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Abstract

Wireless mobile communication systems are characterized
by time-varying propagation channels, generally referred
to as “fading channels”. Under this common name, we
find a variety of channel models, suited to different applica-
tions. The rationale behind the selection of coding schemes
for wireless systems depends critically on the underlying
fading channel model, which in turns depends on the appli-
cation. In this paper, we discuss the coding design criteria
for some classical fading channel models. If the channel is
not stationary, as it happens for example in a mobile-radio
communication system where it may fluctuate in time be-
tween the extremes of Rayleigh and AWGN, then a code
designed to be optimum for a fixed channel model might
perform poorly when the channel varies. Therefore, a opti-
mal code for a given channel may be actually suboptimum
for a substantial fraction of time. In these conditions, the
issue of robustness plays an important role: a good code
should provide acceptable performance over a wide range of
channel models.

A different approach to efficient communication over fad-
ing channels consists of “changing the game’s rules” and
modifying the propagation channel by introducing diver-
sity andfor exploiting transmitter channel state informa-
tion. For example, it has been shown that antenna recep-
tion diversity with maximal-ratio combining turns asymp-
totically a fading channel into an AWGN channel. Then,
optimal codes for the latter will provide good performance
over wireless channels if used jointly with antenna recep-
tion diversity. More recently, joint antenna transmission
diversity and coding has gained a great attention, because
of its capability of providing large spectral efficiency. Fi-
nally, in some applications the transmitter can be provided
with some channel state information. Then, it can counter-
act the effect of fading by dynamically selecting the appro-
priate coding scheme andfor by allocating the transmitted
power.

1 Introduction: The fading chan-
nel

In the simplest communication channel model (the
“additive white Gaussian noise channel”, or AWGN)
the received signal is assumed to be affected only by
a constant attenuation and a constant delay. Digi-
tal transmission over radio channels often needs a
more elaborate model, since it may be necessary to
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account for propagation vagaries, referred to as “fad-
ing,” which affect the signal strength. These are con-
nected with a propagation environment referred to as
“multipath” and with the relative movement of trans-
mitter and receiver, which causes time variations of
the channel.

Multipath propagation occurs when the electro-
magnetic energy carrying the modulated signal prop-
agates along more than one “path” connecting the
transmitter to the receiver. Examples of such situation
occur for example in indoor propagation when the
electromagnetic waves are perturbed by structures in-
side the building, and in terrestrial mobile radio when
multipath is caused by large fixed or moving objects
(buildings, hills, cars, etc.).

In general, a time-varying linear channel is defined
by its (low-pass equivalent) impulse response c(r;t).
The complex envelope of channel output at time ¢, for
a given input with complex envelope z(t), is given by

y(t) = fc(r;t)x(t - 7)dr

Equivalently, we can look at a general fading channel
as a linear filter whose frequency response

C(f;8) = f ofr;t)e=i2I7 dr

depends on ¢.

Since the wireless environment is characterized by
several random events, ¢(r;t) is usually modeled as
a family of (wide-sense stationary} complex Gaussian
random processes with respect to the “time” variable
t, indexed by the “delay” variable 7. A usual as-
sumption is that processes for different delay values
are uncorrelated, i.e, cov(e(r;1),c{r — Ar;t - At)) =
¢e(7; At)6(A7). This yields to the classical wide-sense
stationary uncorrelated-scattering model [1]. The time-
frequency correlation of the fading channel is de-
scribed by the function

®.(Af;At) = E[C(£;0)C(f - Af;t — AT

The channel coherence bandwidth B, is defined as the
maximum spacing A f between frequencies at which
two sinusoids are affected by approximately the same
complex gain, i.e., for which &, (Af;0) =~ &.(0;0).
The channel coherence time T, is defined as the maxi-
mum spacing A¢ between instants at which two im-
pulses are affected by approximately the same com-
plex gain, i.e., for which ®.(0; At} = $.(0;0). Also,
we define the channel delay spread T, as the maximum
delay difference between multipath components, and



the Doppler bandwidth B; as the maximum frequency-
shift difference due to the relative motion of antennas
and scattering objects. The approximate relations be-
tween these quantities are T, = 1/B; and B, ~ 1/T,,.
Let B, denote the bandwidth of the transmitted sig-
nal. If B, « B,, there is no linear distortion. Oth-
erwise, different frequency components of the signal
undergo different gains, and we have frequency selec-
tivity. Let T denote the duration of the transmitted
signal. If T; « T, the channel gain is constant over
the signal transmission and we have no multiplicative
distortion. Otherwise, different portions of the signal
undergo different gains, and we have time selectivity.

