rx noise variance and uc,kwc,k plays the role of stream vari-
ance.

3. LARGE SYSTEM ANALYSIS

In this section, performance analysis is conducted for the pro-
posed precoder. The large-system limit is considered, where M
and K go to infinity while keeping the ratioK/M finite such that
limsupMK/M <∞ and liminfMK/M > 0. The results should
be understood in the way that, for each set of system dimension
parameters M and K we provide an approximate expression for
the SINR and the achieved sum rate, and the expression is tight
as M and K grow large. All vectors and matrices should be
understood as sequences of vectors and matrices of growing di-
mensions. For the precoder (12), a deterministic equivalent of
the SINR is provided in the following theorem. Theorem 2: Let
γc,k be the SINR of the kth user of cell c with the precoder de-
fined in (12). Then, a deterministic equivalent γ(j)

c,k at iteration
j > 0 is given by γ(j)

c,k is given by

γ
(j)
c,k =

w
(j)
c,k(m

(j)
c,k)2

Υ
(j)
c,k + Υ̂

(j)

c,k + d
(j)
c,k

Ψ
(j)
c
ρc

(1 +m
(j)
c,k)2

(13)

where

m
(j)
c,k =

1

M
trΘ

(j)
c,kVc (14)

Ψ
(j)
c =

1

M

K∑
i=1

w
(j)
c,i e

′
c,i

(1 + ec,i)2
(15)

Υ
(j)
c,k =

1

NM

K∑
l=1,l 6=k

1

(1 +m
(j)
c,l )

2
e′c,c,k,c,l (16)

Υ̂
(j)

c,k =
1

M

C∑
m=1,m 6=c

(1 +m
(j)
c,k)2

(1 +m
(j)
m,c,k)2

K∑
l=1

1

(1 +m
(j)
m,l)

2
e′m,c,k,m,l

(17)



with Θm,c,k = dc,kΘm,c,k, m(j)
m,c,k = 1

M
trΘ

(j)
m,c,kVm. Further-

more, we have

a
(j)
c,k =

1√
P

(j−1)
c,k

γ
(j−1)
c,k

1 + γ
(j−1)
c,k

(18)

√
P

(j−1)
c,k =

1

a
(j−1)
c,k

√
P

Ψ
(j−1)
c

m
(j−1)
c,k

1 +m
(j−1)
c,k

(19)

w
(j)
c,k = (1 + γ

(j−1)
c,k ) (20)

d
(j)
c,k = w

(j)
c,ka

2,(j)
c,k . (21)

where ac,k denotes the module of the linear receive filter fc,k.
Denoting

Vc = (Tc + αcIM )−1 (22)

with α
(j)
c =

trD
(j)
c

Mρc
, three systems of coupled equations have

to be solved. First, we need to introduce em,c,k∀{m, c, k} ∈
{C, C,Kc}, where Kc is the set of all users of cell c, which form
the unique positive solutions of

em,c,k =
1

M
trΘm,c,kVm, (23)

Tm =
1

M

C∑
j=1

K∑
i=1

Θm,j,i

1 + em,j,i
. (24)

ec,c,k and mc,c,k denote ec,k and mc,k respectively. Secondly,we
give e′1,1, ..., e′1,K , ...e′C,1, ..., e′C,K which form the unique posi-
tive solutions of

e′c,k =
1

M
trΘc,kVc(T

′
c + IM )Vc, (25)

T ′c =
1

M

C∑
j=1

K∑
i=1

Θc,j,ie
′
j,i

(1 + ec,j,i)2
. (26)

And finally, we provide e′m,c,k,m,l∀{m, c, k, l} ∈ {C, C,Kc,Kc}
which form the unique positive solutions of

e′m,c,k,m,l =
1

M
trΘm,c,kVm(T ′m,m,l + Θm,l)Vm (27)

T ′m,m,l =
1

M

C∑
j=1

K∑
i=1

Θm,j,ie
′
m,j,i,m,l

(1 + em,j,i)2
. (28)

