The Fast Subsampled-Updating Fast Newton

Transversal Filter (FSU FNTF) Algorithm
for Adaptive Filtering

Karim Maouche Dirk T.M. Slock

Institut EURECOM
B.P. 193, 06904 Sophia Antipolis Cedex, FRANCE

Abstract

The Fast Newton Transversal Filter (FNTF) algorithm starts from the Recursive Least-Squares algo-
rithm for adapting an FIR filter. The FNTF algorithm approximates the Kalman gain by replacing the
sample covariance matrix inverse by a banded matrix of total bandwidth 2M+1 (AR(M) assumption
for the input signal). In this algorithm, the approximate Kalman gain can still be computed using an
exact recursion that involves the prediction parts of two Fast Transversal Filter (FTF) algorithms of
order M. We introduce the Subsampled Updating (SU) approach in which the FNTF filter estimate
and Kalman gain are provided at a subsampled rate, say every L samples. Because of its low com-
putational complexity, the prediction part of the FNTF algorithm is kept. A Schur type procedure is
used to compute various filter outputs at the intermediate time instants, while some products of vec-
tors with Toeplitz matrices are carried out with the FFT. This leads to the Fast Subsampled-Updating
FNTF (FSU FNTF) algorithm, an algorithm that is mathematically equivalent to thé FNTF algorithm
in the sense that exactly the same filter output is produced. However, it shows a significantly smaller
computational complexity for large filter lengths at the expense of some relatively small delay. The
FSU FNTF algorithm (like the FN'TF algorithm) has good convergence and tracking properties. This
renders the FSU FNTF algorithm very interesting for applications such as acoustic echo cancella-

tion.

Corresponding author: Karim Maouche
Institut eurecom, 2229 route des Crétes, B.P. 193, 06904 Sophia Antipolis Cedex, France
Tel; +33 4 93 00 26 32, Fax: +33 4 93 00 26 27, E-mail: maouche @eurecom.fr

Number of operations (xN}

Figure 3: Optimal complexity of the FSU FNTF algorithm vs. filter length V.

The Fast Subsampled-Updating Fast Newton

Transversal Filter (FSU FNTF) Algorithm
for Adaptive Filtering

Karim Maouche Dirk T.M. Slock

Institut EURECOM
B.P. 193, 06904 Sophia Antipolis Cedex, FRANCE

Abstract

The Fast Newton Transversal Filter (FNTF) algorithm starts from the Recursive Least-Squares algo-
rithm for adapting an FIR filter. The FNTF algorithm approximates the Kalman gain by replacing the
sample covariance matrix inverse by a banded matrix of total bandwidth 2M+1 (AR(M) assumption
for the input signal). In this algorithm, the approximate Kalman gain can still be computed using an
exact recursion that involves the prediction parts of two Fast Transversal Filter (FTF) algorithms of
order M. We introduce the Subsampled Updating (SU} approach in which the FNTF filter estimate
and Kalman gain are provided at a subsampled rate, say every L samples. Because of its low com-
putational complexity, the prediction part of the FNTF algorithm is kept. A Schur type procedure is
used to compute various filter outputs at the intermediate time instants, while some products of vec-
tors with Toeplitz matrices are carried out with the FFT. This leads to the Fast Subsampled-Updating
FNTF (FSU FNTF) algorithm, an algorithm that is mathematically equivalent to the FNTF algorithm
in the sense that exactly the same filter output is produced. However, it shows a significantly smaller
computational complexity for large filter lengths at the expense of some relatively small delay. The
FSU FNTF algorithm (like the FNTF algorithm) has good convergence and tracking properties. This
renders the FSU FNTF algorithm very interesting for applications such as acoustic echo cancella-

tion.

Corresponding author: Karim Maouche
Institut eurecom, 2229 route des Crétes, B.P. 193, 06904 Sophia Antipolis Cedex, France
Tel: 433 493 00 26 32, Fax: +33 4 93 00 26 27, E-mail: maouche @eurecom.fr

Receive

Send

Figure 1: Acoustic echo phenomenon in hands-free communications.

desired-response d(i)

data sequence

. Adapti
input z(7) aptive
d —_— Transversal W i
ata sequence
Filter

en(ilk)

Figure 2: The adaptive FIR filtering scheme.

1 Introduction

Hands-free communications have become popular during the last few years. In these new systems,
the standard telephone is replaced by an audio system with microphone(s) and loudspeaker(s). This
allows hands-free operations that can be critical for safety reasons in applications such as mobile
telephones in cars or can lead to convenient and ergonomic communications in conferencing appli-
cations such as audioconference and teleconference. Unfortunately, these new systems suffer from a
major drawback which is the acoustic echo phenomenon (see [1] for a bibliography on the subject).
The acoustic echo is a disturbing signal which comes from the sound propagation between the loud-
speaker and the microphone of one audio terminal. In a communication situation as shown in Fig.1,
the speech signal which comes from the distant speaker is reinjected into the microphone. This
forms the acoustic echo which is fed back to the distant user. In the case where the round trip de-
lay is larger than 20-30 milliseconds, the acoustic echo becomes perceivable for the distant speaker
and hence disturbs the communication. Moreover, when such an open acoustic system is installed
on both ends of the telephone connection, then a closed loop exists for the sounds and can lead
to instability of the closed loop (Larsen effect). A simple solution for acoustic echo control is the
switching of gains or the insertion of losses in the audio terminal but this kind of solution does
not allow a real full-duplex communication. Moreover, it can degrade significantly the communi-
cation. Actual solutions are based on the real-time identification of the acoustic impulse response.
Real-time processing is necessary since the acoustic channel is time-varying. The principle is to
synthesize an estimate of the real echo by using an adaptive filter (which models the acoustic path)
whose input is the loudspeaker signal. The echo estimate is subtracted from the microphone signal
(called the desired signal) which is the sum of the acoustic echo and the local sounds (double talk
and background noise). This subtraction gives the filtering error which is sent to the far end speaker
and which controls the updating mechanism of the adaptive filter. In the situation of acoustic echo
cancellation, adaptive filtering becomes a very difficult task because of the hostility of the acoustic

environment. This is essentially due to three characteristics of the problem:

o The acoustic impulse response has a relatively long duration. Often, this translates into thou-
sands of samples for sampling frequencies that lead to satisfactory audio quality. The number

of degrees of freedom is close to the number of samples of the acoustic impulse response.