Fading-channel classification. From the previous discus-
sion we have seen that the two quantities B, and T,
describe how the channel behaves for the transmitted
signal. Specifically,

() If B, < B,, the channel is called flat (or frequency
non-selective). Otherwise, it is frequency-selective.

(if) If T, < T, the channel is called slow (or time non-
selective). Otherwise, it is fast.

The channel flat in ¢ and f is not subject to fading,
neither in time nor in frequency. It might be charac-
terized by a random gain, which stays constant for a
very long time (in principle, for the whole transmis-
sion duration). The charmel flat in time and selective
in frequency is a simple intersymbol interference (ISI)
channel. The channel flat in frequency is a good model
for narrowband terrestrial mobile systems [2] and for
satellite mobile systems [3] and most of the following
will be devoted to its analysis. The fast frequency-
selective fading is not so well understood as the flat-
fading and the ISI channels. It is suited to particular
applications, such as avionic communications, charac-
terized by long delays due to earth reflections (small
B.) and high speeds (small T..).

We conclude this section by recalling a well-known
discrete-time channel general model and some partic-
ular cases. Assume that the channel input z(t) is ban-
dlimited over [-W/2, W/2]. Then, from the sampling
theorem [1] we can write

y(t) = Y calt)a(t — n/W) M

where ¢,,(t) = [ ¢(r; t)sinc(W(t — 7) — n)dr. For small
Doppler bandwidths, y(t) is still approximately ban-
dlimited over [-W/2, W/2]. Then, by sampling at rate
W, we obtain the discrete-time representation
y[il = z cnli]z[i — 7] 2)
where ylil = y(E/W), z[i] = z(@@/W) and e, i) =
¢n(t/W). The above channel model is a tapped delay-
line with time-varying tap weights.
If the channel is flat, then y[¢] = a[é]z[i], where a[i] =
co[i] is the fading gain. Moreover, if the channel varies

very slowly, a[i] is a correlated discrete-time process,
approximately constant over N ~ T, W symbols.

2 Coding for the flat-slow fading
channel

We focus here on the flat-fading channel model, and
assume that the receiver has (perfect) Channel State
Information (CSI), i.e., it knows a[¢] for each {. Under
these conditions, interleaving is optimal, in the sense
that the channel capacity does not depend on the or-
dering of the transmitted and received sequences [4, 5,
2]. Then, a suitable coding strategy is to concatenate a
channel encoder with an interleaver. If the fading is an
ergodic process (in particular, if a[i] and ai + k] tend
to be independent as k£ — o0), the interleaved fad-
ing process can be treated as an i.i.d. sequence, pro-
vided that a sufficiently large interleaving depth can
be used. In many wireless systems, typical Doppler
bandwidths range from 1 to 100 Hz [6], while data
rates go from 20 to 200 kbaud (B, ranges from 20 to
200 kHz). Then, blocks of at least L ~ B./B; >
200 symbols undergo approximately the same fad-
ing gain. Consider the transmission of a code word
x = (2[0],...,z[n—1]) of length n channel symbols. In
order to make the fading gains affecting the symbols
of x appear as independent via interleaving, the actual
time interval spanned by x must be at least nL, so that
each symbol of x can be transmitted over a different
fading “block”. Then, the (interleaving) delay of the
system is large and, above all, it is characterized by L,
which is not under the control of the coding scheme
designer.