For j ≥ 1, define Γ
(j)
c = 1

NM
HcD

(j)
HH
c +

α
(j)
c IM , with D = diag(D1, D2, ..., DC) and Hc =

[HH
c,1,1, ..., H

H
c,1,K , H

H
c,2,1, . . . , H

H
c,2,K , . . . , H

H
c,C,K ], the precoder

at the end of iteration j is given by

g
(j)
c,k =

ξ
(j)
c

M
(Γ(j)
c )−1HH

c,c,ka
(j)
c,kf

(j)
0 w

(j)
c,k (29)

for each user k in the cell c,
where f0,c,k is the the normalized linear receive filter such that
fc,k = ac,kf0,c,k, and ξ(j)

c is given by

ξ(j)
c =

√
Pc

1
M2 tr(Γ

(j)
c )−2HĉF

H,(j)
c W

2,(j)
c F

(j)
c HH

ĉ

(30)

=

√
Pc

Ψ
(j)
c

. (31)

where Hĉ = [HH
c,c,1, ..., H

H
c,c,K ] We derive the deter-

ministic equivalents of the normalization term ξ
(j)
c , the

signal power |gH,(j)c,k HH
c,c,k|2 and the interference power∑C

m=1

∑K
l 6=k if m=c f

H
c,kHm,c,kg

(j)
m,lg

H,(j)
m,l HH

m,c,kfc,k similarly to
[4], [5] and [6], i.e, using the same logic and mathematical ap-
proach, but for a more complex problem. We will show that in
the following.
Proof: We write fc,k as fc,k = ac,kf0,c,k with ac,k =

√
fHc,kfc,k

and |f0,c,k| = 1. Let P (j)
c,k = |fH,(j)c,k Hc,c,kg

(j)
c,k|

2 = |Hc,c,kg(j)
c,k|

2.
We have

g
(j)
c,k =

ξ
(j)
c

NM
(Γ

(j)

c,[c,k])
−1HH

c,c,kf
(j)
0,c,ka

(j)
c,kw

(j)
c,k (32)

− ξ
(j)
c

NM
(Γ(j)
c )−1 1

NM
HH
c,c,kf

(j)
0,c,kd

(j)
c,kf

H,(j)
0,c,k Hc,c,k(Γ

(j)

c,[c,k])
−1

(33)

×HH
c,c,kf

(j)
0,c,ka

(j)
c,kw

(j)
c,k; (34)

g
(j)
c,k =

ξ(j)

NM
(Γ−1
c,[c,k]H

H
c,c,kf

(j)
0,c,ka

(j)
c,kw

(j)
c,k −m

(j)
c,kg

(j)
c,k); (35)

g
(j)
c,k =

ξ
(j)
c

(1 +m
(j)
c,k)NM

(Γ
(j)

c,[c,k])
−1HH

c,c,kf
(j)
0,c,ka

(j)
c,kw

(j)
c,k (36)

Thus,√
P

(j)
c,k =

ξ
(j)
c a

(j)
c,kw

(j)
c,k

(1 +mc,c,k)NM
|Hc,c,k(Γc,[c,k])

−1HH
c,c,kf0,c,k| (37)

=
ξ

(j)
c

a
(j)
c,k(1 +mc,k)

|Θ1/2
r,c,kXc,c,kΘ

1/2
c,k (Γc,[c,k])

−1Θ
1/2
c,k (38)

×XH
c,c,kΘ

1/2
r,c,kf

(j)
0,c,k| (39)

=
ξ

(j)
c

a
(j)
c,k(1 +mc,k)

|Θ1/2
r,c,k

1

M
tr{Θc,k(Γ(j)

c )−1}INΘ
1/2
r,c,kf

(j)
0,c,k|

(40)

=
ξ

(j)
c mc,k

a
(j)
c,k(1 +mc,k)

|Θ1/2
r,c,kf

(j)
0,c,k| =

ξ
(j)
c mc,k

a
(j)
c,k(1 +mc,k)