The FSU FNTF Algorithm

Computation Cost per L samples
1 | 2 SFTF Prediction part SML
- g7 (k) - — [Pe-r On-m] -
, gf (k%) _ | (On-n Proor] XE . (3+ 2NV PPT(2L) + 4N + 6ML
n?vﬁ,k [0 aN,M,k—L] o
~dg %, [Wik-2 0]
3 | Schur-FNTF Procedure:
Input: gr(k), 9n(k®), ny 1w =45 1 s
Output: Bp_r4i , i=1,-,L | enpx 5.5L7
4 | Compute Sy s and Unir,ns 2M(L-1)
5 I:éN}M,k 0] = [OL (’fgr‘?‘rf,f_L] ,
+ (§N+1,L,k)f - (ﬁN+1,L,k)L M
6| [Wak 01 = [Wieez 01+, 4 | Craes 0] | (1425 FPT(2L) +2N + 517 +2M L

L

Total cost per sample:

4(

1 MLy EETCEL) | g NEL 4 6L 4 18M

Table 2: The FSU FNTF Algorithm.

N 63 | 127 | 255 | 511 | 1023 | 2047 | 4095 | 8191 | 16383
L (optimal} 16 16 32 64 64 128 | 128 | 256 256
Complexity (xN) | 692 1 425 | 264 | 1.76 | 1.15 | 079 | 055 | 038 | 027

Table 3: Optimal Complexity of the FSU FNTF Algorithm (M = 16).

22

¢ The echo path varies in the case of movement of people or objects in the room. It varies also

(at a slower rate) with ambient temperature, pressure and humidity changes.

¢ The input and disturbance signals in the system identification are speech signals. They are
greatly correlated and nonstationary. Moreover, silent periods of the input signal render the

identification problem ill-conditioned.

There are two major classes of adaptive algorithms. One is the Least-Mean-Square (LMS) algorithm
which is based on a stochastic-gradient method [2],[3]. The LMS algorithm has a computational
complexity of 2N (N is the Finite Impulse Response (FIR) filter length). This renders the LMS
algorithm very popular. Nevertheless, its performance becomes worse when the adaptive filter is
relatively large or when the input signal is correlated as is the case in acoustic echo cancellation.
The other class of adaptive algorithm is the Recursive Least-Squares (RLS) algorithm which mini-
mizes a deterministic sum of squared errors [4]. The RLS algorithm shows a complexity of O(N?).
However, for FIR filtering, consecutive regression vectors are related through a shift operation. This
allows for the derivation of fast RLS algorithms with a complexity of O(N). The most popular
among them is the Fast Transversal Filter (FTF) algorithm because of its low computational com-
plexity equal to 7V [5]. Unfortunately, these fast versions suffer from roundoff error accumulation
that leads to numerical instability. Recently, a numerically Stabilized version of the FTF algorithm
(SFTF algorithm) was derived which shows a computational complexity of 8V [6]. The RLS algo-
rithm is much more statistically efficient than the LMS algorithm whith superior performances [7].
However its complexity (even in the fast versions) disqualifies it from being used in acoustic echo
cancellation systems.

This situation has motivated quite a bit of research to develop alternative solutions. One can
distinguish three main areas. The first one uses Infinite Impulse Response (IIR) adaptive filtering in
order to reduce the number of degrees of freedom. Unfortunately, ITR adaptive filters drawbacks such
as instability and poor convergence properties. The second area consists of synthesizing adaptive
algorithms that are between the two major families of adaptive algorithms in terms of computational
complexity and performance. For example, we can cite the Fast Newton Transversal Filter (FNTF)
algorithm [8], [9] which is an approximation to the FTF algorithm and the Fast Affine Projection
(FAP) algorithm [10],[11]which is a generalization to the Normalized LMS (NLMS) algorithm. The

third direction of research is the one where block adaptive algorithms are used. One can find among

2

The FNTF Algorithm

Computation

Cost per sample

k= k-N4+M |, n=kkd

1 ehr(n) = A a1 Xnm41(n) M
2 Ol = —2"tajf (n=1)ely (n)

3 Sprsin = Chrpr nArino

4 5M+1,n. = [0 6'M,n-1] + Srtim M
5 Yare1(n) = 737 (n=1) = Chryy by ()

6 en (n) = ey (n)yar (n—1)

7 Apt = Aygaot +en(n) [0 Crrno | M
8 gy (n) = A agy (n=1) - éﬁafil,n‘ffvrﬂ(n)égf-u,n

9 3 (n) = Byno1 Xag41(n) M
10 rhi(n) = —28u (n—1)CH A

11 2D (n) = 1.575] (n) — 05757 (n)

12 2 (n) = 2508 (n) ~ 1578} (n)

13 ﬁM+1n—CM+}_ nBan-1

14| [Crn 0] =Corsrn— Unsain M
15 o (1) = a1 (n) + Oy w7h ()

16 i (n) = b ()i (n) 5= 1,2

17 Barn = Barnoy + 75 (n) { Carn 0] M
18 Bag (1) = ABar (n=1) + r2 () D7 (n)

19 Tar (n) =AM cnw(n)f-’f;&l (n}

20 Y (k) = vitar (k=1) = 5% 1 ey (B) + UM orh] (89)

21 CN+1,M,k = [0 CN,M,k—l] + [SM+1J¢ On_m]

22 [6‘N,M,k 0} =Cnypr ik — [ON—M ﬁM+1,k"]

23 e (k) = d(k) + Wi s—1 Xn (k) N
24 en (k) = v m (k)ely (k)

25 Wik = Whs—1 + en (B)Cn ek N
Total cost per sample: 2N+12M

Table 1: The FNTF Algorithm.

