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Abstract—This paper focuses on the problem of separately
modulating and jointly estimating two independent continuous-
valued parameters sent over a Gaussian multiple-access channel
(MAC) under the mean square error (MSE) criterion without
bandwidth constraints. To this end, we first improve an existing
lower bound on the MSE that is obtained using the parame-
ter modulation-estimation techniques for the single-user additive
white Gaussian noise (AWGN) channel [1]. As for the main
contribution of this work, this improved modulation-estimation
analysis is generalized to the model of the two-user Gaussian MAC.
We present outer bounds to the achievable region in the plane of
the MSE’s of the two user parameters, which provides a trade-off
between the MSE’s, where we used zero-rate lower bounds on
the error probability of Gaussian channels by Shannon [2] and
Polyanskiy et al. [3]. Numerical results showed that, the multi-
user adaptation of the zero-rate lower bound by Polyanskiy et al.
provides a tighter overall lower bound on the MSE pairs than
the classical Shannon bound. In addition, we introduced upper
bounds on the MSE exponents, namely, the exponential decay
rates of these MSE’s in the asymptotic regime of long blocks,
that could make use of any bound on the error exponent of a
single-user AWGN channel. The obtained results are numerically
evaluated for three different bounds on the reliability function
of the Gaussian channel. It is shown that the adaptation of the
reliability function by Ashikhmin et al. [4] to the MAC provides
a significantly tighter characterization than Shannon’s sphere-
packing bound and the divergence bound [5] 1.

Index Terms—Parameter modulation-estimation, multiple-
access channel, error exponents, MSE

I. INTRODUCTION

Before addressing the problem of jointly modulating and
estimating two independent parameters transmitted over the
Gaussian MAC, let us refer first to the more fundamental
single–user modulation–estimation problem. In this setting,
a single continuous–valued random parameter U is encoded
(modulated) into an N -dimensional power-limited vector x(U)
and transmitted over an additive-white Gaussian noise (AWGN)
channel [6]–[8]. The corresponding N -dimensional channel
output vector is given by y = x(U) +z, where z is a Gaussian
noise vector with independent and identically distributed (i.i.d.)
components, which are also independent of U . The channel
output vector y is used by the receiver to estimate U by
an estimator Û(y). The goal is to derive a lower bound to
the MSE, E(U − Û(y))2, that applies to every modulator
x(·), that is subject to a given power constraint, and to every
estimator Û(y) [8, Chapter 8]. More recently in [1], this
class of transmission problems was given the name parameter
modulation-estimation, which we believe, will likely become an
important mathematical framework to analyze various remote

1This work was presented in part at the 2016 IEEE International Symposium
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sensing problems that may arise in fifth generation wireless
networks. The purpose of this work is to extend the described
problem, as well as its analysis and results, to the model of the
discrete-time two-user Gaussian MAC, where two independent
parameters, denoted by U1 and U2, are conveyed from two
separate transmitters and jointly estimated at the receiver.
The aim is to derive outer bounds on the region of best
achievable MSE’s associated with any modulators (subject to
power constraints) and estimators of these parameters. It should
be noted that in the context of the MAC model considered
here, there exists an interesting trade–off that is not seen in
the single–user case described in the first paragraph above. A
better modulator for one of the users is good, of course, for
the estimation of the corresponding parameter at the receiver
side, because it amounts to high sensitivity of the likelihood
function to this parameter. However, at the same time, and for
the very same reason, it comes at the expense of the estimation
performance of the other user (for which the parameter of the
first user is a nuisance parameter). Indeed, such a trade–off is
manifested in the boundary curves of the achievable regions
that we obtain, which are always monotonically non-increasing
functions, namely, smaller MSE values in one parameter impose
higher lower bounds on the MSE values of the other. This
paper builds on relationships between modulation and coding
and between estimation and detection.