In some applications, like wireless data networks or
broadcasting, large delays are acceptable. Then, deep
interleaving is possible and the fading i.i.d. assump-
tion holds. In other applications, like real-time speech
transmission, a strict decoding delay is imposed (e.g.,
100 ms, at most [6]). In this case, small interleaving is
a constraint and the transmission of a code word may
span only a few TDMA channel bursts, over which the
channel fading is strongly correlated. These two situ-
ations yield rather different coding design criteria, as
it will be illustrated in the following.

2.1 Coding without delay constraints

Let us focus on the transmission of a coded modu-
lation (CM) scheme over a fading channel with i.id.
fading, perfect CSI at the receiver and soft decoding,.
In general, upper bounds and approximations to the
bit, symbol or frame error probability can be derived
by using as basic building block the pairwise error
probability (PEP) P(x — x'} of mistaking the trans-
mitted sequence x with a different code sequence x’,
as if these two were the only possible outcomes of the
decoder [7, 8, 91. Then, simple coding optimization
criteria can be found from the analysis of the PEP.
In a Gaussian fading channel, we can write the re-
ceived vector y as
y=Ax+uz (3)

where z is a complex circularly-symmetric Gaussian



noise vector with variance per component Ny and
A = diag(a) is the diagonal matrix of the (interleaved)
fading gains. Then, with maximum-likelihood decod-
ing, the PEP is given by

Px—x") = P(ly-Ax|" > |y - Ax'|*|x)
— P(A(d,a) < 0) @)

whered = x’ - x and

A(d,a) = 2Re{z'Ad} - d'ATAd (5)
Since A(d, a) is conditionally Gaussian given a, with
mean —dfAtAd and variance 2N,dtATAd, we can

write
dfATAd

where expectation is with respect to the fading se-
quence a. Several general methods for evaluating or
upper bounding the above expressions have been pro-
posed in the literature (see for example [10, 11, 12, 13)).

For independent Rayleigh fading (i.e., when the
a[i] are complex circularly-symmetric Gaussian with
mean 0 and variance 1), the Chernoff upper bound to
the PEP is given by {7, Chap.13]

P(x—)x’)zE[Q(

1

1+ |d[k}% /AN, @

Px—-x') < H

keX

where X is the set of indices & such that d[k] # 0.
By letting dy(x,x') the Hamming distance between
x and x' and E, the average energy per symbol, for
large E, /Ny we can write

8)

] dH (x,x’)

Px—x)< [62(x, x’)4§:
0

where

1/de{3,x')

8 (x,x') = | [] |=lk] ~ ='[K]?/ B,

keXx

is the geometric mean of the non-zero squared Eu-
clidean distances between the components of x, x'.
The latter result shows the important fact that the er-
ror probability is (approximately) inversely propor-
tional to the product of the squared Euclidean dis-
tances between the components of x and x' that dif-
fer, and, to a more relevant extent, to a power of the
signal-to-noise ratio whose exponent is the Hamming
distance between x and x'.

By using a union bound, we see that the (bit, symbol
or frame) error probability is dominated by the pair-
wise errors with the smallest dg. The minimum Ham-
ming distance dgr,min of the code is sometimes referred
to as “code diversity”. The above discussion leads to
the following code optimization criteria:

s Maximize code diversity dg min.

¢ Among the codes with maximum diversity, max-
imize the product distance §2(x,x'} of pairs for
which dg (x, %) = d#r min-

Codes optimized according to the above criteria (see
[14, 10], do not necessarily yield a large minimum
squared Euclidean distance, which is the classical cri-
terion for good codes for the AWGN channel. On
the other hand, optimal AWGN codes, such as Unger-
boeck TCM schemes [15], perform poorly over the in-
terleaved Rayleigh channel.