21

them, block algorithms that are mathematically equivalent to the sample by sample version such as
the Fast Exact LMS [12] or frequency domain adaptive algorithms and subband adaptive algorithms
[13].

In this paper, we present a new fast algorithm for approximate RLS adaptive filtering that consti-
tutes a good solution to the acoustic echo cancellation problem or to any problem which deals with
long FIR adaptive filtering. The Fast Subsampled-Updating Fast Newton Transversal Filter (FSU
FNTF) algorithm is based upon the FNTF algorithm. The FNTF algorithm originates from the FTF
algorithm and uses the approximation that when dealing with Auto-Regressive (AR} signals, the
prediction part of the FTF algorithm can be limited to prediction filters of length A, the order of
the AR model [8],[9]. In fact, in the FNTF algorithm, the inverse of the sample covariance matrix
is approximated by a banded matrix of total bandwidth 2M + 1. This allows the reduction of the
complexity to @(2N). The FNTF algorithm has been implemented successfully in a radio-mobile
hands-free system [9]. It has been shown to perform close to the RLS algorithm. However, when
one deals with longer filters than those used in the mobile-radio context (N > 256 at a sampling
frequency of 8 KHz), the FNTF algorithm and even the LMS algorithm can not be implemented
because of current technological limitations.

In [14],[15] we have pursued an alternative way to reduce the complexity of RLS adaptive filter-
ing algorithms. The approach consists of subsampling the filter adaptation, i.e. the LS filter estimate
is no longer provided every sample but every L > 1 samples (subsampling factor L). This strategy
has led us to derive new RLS algorithms; the FSU RLS and FSU SFTF algorithms which present a
reduced complexity for relatively long FIR filters. These two algorithms are mathematically equiva-
lent to the RLS algorithm (in the sense that they both provide the same filtering output than the one
of the RLS algorithm and give the same filter estimates at the subsampling instants), but have com-
pletely different algorithmic structures. Moreover, the FSU SFTF algorithm is numerically stable
which is not the case for the FSU RLS algorithm.

Here, we apply the Subsampled-Updating Strategy (SUS) to the FNTF algorithm. This algorithm
is divided in two parts, a prediction part and a filtering part. Since the prediction part has a relatively
small computational complexity, we will keep it unchanged and the SUS will only be applied to
the filtering part. Hence, the FNTF Kalman gain and the filter estimate are updated from quantities

that were available [instants before. Now, even though, the filter estimate is provided every L

[12] J. Benesty and P. Duhamel, “A Fast Exact Least Mean Square Adaptive Algorithm,” [EEE
Trans. Sig. Proc., vol. SP-40, no. 12, pp. 2904-2920, Dec. 1992.

[13] A. Gilloire, Eric Moulines, Dirk Slock, and Pierre Duhamel, “State of the Art in Acoustic Echo
Cancellation,” in Digital Signal Processing in Telecommunications, Anibal R. Figueiras-Vidal,

Ed., pp. 45-91. Springer-Verlag, 1996.

[14] D.TM. Slock and K. Maouche, “The Fast Subsampled-Updating Recursive Least-Squares
(FSU RLS) Algorithm for Adaptive Filtering Based on Displacement Structure and the FFT,”
Signal Processing, vol. 40, no. 2, pp. 5-20, 1994.

[15] K. Maouche and D. T. M. Slock, “The Fast Subsampled-Updating Stabilized Fast Transversal
Filter (FSU SFTF) Algorithm for Adaptive Filtering,” submitted to IEEE Trans. SP, 1999.

[16] IM. Cioffi and T. Kailath, “Windowed Fast Transversal Filters Adaptive Algorithms with
Normalization,” IEEE Trans. Acoust., Speech and Signal Proc., vol. ASSP-33, no. 3, pp. 607-
625, June 1985.

[17] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.

[18] T. Kailath, S.Y. Kung, and M. Morf, “Displacement ranks of matrices and linear equations,” J.

Math. Anal. Appl., vol. 68, no. 2, pp. 295407, 1979, (See also Bull. Amer. Math. Soc., vol. 1,
pp- 769-773, 1979.).

[19] M. Vetterli, “Fast Algorithms for Signal Processing,” in Techniques modernes de traitement
numérique des signaux, M. Kunt, Ed. Presses Polytechniques et Universitaires Romandes, Lau-

sanne, Switzerland, 1991, ISBN 2-88074-207-2.

[20] P. Duhamel and M. Vetterli, “Fast Fourier transforms: A tutorial review and state of the art,”

Signal Processing, vol. SP-19, no. 4, pp. 259-299, April 1990.

20

samples, it turns out that the successive a priori filtering errors can be computed efficiently by using
a Schur type procedure. So, the new algorithm computes the same filtering errors as the FNTF
algorithm even though the filter estimate is not updated at the sampling frequency. Using the FFT
for computing some convolutions and updating the Kalman gain from its value L instants before
in an efficient way gives us finally what we have called the Fast SU FNTF (FSU FNTF) algorithm
which shows a reduced computational complexity, rendering it especially suited for adapting very
long filters such as in the acoustic echo cancellation problem. Moreover, it appeared that the new
algorithm has a more robust structure against roundoff error accumulation than the FNTF algorithm.

The rest of the paper is organized as follows. In sections 2 and 3, we briefly recall the RLS and
FNTF algorithms. In section 4, we introduce the Schur-FNTF procedure that allows the computation
of the filtering errors when the SUS is applied. Section 5 deals with the fast computation of convolu-
tions using the FFT in order to reduce the computational complexity of the Schur-FNTF procedure
and the update of the filter estimate. In the new algorithm, the Kalman gain has to be updated every
L samples. In section 6, after showing how to do this efficiently, we give the FSU FNTF algorithm.
Finally, some conclusions are presented in section 7.