A. Related Work

The majority of work dealing with this class of problems
considers transmission on a continuous-time channel using
finite-energy waveforms without bandwidth constraints. In [6],
Goblick provided a lower bound of the exponential order
of exp (−2E/N0), where E is the energy used to convey
U and N0/2 is the two-sided power spectral density of the
channel noise process. Goblick also provided several examples
of parameter modulation-estimation schemes, one of them turns
out to achieve the best asymptotic performance, namely, MSE
of the exponential order of exp (−E/3N0). This is a simple
digital scheme, which is based on first uniformly quantizing the
parameter into one out of M points and then transmitting the
index of the quantized parameter to the receiver, using M -ary
orthogonal modulation scheme. Another modulation strategy,
that considered this problem in continuous-time, was given in
[8, pp. 623] where the parameter is reflected in the delay of a
purely analog signaling pulse sent across the channel, namely,
pulse position modulation (PPM). When the pulse bandwidth is
unlimited, this system achieves the same exponential behaviour
as Goblick’s scheme. This scheme also provided a link to the
classical ranging problem where the objective is to estimate the
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random delay of an incoming waveform corrupted by Gaussian
noise [9]. In [7], Wyner and Ziv showed that Goblick’s lower
bound could be improved to the order of exp (−E/2N0). Cohn
[10] and Burnashev [11], [12], [13], further improved the
multiplicative factor at the MSE exponent, progressively from
1/2.889 to 1/2.896, then 1/2.970, and finally to 1/3.000, thus
closing the gap to Goblick’s practical scheme. In particular,
despite the significance of the presented results, unfortunately,
reference [10] is not well known as it has never been published
and hence is not easily accessible to the general public. In a
nutshell, in [10] Cohn presented lower bounds on the average
MSE in estimating the message of a single user using a geo-
metric approach for simplex signal sets as well as the general
case. The main contribution of [1] was the characterization
of the parameter modulation-estimation problem for infinite-
dimensional transmission over the continuous-time AWGN
channel. A recent example of a similar scenario as the present
paper can be found in [14], [15], where lower bounds on the
MSE region are provided for the transmission of two correlated
analog source samples with and without causal feedback on
the discrete-time AWGN MAC without a constraint on the
number of signal dimensionality. The main difference between
the current paper and [14], [15] is the analysis technique that is
used. [14], [15] use an information–theoretic approach to obtain
lower bounds.

B. Contributions

This paper studies the problem of jointly modulating and
estimating two independent continuous-valued random vari-
ables encoded into an N–dimensional vector and transmitted
over an AWGN channel to be estimated at the receiver end.
The performance criterion is chosen as the MSE, which is
characterized in two different ways as follows. Firstly, we derive
outer bounds on the achievable region of pairs (MSE1,MSE2),
where MSE1 and MSE2 are the MSE’s associated with arbitrary
parameters, using a generalization of Shannon’s zero-rate lower
bound [2] for the two-user discrete-time MAC, which allows
us to characterize the MSE region in terms of the signal–to–
noise ratios. We present outer bounds to the achievable region
in the plane of the MSE’s, basically one MSE associated to
one of the users is bounded by a function that depends on the
MSE associated to the other user. Thus, we obtain a trade-off
between the MSE’s based on some parameter.

In addition, we investigate the exponential behaviour of
(MSE1,MSE2) by characterizing an upper bound to the region
of achievable pairs of MSE exponents for any joint parameter-
modulation estimation scheme. To this end, we adapt the
multiple-access results of [5] to the discrete-time AWGN chan-
nel. In order to find the tightest characterization, we also use the
upper bounds on the reliability function of the Gaussian channel
proposed in [2], [4]. Coupled with the results of [16], we
provide the means to make use of single-user error exponents
for the characterization of multiuser channels.

C. Application Scenarios

The two-user results presented in this paper provide a math-
ematical framework for the joint estimation of parameters on a
multiple-access channel. The remote-sensing application is one
where the random-variables Ui are measured by a communi-
cating device equipped with some form of analog sensor. The
resulting measurements are conveyed to the network via the
uplink of a wireless communication system. In the near future
such devices will use conventional cellular access, albeit with

specially-tailored waveforms, to feed data centers with physical
information observed in so-called smart cities or remote areas.
These applications will often impose extremely low-periodicity
sporadic transmission coupled with long lifetime batteries or
solar cells in order to remain embedded in nature with little or
no maintenance for long periods of time.

In addition, the results of this paper can be used to bound
the achievable performance of signaling schemes designed for
estimating physical quantities from signals sent from multiple
transmitters. One such example could be a positioning system
where several time-synchronized transmitters at known loca-
tions send pilot signals so that receiving terminals can obtain
estimates of their position in space. In this example, which
can represent both satellite and terrestrial positioning systems,
the terminal estimates the relative time-delays of the incoming
signals based on the composite signal it observes. With the
set of estimated time-delays combined with the known location
of the transmitters it can derive its position. Furthermore, in
this example, time delays would be reasonably characterized as
bounded and uniformly distributed.

Our results firstly show that the characterization of the joint
estimation problem exhibits a non-trivial trade-off in the achiev-
able estimation error vector. Secondly, in the region of practical
interest for position, our results provide significantly tighter
bounds than just considering individual single-user channels.

D. Outline

In Section II, we describe the system model and formalize
the problem. In Section III, starting with the single-user case,
we present lower bounds on the MSE itself and its MSE
exponent, as a preparatory step to be used later in the MAC
model. Section IV is focused on the generalization of parameter
modulation-estimation problem to the two-user Gaussian MAC
in two subsections. Respectively in Subsections IV-A and IV-B,
we present new lower bounds on the MSE’s and the MSE
exponents. All proposed bounds are numerically compared in
Section V.