A way out from this impasse is obtained by giving
up Ungerboeck’s paradigm of combining coding and
modulation in a single entity. In [16], schemes were
designed in which coded modulation is generated by
pairing an M-ary signal set with a binary convolu-
tional code with the largest minimumn free Hamming
distance. Decoding was achieved by designing a met-
ric aimed at keeping as its basic engine an off-the-shelf
Viterbi decoder for the de facto standard, 64-state rate-
1/2 convolutional code. Based on the latter concept,
Zehavi [17] first recognized that the code diversity,
and hence the reliability of coded modulation over a
Rayleigh fading channel, could be further improved.
Zehavi’s idea was to make the code diversity equal to
the smallest number of distinct bis (rather than chan-
nel symbols) along any error event. This is achieved
by bit-wise interleaving at the encoder output, and by
using an appropriate soft-decision bit metric as an in-
put to the Viterbi decoder. One of Zehavi’s findings,
rather surprising a priori, was that on some channels
there is a downside to combining demodulation and
decoding. This prompted the investigation whose re-
sults are presented in a comprehensive fashion in [18]
(see also [19]).

An advantage of this sclution is its robustness, since
changes in the physical channel affect the reception
very little. Thus, it provides good performance with
a Rayleigh fading channel as well as with an AWGN
channel (and, consequently, with a Rice fading chan-
nel, which can be seen as intermediate between the
latter two).

Recently, a very promising combination of bit-
interleaved coded modulation with the concept of tur-
bo-decoding [20, 21} has been discussed and analyzed.

3 Coding
channels

for delay-constrained

For delay-constrained systems, infinite interleaving
is impossible. Code design for correlated fading is
rather unpractical, since optimality criteria depend on
the fading Doppler bandwidth, which in turns de-
pends on the mobile speed. However, in many practi-
cal TDMA systems with slow frequency hopping (e.g.,
GSM), a code word is interleaved over a finite num-
ber M of TDMA bursts, transmitted over subcarriers
separated by more than B.. Then, even with very
small Doppler, each block of symbols is affected by
a different (independent) fading gain, constant over



the whole block. This fading channel model is called
block-fading [6, 22).

In principle, we can imagine that a code word x of
lengthn = M N is partitioned into M blocks of length
N.Let X be the M x N array obtained by writing the
blocks of x by rows. The m-th block is sent over a con-
stant fading channel with gain a{m]. Now, the fading
vector affecting the transmission of x has length M,
namely, a = (a[l},...,a[M]). The output array corre-
sponding to X is given by

Y =AX+Z (€)]

where again A = diag(a) and Z is a M x N array of
comples Gaussian noise samples.

It is clear by comparing (3) and (9) that the ii.d.
channel and the block-fading channel are very simi-
lar, if we interpret X as a code word of length M, over
a muitidimensional signal set of dimensionality V. In
particular, suppose that x € S™, where S is (say) a 1-
dimensional complex signal set, such as QAM or PSK.
Then, each row of the array X can be seen as a sig-
nal of the N-dimensional signal set SV, obtained as
the N-fold Cartesian product of 5. The PEP analysis
carried out for the i.i.d. fading case can be repeated
here for the new N-dimensional signal set. In par-
ticular, for Rayleigh fading we find that the code di-
versity is the minimum Hamming block-distance, i.e.,
the minimum number of different rows between ar-
rays X and X' corresponding to code words x and
x' [23, 24]). Code constructions optimized for the
block-fading channel are presented in [23].

An application of Singleton Bound [7] shows that
the maximum block-Hamming distance achievable on
an M-block fading channel is limited by

B
D<1+|M (1—.—”
\\ log, |S|

where |S] is the cardinality of the signal set S and R
is the code rate, expressed in bit/symbol. Note that
binary signal sets (|S| = 2} are not effective in this
case, so that codes constructed over high-level alpha-
bets should be considered [23, 24]. As a matter of
fact, bit-interleaved coded modulation behaves as a
code constructed over a binary signal set. Then, it
is not effective for the block-fading channel. For a
deeper analysis of the relationship between code di-
versity and code rate, see [25, 26].

4 Diversity. and power allocation
techniques

The design procedure described in the sections above,
and consisting of adapting the coding scheme to the
channel, may suffer from a basic weakness. If the
channel model is not stationary, as it is, for example,
in a mobile-radio environment, then a code designed
to be optimum for a fixed channel model might per-
form poorly when the channel varies. An alternative
solution consists of doing the opposite, i.e., malching
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Figure 1: Effect of antenna diversity on the performance of
4-state TCM schemes over the flat, independent Rayleigh-
fading channel. ]4 is optimum for the Rayleigh channel,
while U4 is optimum for the Gaussian channel,

the channel to the coding scheme: the latter is still de-
signed for a Gaussian channel, while the former is
transformed from fading channel (say) into an AWGN
one. Here we shall examine two such robust solutions,
the first based on antenna diversity and the second on
feedback and dynamic power allocation.