In order to formulate the problem and to fix notation, we shall first recall the RLS algorithm and
the FNTF algorithm. We shall mostly stick to the notation introduced in [5],[6],[16], except that
the ordering of the rows in data vectors will be reversed (to transform a Hankel data matrix into a

Toeplitz one) and some extra notation will be introduced.

2 The RLS Algorithm

An adaptive transversal filter Wy ; forms a linear combination of N consecutive input samples
{z(i—n),n =0,..., N-1} to approximate (the negative of) the desired-response signal d(¢). The

resulting error signal is given by (see Fig. 2)

en(ilk) = d(2) + Wi Xn(i) = d(7) + Z Wit a(i—n) | (1)

n=0
H
where Xy (i) = [a:H(z) gH(i—1)- - mH(z'—N-l-l)} is the regression vector and superscript “ de-
notes Hermitian (complex conjugate) transpose. In the RLS algorithm, the set of NV transversal filter

coefficients Wy = [Wf{fk Wl k] are adapted so as to minimize recursively the following LS

4

References

[1} E. Hiinsler, “The hands-free telephone problem - An annotated bibliography,” Signal Process-
ing, pp- 259-271, 1992.

[2] B. Widrow and S.D. Stearns, Adaptive Signal Processing, Prentice-Hall, Englewood Cliffs,
NI, 1985.

[3] O. Macchi, The Least Mean Squares Approach with Applications in Transmission, John Wiley
& Sons, New York, 1995.

[4] S. Haykin, Adaptive Filter Theory, Prentice-Hall, 1996, third edition.

[5] JM. Cioffi and T. Kailath, “Fast, recursive least squares transversal filters for adaptive filter-
ing,” IEEFE Trans. Acoust., Speech and Signal Proc., vol. ASSP-32, no. 2, pp. 304-337, April
1984.

[6] D.T.M. Slock and T. Kailath, “Numerically Stable Fast Transversal Filters for Recursive Least-
Squares Adaptive Filtering,” IEEE Trans. Signal Proc., vol. SP-39, no. 1, pp. 92-114, Jan.
1991.

[7] E. Eleftheriou and D. Falconer, “Tracking Properties and Steady-State Performance of RLS
Adaptive Filter Algorithms,” IEEE Trans. Acoust., Speech and Signal Proc., vol. ASSP-34, no.
5, pp. 1097-1110, Oct. 1986.

[8] G.V. Moustakides and S. Theodoridis, “Fast Newton Transversal Filters — A New Class of
Adaptive Estimation Algorithms,” IEEE Trans. SP, vol. SP-39, no. 10, pp. 2184-2193, Oct.
1991.

[9] T. Petillon, A. Gilloire, and S. Theodoridis, “The Fast Newton Transversal Filter: an Efficient
Scheme for Acoustic Echo Cancellation in Mobile Radio,” IEEE Trans. Acoust., Speech and
Signal Proc., vol. ASSP-42, no. 3, pp. 509-518, March 1994,

[10] K. Ozeki and T. Umeda, “An Adaptive Algorithm Using Orthogonal Projection to an Affine
Subspace and its Properties,” Trans. IECE Japan, vol. J67-A, pp. 126132, 1984.

[11] S. L. Gay and Sanjeev Tavathia, “The Fast Affine Projection Algorithm,” in Proc. ICASSP
Conf., Detroit, USA, May 9-12 1995, pp. 3023-3026.

19

criterion

ev) = min {00+ W XN | = TN et L @

i=1 =1

where A € (0, 1] is the exponential forgetting factor and ||v||* = v¥ v.

Minimization of the LS criterion leads to the following minimizer
Wyp = —PyuBR) (3)

where

k
By = S NTXn(@)XE(E) = ARwgp-1 + Xn(R)XF(F)

T @)
Pvi = S M7 Xn()d"(i) = APwxor + Xn(k)dP (k) ,

i=1

are the sample second order statistics. Substituting the time recursions for Ry x and Py ;. from (4)

into (3) and using the matrix inversion lemma [17, page 656] for Rﬁk, we obtain the RLS algorithm:

Cnp = —XE(R)N TR, (5)
7' (k) = 1-CnaXn(k) (6)
Ryt = XTRyL_, — CHiww(k)Cni Q)
(k) = en(klk—1) = d(k) + Wy Xn(k) (8)
en(k) = en(klk) = ex(k)yw (k) 9
Wyir = Wai-1 +en(k)Cny (10)

where €%, (k) and en(k) are the a priori and a posteriori error signals. They are related by the
likelihood variable vy (k) as in (9). Equations (8)-(10) constitute the joint-process or filtering part
of the RLS algorithm and takes 2N+1 operations per sample. The role of the prediction part (5)-
(7) is to produce the Kalman gain Cyx and the likelihood variable vy (k) for the joint-process
part. In the conventional RLS algorithm, this is done via the Riccati equation (7) which requires
O(N?) computations. Fast RLS algorithms exploit a certain shift invariance structure in Xy (k) to
avoid the Riccati equation in the prediction part and reduce its computational complexity to O(V).
Fast versions of the RLS algorithm have been derived by using the displacement structure of the
covariance matrix, leading to algorithms such as the FTF with computational complexity 7NV. We

now recall the FNTF algorithm, from which our new algorithm will be derived.

block length L (constrained to be a power of 2) that gives the lowest complexity. Note that the FSU
FNTF algorithm becomes less complex than the FNTF algorithm when NV > 270 (in the case where
M = 16) and that the complexity is decreasing w.r.t. N. These results are illustrated in Fig. 3.