. (41)

Form (41) we see that if Θr,c,c,k = IN the filters will have no
effect on the signal power which justifies our choice for the
channel correlation matrix at the receiver side as an identity
matrix for the rest of the proof and the paper. Then,

Ψ(j)
c =

1

(NM)2
tr(

∑
k

(Γ(j)
c )−2HH

c,c,kf
(j)
0,c,ka

2
c,kw

2
c,kf

H
0,c,kHc,c,k)

(42)

=
1

NM
tr(

∑
k

w
(j)
c,kd

(j)
c,kz

H,(j)
c,c,k Θ

1/2
c,k (Γ(j)

c )−2Θ
1/2
c,k z

(j)
c,c,k)

(43)

=
1

NM
tr(

∑
k

w
(j)
c,kz

H,(j)
c,c,k Θ

1/2
c,k (Γ(j)

c )−2Θ
1/2
c,k z

(j)
c,k) (44)

...→ Ψ
(j)
c . (45)

the rest of the proof is as in [3]. zc,c,k = XH
c,c,kf

(j)
0,c,k will have

i.i.d entries of zero mean and 1
NM

variance if f (j)
c,k is a Matched

Filter (MF) as in (46) instead of the MMSE filter in (9)

fMF
c,k = gHc,kH

H
c,c,k(σ2IN +Hc,c,kgc,kg

H
c,kH

H
c,c,k)−1 (46)



The proof is omitted due to lack in space, it will detailed in fu-
ture works. However, the optimality of the MF filters is demon-
strated in Figure 1. Finally, the interference power can be given

Fig. 1. Sum rate comparisons between the IBC WMMSE with
MMSE filters and the IBC WMMSE with MF filters for C=1,
M=10, K=4, N=2

by

(
ξ

(j)

c

NM
)2f

H,(j)
0,c,k Hm,c,k

∑
m,l;(m,l)6=(c,k)

Hm,c,kg
(j)
m,lg

H,(j)
m,l HH

m,c,k

(47)

×HH
m,c,kf

(j)
0,c,k (48)

= (
ξ

(j)

c

1
)2zHm,c,kΘ

1/2
m,c,k (49)

×
∑

m,l;(m,l)6=(c,k)

Hm,c,kg
(j)
m,lg

H,(j)
m,l HH

m,c,kΘ
1/2
m,c,kzm,c,k (50)

=
ξ

2,(j)
c

d
(j)
c,k

zHm,c,kΘ
1/2
m,c,k

∑
m,l;(m,l)6=(c,k)

w
(j)
m,l(Γ

(j)
m )−1 (51)

×Θ
1/2
m,lzm,lz

H
m,lΘ

1/2
m,l(Γ

(j)
m )−1Θ

1/2
m,c,kzm,c,k (52)

...→ ξ
2,(j)
c

d
(j)
c,k

Υ
(j)
c,k + Υ̂

(j)

c,k

(1 +m
(j)
c,c,k)2

. (53)

as in [3]. The filters are MF filters as denoted previously. which
completes the proof.

3.1. Applications of the deterministic equivalent of the SINR

In this subsection, the deterministic equivalent of the SINR
of section 3.1 is used in order to prove a property of the MU
communications that can’t be established or hardly established
without the use of large system analysis. We prove that for a
BC system, the achievable SINR for a system with N-antennas
receivers (NRx) and where only a single stream (SS) is allowed
equals N times the SINR achieved in the case of single-antenna
receivers (MISO) for identical channel covariance matrices and
equal weights uk. Thus,

γBC,SS,NRx = N × γBC,MISO (54)

Proof: For a BC system with K users where all channel covari-
ances matrices Θk are identical, the equations (25) and (27) can
be written as:

e
′,(j) =

e
′,(j)
i

di
=

1

Ξ(j)

e
(j)
1

1− c(j)e(j)
2

, e
′,(j)
k =

e
′,(j)
i,k

di
=
d

(j)
k

Ξ(j)

e
(j)
2

1− c(j)e(j)
2

,

(55)
where c(j) = ∆(j)

