

Deep Learning for Estimation of Human Semantic Traits

data & knowledge

Grigory Antipov

How would you describe an unknown person?

- Man
- 25-35 years old
- Blue eyes
- Dark hair
- Beard
- etc.

Soft Biometrics Traits

physical, behavioral or adhered human characteristics, classifiable in predefined human compliant categories

Localization-Dependent Traits

(localized in a particular part of the face: color of eyes, form of the nose, color of hair, presence of beard, presence of rids, etc.)

Human Semantic Traits

(do not have a particular localization in the face: gender, age, etc.)

Motivations & Challenges

Insignificant contrast changes can change gender perception: woman on the left and man on the right (while pictures are identical)

Wrinkles, hair color, face proportions CANNOT be precise indicators of age in general case

Possible use cases for Orange:

- Personalized services
- Intelligent cloud storage
- Demographics collection

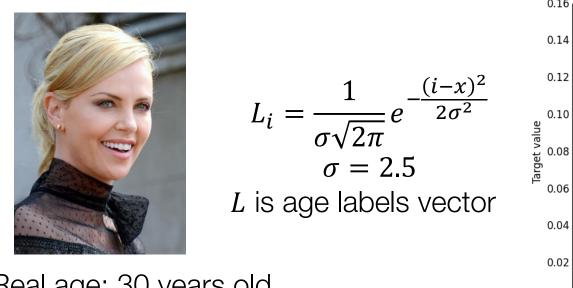
Solution fc-gender fc3 fc2 fc1 conv3 conv4 conv5 conv1 conv2 man max max max max dropout pool pool dropout pool pool pool fc-age 36 years old

3 key issues to be defined:

- Training strategy
- Loss function to optimize
- Training data

Face Recognition pretraining (1) works as a network regularizer (difficult problem requiring strong features), and (2) learns to extract important face-related features which are important for gender and age estimation.

Age Encoding



Real age: 30 years old

Contrary to pure classification encoding, label distribution encoding enables to maintain the continuous nature of age. By varying the σ value, we can define the level of age estimation error which is tolerated while training

Training Data Cherchez: "Fred Astaire" (71 ans, homme) Filtering 250K Choisir une image : Image numéro : 2 ▼ Go photos

Results Scores on Public Benchmarks Gender (LFW) Age (MORPH) Cross-dataset Year Accuracy Cross-dataset MAE Year 94.8% 2012 No 2011 4.18 No 98.1% 2013 No 3.92 2014 No 95.6% 2013 Yes 3.63 2014 No 96.9% 2015 Yes 2015 3.49 2015 No 97.3% Yes (Orange) 2016 (Orange) 3.05 No 2016 Yes 98.9% 2016 (Orange) Yes 4.55 (Orange) Scores on a very challenging internal benchmark: gender: 97.1% (99.0%/95.2%); age: 4.27 of MAE

	1 st Place in International Age Estimation Challenge		
	Position	Team	arepsilon-score
	1	OrangeLabs	0.2411
	2	palm_seu	0.3214
	3	cmp+ETH	0.3361
	4	WYU_CVL	0.3405
	5	ITU_SiMiT	0.3668
	6	Bogazici	0.3740
	7	MIPAL_SNU	0.4569
:	8	DeepAge	0.4573
<u>Ш</u>			