Note also that the computational complexity as a function of the subsampling factor is a convex

function with a minimum given by the solution of the transcendental equation:

3log 217 + 2L + (2 — 5log 2)(N +1) =2(N + 1) log L . (56)

7 Conclusions

We have derived a new algorithm that is mathematically equivalent to the FNTF algorithm. The FSU
FNTF and the FNTF algorithms produce exactly the same filtering error signal and hence exhibit the
same performance, which is close to that of the RLS algorithm, especially when the input signal is an
AR process. The computational complexity of the FSU FNTF algorithm is smaller than that of the
ENTF algorithm for large filter lengths at the cost of a relatively small processing delay which is of
the order of I. samples. Moreover, the FSU FNTF algorithm removes the long-term round-off error
instability of the likelihood variable that appears in the FNTF algorithm. The low computational
complexity of the FSU FNTF when dealing with long filters and its performance capabilities are

promising for applications such as acoustic echo cancellation.

18

3 The FNTF Algorithm

In the FTF algorithm, the Kalman gain and the likelihood variable are computed in the prediction
part of the algorithm. The update of the inverse sample covariance matrix in the RLS algorithm is
replaced by the update of its generators [18] which happen to be the optimal forward and backward
prediction filters and the Kalman gain of order V (plus the update of some scalar quantities). The
FNTF algorithm is an approximation of the FTF algorithm. It uses the fact that for AR signals of
order M, the inverse covariance matrix is a banded matrix of bandwidth 2M + 1. This fact allows the
use of prediction filters of order M in the FTF scheme. The Kalman gain and the likelihood variable
of order N are computed by using the property that for AR(M) processes, forward and backward
prediction filters of order N are obtained from those of order M by padding with zeros. This is
interesting when the input signal is speech as is the case for acoustic echo cancellation applications.
The key ingredient of the FNTF algorithm is the extrapolation of the Kalman gain @N, % and the
likelihood variable ~yn as(k) of order N from quantities computed in the prediction part of order M.
The first version of the FNTF algorithm [8] needed a certain amount of data storage while in [9],
two FTF algorithm prediction parts are run in parallel in order to avoid this extra memory use. The
input signal of one prediction part being a delayed version of the input signal of the other part with
a delay of N— A samples.

In what follows, we will consider this last version which uses two FTF prediction parts of order
M running in parallel. The FNTF algorithm in its numerically stabilized form is given in Table 1
where Aps i and By, are the forward and backward prediction filters, e, (k) and epr(k) are the a
priori and a posteriori forward prediction errors, 7, (k) and rp(k) are the a priori and a posteriori
backward prediction errors, Caryyx = ég,m,k e éﬂj‘fﬂ‘k] and aps (k) and B (k) are the forward
and backward prediction error variances. K; = 1.5 and K, = 2.5 are the optimal feedback gains
that ensure the stability of the dynamics of the accumulated roundoff errors in the prediction part
[6]. The prediction part of the FNTF has a computational complexity of 12M and the joint-process
part takes 2V operations. In what follows, we will deal uniquely with the single channel case. The
extension to the multi-channel case is straightforward. The FNTF algorithm can also be described

in the following way which emphasizes its rotational structure:

P = o7k) Py

of the two DFTs , applying the IDFT to the product and finally taking the first L elements of the

result. This is done in (2 N + L4 1) ki :2(2” + 25\%1 multiplications per sample.

Finally, combining, the two FTF prediction part algorithms that allow the computation of the suc-
cessive pseudo rotation matrices, the Schur-FNTF procedure which gives the output error filter of
the FNTF algorithm, the efficient computation of U N+1,L.% and S ~+1,L,% and the use of the FFT for
the update of the filter estimate, we get the FSUFNTF algorithm which is summarized in Tab. 2. Its

initialization is done as follows:
e For the SFTF that operates on {z(k)}:
Amo=[10---0], Buyo=[0---01]
an(0) = AN, Bu(0) = AV-My (52)
Cro=[0--0], w(0)=1.
¢ For the SFTF that operates on {z(k — N + M)}:
Apv-nom=1[10---0], By-ntma =[0--- 01]
an(=N+M) =My, Bu(-N+M) = ps (53)
Cornyme =[0 - 0], yu(~N+M)=1.

¢ For the extrapolation and filtering part:

(=1, Cypo=1[0--0]
WN‘():WO .

(54)

We do not provide a learning curve for the FSU FNTF algorithm since it would be identical to that of
the FNTF algorithm. For performance comparisons of the FSU FNTF algorithm with other adaptive
filtering algorithms, one should consult the references introducing the FNTF algorithm.

The computational complexity of the FSU FNTF algorithm is

N+1 FFT(2L) N+l
CFSUFNTF:4(;’ +1) QL) L 6NHL L 6r y18m (55)

L L
operations per sample. One can see the computational complexity reduction that is achieved in the
case where FFT is done via the split radix algorithm [201(F FT(2m) = mlog,(2m) real multipli-

cations for real signals) in Tab. 3 where for each filter length N, we find through inspection the

17

Pa = Ok Pa, , K=k-N+M
[Pt On—pr]
[C'N,M,k 0] } _ ol [Onar Pra_y] , (11)
[Wiy 0] [0 é'N,M,k—l]
[Wig-1 0]
where _
[E'M,k 0] [0 éM,k]
Po=| Aus , Po=1| A , (12)
Bur | Bux
1 00 1 Chnw —CHis
k) = BE)VOIK)=| 0 1 0| |emk) 1 0 , (13)
rek) 01] [0 0 1

1 0|0 CYuyp 000 —CH 1o 10
o/ (k) = @5 (k)2{ (k)= . (4)

en(k) 1 0 0 0 0 0 0 01
In order to reduce the amount of computations in the FNTF algorithm, we propose to apply the SUS.
This idea comes from the fact that for relatively long adaptive filters, it is not necessary to update
the filter at each new input sample because there is no significant change in the filter coefficients
after one update. The SUS does not necessarily involve approximations and the key ingredient is
that even though the adaptive filter is not updated all the time, it is possible to compute efficiently
the filtering errors that would arise if the filter estimate were updated at the sampling rate. The SUS
leads to SU algorithms that are equivalent to the original algorithms, except for the fact that some
quantities like the filter estimate are not provided at all the time instants. Moreover, fast convolution
techniques and efficient computations of certain quantities help to reduce the complexity of the SU
algorithms and will give FSU algorithms. In the FNTF algorithm, the prediction part costs 12M
operations which is not computationally demanding. So, this part is kept unchanged and the SUS
is only applied to the filtering part of the FNTFE. Hence, the objective is to compute at time % the
extrapolated Kalman gain éN, amx of order N and the filter Wy, from their values at time & — L.