Ξ(j) ,

∆(j) =
1

M

K∑
k=1

(
1

d
(j)
k

+ e(j))−2,Ξ(j) =
1

M

K∑
k=1

(
1

d
(j)
k

+ e(j))−1,

(56)

e(j) =
e

(j)
k

d
(j)
k

=
1

M
trΘV , e

(j)
1 = Ξ(j) 1

M
trΘV 2, (57)

and
e

(j)
2 = Ξ(j) 1

M
trΘ2V 2. (58)

Furthermore, the equations (15-17) can be written as:

Ψ
(j)

= e
′,(j)Ω(j),Υ

(j)
k = e

′,(j)
k Ω

(j)
k (59)

where

Ω(j) =

K∑
i=1

w
(j)
i

d
(j)
i

(
1

d
(j)
i

+e(j))−2 , Ω
(j)
k =

K∑
i=1,i 6=k

w
(j)
i

d
(j)
i

(
1

d
(j)
i

+e(j))−2

(60)
Thus, the SINR in (13) will be equivalent to:

γ
(j)
k = e(j)w

(j)
k Ξ(j) d

(j)
k e(j)[1− c(j)e(j)

2 ]

e
(j)
2 Ω

(j)
k +

e
(j)
1
ρ

Ω(j)(1 + d
(j)
k )e(j)

(61)

However, our case of interest is when the weights uk are iden-
tical. In that case, ∀k Θk = Θ, uk = u, w(j)

k = w, d(j)
k = d,

Ω
(j)
k = N × Ω(j), c(j) = β = K

M
. Let e be the unique positive

solution of (37), then we can show that

e = β(1 + e)e2 +
β

ρ
(1 + e)2e1 (62)

Using the relation (62) and the fact that the interference is di-
minished after the convergence of the WMMSE so Ω

(j)
k → 0,

we get
γ

(j)
k = N × e (63)

or for single-antenna receivers:

γ
(j)
k = e (64)

which completes the proof. We can extend the result in (54) to
IBC systems.

3.2. Numerical Results

In this section, we will prove using numerical simulations the
double findings of this paper. We prove the correctness of the
deterministic equivalent of the SINR of MIMO single stream
system as well as the validity of (54). We have seen in the pre-
vious section, that the SINR scales with N. Thus, the weighted
sum rate function of SNR curve in the case of NRx must be par-
allel to the one obtained in the case of MISO. Figure 2 shows
the simulation of WMMSE precoder for C = 1,K = 15,M =



30 and its approximation for the both cases ofN = 1 andN = 2.
For the simulations of the WMMSE algorithm, we have used
200 channel realizations. It can be observed that for i.i.d chan-
nels the approximation is accurate and that our asymptotic sum
rate follows the simulated one; which validates our asymptotic
approach. Although the sum rate expression for the approxi-
mation approach (13) seems to be complex, however we need
to calculate it only once per a given SNR, while we need to
run the IBC WMMSE simulations as many times as the num-
ber of channel realizations, i.e. 200 times. Moreover, we can
observe that the curves of N = 1 and N = 2 are parallel
which validates our proposition (54). Similarly, Figure 3 for
C = 1,K = 15,M = 30 for the both cases of N = 1 and N = 2

validates our results for IBC systems.

Fig. 2. Sum rate comparisons between the IBC WMMSE and
our proposed approximation for C=1,K=20,M=30,N={1,2}

Fig. 3. Sum rate comparisons between the IBC WMMSE and
our proposed approximation for C=2,K=10,M=30,N={1,2}

4. CONCLUSION

In this paper, we presented a consistent framework to study the
optimal WMMSE precoding scheme based on the theory of
large-dimensional random matrices. The tools from Random
Matrix Theory (RMT) allowed us to study the behavior of sin-
gle stream MIMO systems and to compare them to the behavior
of MISO systems.
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