4.1 Antenna diversity

In [8, 12, 27] the authors examined the synergy of
coded modulation and antenna diversity reception
with different detection techniques and interference
conditions. It was shown that antenna diversity turns
asymptotically a fading channel into an AWGN one,
irrespectively of the fading statistics and correlation.
Hence, codes optimized for the AWGN channel shall
perform well also on fading channels with a sufficient
amount of diversity.

In order to provide an example, consider the follow-
ing PSK coded-modulation schemes:

J4: 4-state, rate-2/3 TCM scheme based on 8PSK
and optimized for Rayleigh-fading channels [10].

U4: 4-state rate-2/3 TCM scheme based on 8-PSK and
optimized for the Gaussian channel.

Both schemes are coherently detected and maximal-
ratio combined with perfect CSI. Fig. 1 compares the
performance of U4 and }4 (two TCM schemes with
the same complexity) over a Rayleigh-fading channel
with M -branch diversity.

Itis seen that, as M increases, the performance of U4
comes closer and closer to that of J4, and eventually
U4 outperforms J4.

While antenna diversity reception is suited for the
uplink of a wireless system, antenna diversity trans-
mission is suited for the downlink. With transmission
diversity, K antennas transmit at the same time and
create interference at the receiver. The general chan-
nel model with block-fading, K transmitting antennas



and M receiving antennas is still given by (9), where
now A isa M x K matrix of fading gains, whose (i, 5)-
th element is the gain from transmitting antenna j to
receiving antenna ¢, and where X is a K x N array
formed by K blocks of length N of the transmitted
code word written by rows.

Early schemes of transmission diversity were based
on repetition diversity, i.e., where the same symbol is
repeated by each antenna or delay-diversity, where
copies of the same symbol were transmitted by the dif-
ferent antennas with some delay (see [28, 29]). More
recently, code design criteria for transmission diver-
sity have been proposed in [28] and information-
theoretic analysis of transmission diversity schemes
has been provided in [29, 30].

4.2

In some applications, the transmitter has information
on the channel fading state. For example, CSI at
the transmitter can be provided either by a dedicated
feedback channel (some existing systems already im-
plement a fast power control feedback channel) or by
time-division duplex (TDD), where the uplink and the
downlink time-share the same M subchannels and the
fading gains can be estimated from the incoming sig-
nal. Then, the transmitter can allocate the transmitted
power in order to compensate for the fading and keep
the received SNR as constant as possible.

Consider the simplest such strategy over the flat
block-fading channel. Assume that a[m] = |a[m]{? is
known at the transmitter. Then, an energy per sym-
bol E,(a[m]) = E,/afm] can be allocated to the m-
th block, in order to keep the received SNR constant.
This way, the channel is transformed into an equiva-
lent additive white Gaussian noise channel. The error
probability is the same as if we had transmitted over a
channel whose only effect is the addition of Gaussian
noise. The average transmitted energy per symbol is
then

Dynamic power allocation

E{jz|*] = E,E[1/a|m]], (10)

Unfortunately, the above quantity might be infinite
(e.g., in the case of Rayleigh fading). This means that
this technique (“channel inversion”) is simple, but not
practical.

To avoid divergence of the average power (or anin-
ordinately large value thereof) a possible strategy is
the following. Choose

By choosing appropriately the value of the threshold
oo we trade a decrease of the average power value for
an increase of error probability. Notice that if & < ay,
then transmission would cost too much in terms of en-
ergy and it is better to declare an “outage event” and
save energy for more favorable channel conditions.
Also, in a multiuser system this approach decreases
the overall level of interference, since there will be a

fraction P(a < ag) of users not transmitting. A com-
prehensive information-theoretical analysis of power-
control techniques for the block-fading channel is pro-
vided in [31].
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