For instance, one can quite simply compute (see (25) of Tab. 1) the value of the filter estimate at

7

The recursions in (46) need 2(L—1)M additions per L samples. On the other hand, Cn s i
updated by using the last row of (44)

[Covms 0] =00 CRNTEL |+ (Sneren), = (Onsroe) @7

L ¥
where (§ N+1’L‘k)L has its first A+ L elements that are nonzero while the nonzero elements of
([7 N+1,Lk)L are in the last M + 1 positions. Hence, the update of the Kalman gain vector (47) needs
2M + 1 additions per L samples. We consider the case where nonzero elements of (§ N+1,L,k) . and
(ﬁNH,L,k)L are in disjoint portions. This happens when L+2M < N41.

By using the decomposition of the Kalman gain matrix in (44), we split the product in (15) as follows

Nk [Crpr 0] =enir T ([0 Cnmper D el Svenrk — €0k Unvirpe - (48)

Since S N+1,L% and U N+1.L. are sparse matrices, the second and third products in (48) are computed
by performing the required multiplications/additions. These products take respectively (M + 1)L +
SL(L—1) and (M + 1)L multiplications per L samples. The first matrix being Toeplitz, we can
further reduce the NL — .5L(L — 1) multiplications per L samples which are needed for the com-
putation of gﬁ, Lk T ([0C N M k—L]) by using the FFT technique.

Consider the following decomposition of 7 ([0 Cwas—z. |) in Ny, sub-matrices of order L x L
T([0 Coprpmr |) = [Tin - T2] (49)
then, the product becomes
R T ([0 Cnvanace) = [Rpn T - Ron T2] (50)

Every sub-product in (50) is now computed as follows:

1,
OLxL

- [([0z €] FZL) diag(r* F2L)] 21L FH

H i H i
ok 1L = [UL QN,L,k}IL,L

e] , (51)

Or«r

where 7 " is the first row of the 2L x 2L right shift circulant matrix obtained by embedding ‘73 I
in the same manner as was done for the Toeplitz data matrix X, 7, r_¢;—1)z in (35). As it is shown in
(51), the product ey 1., T ([0 Cnaa-t]) is done by adding L zeros to ¢¥ ; ,, computing the cor-

responding DFT, computing the DFT of 7* ¥ (there are N, vectors like this), computing the product

16

time k from its value L instants before

[Wag 0] =[Wnp—r O I+ Qﬁ,L,k [QN,M,k 0]) (15)
where
enpi = len(k—L+1) - en(k)] (16)
éN,M,k-L-{-l
QN,M,): = : . (17)
éN,M,k

€N 11 is the vector of [successive a posteriori output errors and c ~ .M.k 18 the L x N Kalman gain
matrix where the rows are the L successive FNTF Kalman gains. First, a certain Schur procedure
can be used to compute the different filter outputs appearing in the FNTF algorithm, and in partic-
ular, the L successive a priori filtering errors without updating the different filters at these instants.
We will see later on how to compute the Kalman gain matrix o] ~,M,; Without updating the Kalman

gain vector at each input sample and moreover how to compute efficiently the vector-matrix product

EE,L,k [QN,M,A: 0]

4 The Schur-FNTF procedure

Let us introduce the negative of the filter output

—~ -~

di (k) =d(k)— (k) , dnv(k)=d(k)—en{k), (18)
the reversed complex-conjugate regression vector
Ing =] Thonst Trongz- 2k)0, (19)

and the L x (N+1) Toeplitz input data matrix

X§+1(k_L+1)
Xyt e = : =[@Lp TLp-1""" Top-N] - (20)

L)

By replacing (42) into (17) for every row, we obtain the expression of the Kalman gain matrix
Q ~ Mk 0 term of the Kalman gain vector C N M kL
i-1

[QN,M,J; 0] = ([0 Cnmr-t] Zi_l)i:m + (Z [§M+1,k(,=' On_nr] Zl)
_ i=1:L

=0

_ ("i[oN_M Oy, | Zx)
i=1:L

=0

= T ([0 éN,M,k—L D + §N+1,L,k - ﬁN+1,L,k) (44)

the notation (a;),_,., stands for the matrix with L rows in which the i** row is ;. The first term
of the right hand side of (44) is a L x (N + 1) Toeplitz matrix whose first row is [0 C’N,M,k_L }
and first column filled with zeros. The two other terms are L x (N + 1) sparse matrices with the

following structures:

[* * 0 0
SNtk =
* * * 0 0
(45)
0 0 x *
Unyrpe = | Do S I

the * standing for nonzero elements. First rows of §N+1,L,k and 7 ~+1,L,k have M+1 nonzero el-
ements and last row of Sy41.2 has M + L nonzero elements. Denoting by (4), the i** row of
the matrix A, it can be easily shown using their definitions in (44) that the matrices S N+1,L,% and

U ~N+1.0.x are efficiently computed by applying the following recursions on their rows

(Swarrp), = [Swripcr Onoa |
(Ovarzw), = [On-se Drssrprsen]
For :=2,...,L
(Sverze), = (Swerra) 2+ Sworeorsi Ovom | (46)
(ﬁN-i—l,L,k)i = (ﬁN+1,L,k)i._IZ+ [ON—M ﬁM+1,kd—L+i}
End For

15

Now, consider the following set of filtering operations

i (k) [Peer On_pr | "
TIAL. Lk

H(pd ,

Al 92k | o | [On-m Pra_yp] A
FL (k) = H = ~ Xﬁ-{-l,}_},k ? gLH(k) = 6?\4{[[/’;“ (21)
TN, L,k [0 Onmp-L] sf H
- MLk
| —diix | | [Wwar 0]

Fr(k)is a8 x L matrix whose rows are the output of the different filters appearing in the FNTF al-

gorithm. In particular, the last row of F (k) corresponds to the (multi-step ahead predicted) adaptive

filter outputs
d" (k—L+1) el (k—L+1k-1) 18 (k—L+1]k~L)
J]ﬂ',L,k =drr—€ypi= : - : = : . (22)
| & (k) H(klk—L) 18 (k|k—1L)
The first column of Fy, (k) is
p(k)
) 1y (k—L)
P
Fr(k)yup, = i , plk)=| &, (k—L+1) | (23)
1=yy (k—L) of
. r&! (k—L+1)
—df (k—L+1)

where uy, , isthe L x 1 vector with 1 in the nth position and 0 elsewhere.

One can see immediately that since d, (k—L+1) is available (last component of the first column
of Fr(k)), one can compute the a priori filtering error ¢y (k— L+1) with (22) then, the a posteriori
filtering error ey (k— L+1) using vy ar(k— L+1) (see (20) and (24) in Tab. 1).

The updating scheme of the FNTF algorithm can be written as

[ﬁk ON—M] [Peoy On-ar]
On_ar P On—nr Pra_
[]jM kd] :(—)k_ [Ni\/f k 1] : (24)
[CN,M,k 0] [0 ON,M,k—l]
I [Wrie 0]] i [Wrji-1 0]]
where @ is a 8 x 8 matrix given by
L 0 0 k) o o || ®HE 0 0
O = |0 L 0 0 B(kY 0 0 (k) 0| (25
0 0 ik 0 0 I &/ (k)

Hence, the computation of the vector in (36) requires the padding of v with L zeros, the DFT
of the resulting vector, the DFT of z5r ;_(;-1)z, the product of the two DFTs, and the (scaled)
IDFT of this product. When the FFT is used to perform the DFTs, this leads to a computationally
more efficient procedure than the straightforward matrix-vector product which would require L?
multiplications. Note that at time &, only the FFT of ,7 ; needs to be computed; the FFTs of
Tor k—ir,t = 1,..., M—1 have been computed at previous time instants. The above procedure will
only be used for the product of [0 C’N, M-] and Wy ;_r with the data matrix, since the other
vectors are of length M which is relatively small. This reduces the (2N 4+ 6 M) computations per

sample that are needed for the initialization of the Schur-FNTF procedure to
FFT(2L) N 2] 3FFT(2L)

72 7 + —? +6M (40)

computations per sample (FFT(L) signifies the computational complexity associated with a FFT of

o |
length L) or basically O (N '3%@) operations.

6 The FSU FNTF algorithm

In order to compute the Kalman gain matrix that appears when the filter estimate Wi, is computed

from its value at time k— L (see (15)), we come back to the FNTF Kalman gain update
[Crarg 0] = [0 Cnvarpt] + [Sars1x On_m] — [On—nr Unryspe] , (41)
where definitions of S M+1,k and U Ma+1,x4 given in (3) and (13) of Tab.1. From the above equation, it

is easy to see that each row of the Kalman gain matrix can be expressed as follows

For i = 1,...,L , ky=k—L+i—l , ki, =k'—L+i—|
) i—1

[6N,M,k—L+i 0] = [Oi ~R§fXﬂ_L] + f [§M+1,k1'; On—nr] AESY [ON—M ﬁM+1,k;{‘.] A

1=0 =0
End For (42)
with the (N+1) x (N+1) right shift matrix
(001 0 - 0]
oo 1 -~ 0
Z=\: . (43)
00 0 1
(00 0 0

14

Hence, if we rotate both expressions for F7,(k) in (21) with ©,_z1, we obtain ©,_ 11 F.(k) which

equals
o - ' (k) '
[Pk—L+1 UN—M])
[O p] qu(k?)
N-M k3 _L41
. XNgrne = 7 \ (26)
[Cnai—r+1 0 } NN.L-1k
W k- 0 N =
L [Whe-r41 0] | =t (h—L+1) —dﬁf_l,k |
Wﬁ,L-l,k *
qr(k) = | em(k—L41) | &f 1k . 27)

H
i i (k—L41) | rhiiis

We can see from the above that the transformation of F,(k) by the application of the matrix Oy _r.41
provides quantities (in boxes) that are the different rows of Fr_;(k). This can be written more

compactly as

S (Op_r41 FL(K)) = Fra(k), (28)

where the operator S(M) stands for: shift the first, the fourth and the seventh rows of the ma-
trix M one position to the right and drop the first column of the matrix thus obtained. Now this
process can be repeated until we get Fo(k) which is a matrix with no dimensions. So the same
rotations that apply to the filters at times k—L-+¢, ¢ = 1,..., L, also apply to the set of filtering
error vectors F;(k) over the same time span. Furthermore, at each application instance, the different
parameters of the next transformation matrix can be calculated from the first column of Fi(k). In
particular, the successive a priori filtering errors can be computed over the data block without updat-
ing the filter estimate. Now, since it is possible to compute the parameters of the successive matrices
Op_r+i, t =1,..., L, it suffices to accumulate them and apply the resulting matrix to the filters in
order to update them. This is what we have called the Schur-FNTF procedure. However, we will
not update the filters using this procedure because the computational complexity of the prediction
part is already relatively reduced. Hence, the procedure (28) is only used for computing the a prion

filtering error over the current data block and the updates of the filters and scalars in the prediction

10

Consider a partitioning of vy 41 & in Ny, sub-vectors of length L:
N
Vg = [Vhy o 0RE] (32)

and a partitioning of Xy 1 1% in Nr sub-matrices of order £, x L:

Xnsrok = [Xeope Xopp-1 - XL Lg—N+I-1] (33)
then
Ng
i vH
UN41k XNprop = 2 VL e XL k—(im1)L - (34)

i=1

In other words, we have essentially Ny, times the product of a vector of length L with a L x L Toeplitz
matrix. Such a product can be efficiently computed in basically two different ways [19]. One way
is to use fast convolution algorithms , which are interesting for moderate values of .. Another way
is to use the overlap-save method. In this case, the L x L Toeplitz matrix Xy, 1 1 is embedded into a
2L x 2L circulant matrix, viz.
* X }f{ Lk
Xy ok = = ¢ (22,) (35)
X f’ Lk *

where C(c) is a right shift circulant matrix with ¢/ as first row. Then we get for the vector-matrix

product
. : 3
U,I[,,ngL,k—(i—l)L = [O1xr VLg] C ('leti,kﬁ(i-l)L) . (36)
LxL
Now consider the Discrete Fourier Transform (DFT) Vi ; of v} ,
Vie=vixFr (37)
Fr is the L x L DFT matrix whose generic element is (F7), , = emitm B e g
The inverse of F, is + F#. Tt defines the inverse DFT (IDFT)
: 1
Ve =Vie L - (38)

The product of a row vector v with a circulant matrix C(c) where v and ¢ are of length m can be
computed efficiently as follows. Using the property that a circulant matrix can be diagonalized via

a similarity transformation with a DFT matrix, we get
1 1
C(c) = v Iy, diag (" F) —FE = |(vF,) diag(c"Fn) | =FF . 39
v C{c™) v 1ag(c)m oy [(*v) dlag(c)] — (39)

13

part are done by running the prediction part of the FNTF algorithm. Noticing that the Schur Proce-
dure inherently provides the successive a priori forward and backward prediction errors e}, (k) and
r7{(k), we can remove the computation of these quantities from the prediction part of the FNTF
algorithm. This reduces the computational complexity of the prediction part of the FNTF to 8M

instead of 12 M operations per sample.

A remarkable property of the Schur-FNTF procedure is the removal of the long-term roundoff
error instability due to the recursive computation of the likelihood variable yx as (k). The recursions
are interrupted since the likelihood variable fyj{,_l (k} is computed at each new block of data via an
inner product (23). In Fig. 4, we give the evolution of vy, (k) — v5' (k) where y5' (k) is computed

as:;

wik) =1+ XJ(R)RY_ Xn(k) (29)

and Ry}, _, is the inverse sample covariance matrix associated with the FNTF algorithm and com-

puted recursively as:

. - H

—1 0 AH H
Ry x _ 0 0 + ol (k—1) Mk Anrx

0 0 0 Ry% 0% _as 0% _n

LH
- d Og—M O%AM
—Bi (k=1) (30)
N BAP/I!,kd—1 Bﬁr,kdq]

with Ry, = p~'diag ()\‘N yeens /\‘1), diag{w) being a diagonal matrix with the elements of the
vector w as the diagonal elements. The quantity 7§}M(k) — 5" (k) represents the deviation due
to the accumulation of roundoff errors of the likelihood variable vy’ (k) computed recursively
in the FNTF algorithm from the likelihood variable v5' (k) computed in (29) (within an infinite
precision computation environment this deviation will be equal to zero). The parameters were set
to: N = 25, M = 10,A = .99, = .1 and the input was a white noise with variance equal to 1.
The simulation has been done under Matlab where the relative accuracy of numbers is 2.22 x 10~
(approximately 16 significant decimal digits on computers using IEEE floating point arithmetic). As
it can be seen from Fig. 4, vy, (k) — v5' (k) is linearly increasing with time (slope of .2 x 107
per sample in this case). Even though, this difference grows very slowly, it will lead to a long-term

numerical divergence of the FNTF algorithm. This numerical explosion would have been more

11

noticeable within a smaller precision environment (a fixed point implementation with 16 bits for
instance). Note that this phenomenon has been analyzed to be a random walk [6]. The corresponding
stabilization has been done by simply removing the recursions in the likelihood variable computation
(see (19) of Tab.(1)).

In Fig. 5, we give the evolution of 7]{,—1(19) — v5' (k), where:
v (k) =1 = CupaXn(k) . €29

There, the roundoff error signal stays constant at the level of the Matlab accuracy over one million
of white noise input samples. With the likelihood variable computed in (31}, the random walk in-
 stability due to accumulation of roundoff errors has been removed. Note that the likelihood variable
computed in the FSU ENTF algorithm via the Schur procedure corresponds to fy]{,_l(k) only at the
subsampling instants. In fact, there is a relatively very small deviation of the likelihood variable
computed in the FSU FNTF algorithm from *y]{,_l(k) between the subsampling instants because of
the dynamic of the roundoff error accumulation in the Schur procedure. Nevertheless, this deviation
in the data block is corrected at every subsampling instant and hence, has no effect on the stability
of the computation of the likelihood variable.

This fact has a big importance for the real-time implementation of the algorithm.

Taking into account that ©; in its factorized form (25) has 11 non-trivial elements, the Schur-
FNTF procedure as given by (28) takes only 5.5 multiplications per sample. Inner products that
represent filtering operations are needed for the initialization (computation of Fz(k) in (21)). At
this point, the Schur-FNTF procedure is computationally demanding because the products in (21)
require O(N L) multiplications per L incoming samples. We now consider the FFT technique to

reduce this amount of operations.

5 Fast computation using the FFT

It is possible to reduce the computational complexity of the Schur-FNTF procedure by introducing
FFT techniques as explained in [19]. In what follows, we shall often assume for reasons of simplifi-
cation that L is a power of two and that Nz, = (N+1)/L is an integer. To get F (k) in (21), we need

to compute products of the form vy+15 X H +1.1x Where vy y & i a row vector of N+1 elements.

12