II. PROBLEM FORMULATION AND SIGNAL MODELS

A. Single-user setting

We consider lower bounds on the MSE of modulation-
estimation schemes for a random parameter U , that is uni-
formly distributed over the interval [0, 1).2 The parameter U
is conveyed by a modulator, which maps U into a channel
input vector x(U) that is transmitted over an N -dimensional
memoryless AWGN channel, which is assumed to be phase-
synchronous. In general, we have the following signal model

y = x(U) + z (1)

where x(U) is constrained in fixed energy as

‖x(U)‖2 ≤ NS = E , (2)

S and E being the power and energy limitations, respectively,
and the noise covariance matrix is given by

EzzT = σ2IN . (3)

2The results presented in this paper can be quite easily adapted to other
source distributions since the exact form of the prior distribution of the
parameters has no effect on the asymptotic exponents, as long as the pdf is
independent of N and bounded away from zero. For further detail, the reader is
referred to the discussion regarding non-uniform priors from the original paper
[17, Section VII, Comment 1].
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Here the superscript T denotes the transposition of a vector and
IN is the N ×N identity matrix. At the receiver, we consider
an estimator Û(y) with corresponding

MSEs = E[U − Û(y)]2. (4)

Let us also define the asymptotic MSE exponent as

εs
4
= − lim inf

N→∞

1

N
log E[Û(y)− U ]2. (5)

For the problem of bounding the MSE exponents, we consider
the fixed power constraint as defined by (2).

B. Two-user setting

For this setting, we generalize the model of eq. (1) to a model
that includes two independent random variables, U1 and U2,
both uniformly distributed over [0, 1). These two parameters are
separately conveyed by the modulators of two different users,
which generate the channel input vectors x1(U1) and x2(U2)
over an N -dimensional real-valued AWGN MAC obeying the
following signal model

y = x1(U1) + x2(U2) + z. (6)

The modulators are constrained in fixed energy as

‖xj(Uj)‖2 ≤ NSj = Ej , ∀Uj , for j = 1, 2 (7)

and the noise covariance matrix is as before. As in the single–
user case of Subsection II-A, at the receiver, we consider
estimators Ûj(y) with MSE’s, MSEj = E[Uj − Ûj(y)]2,
j = 1, 2. As mentioned earlier, in Section IV, we derive outer
bounds to the region of achievable MSE pairs (MSE1,MSE2),
which apply to arbitrary modulators and estimators subject to
the aforementioned fixed power limitations, S1 and S2. The
first characterization is for a given finite N and it provides a
direct characterization of (MSE1,MSE2), whereas the second
characterization is asymptotic and it characterizes the region in
terms of the exponents (ε1, ε2) where

εj
4
= − lim inf

N→∞

1

N
log E[Ûj(y)− Uj ]2, for j = 1, 2. (8)

III. SINGLE–USER CHANNEL

In this section, we first recall the single-user approach from
[1] and improve the lower bound on the MSE for any parameter-
modulator scheme. Additionally, we present a new upper bound
on the MSE exponent defined by (5).

A. An improved lower bound

It is shown in [1, eq. (21)] that for the single-user problem,
the probability that the absolute estimation error |Û(y)− U |
would exceed ∆/2, for a given ∆ > 0, is lower bounded as
follows

Pr{|Û(y)− U | > ∆/2} ≥ LB(∆) (9)

where LB(∆) designates a lower bound to be specified later.
To derive such a bound, one considers the following hypothesis
testing problem with M equiprobable hypotheses,

Hi : y = x(u+ i∆) + z, (10)

for i ∈ {0, · · · ,M − 1} where u is considered a parameter
taking values in [0, 1− (M − 1)∆). The lower bound LB(∆) is
derived by combining the approach used by Ziv and Zakai in [9]
used for the classical ranging problem with any lower bound on
the average probability of error of an arbitrary code at a given
rate to lower bound the MSE for the single-user problem. This

result is derived in the following. Let ı̂ denote the maximum
likelihood (ML) estimate of i, and let Pe(u,∆) = Pr (̂ı 6= i|u)
denote the corresponding conditional probability of error, which
is upper bounded as follows:∫ 1−(M−1)∆

0

du · Pe(u,∆)

≤ 1

M

M−1∑
i=0

∫ 1−(M−1)∆

0

du · Pr
{
|Û(y)− U | > ∆/2

∣∣∣U = u+ i∆
}

=
1

M

M−1∑
i=0

∫ 1−(M−1)∆+i∆

i∆

du · Pr

{
|Û(y)− U | > ∆

2

∣∣∣U = u

}

=
1

M

M−1∑
i=0

Pr
{
|Û(y)− U | > ∆/2,

i∆ ≤ U ≤ 1− (M − 1)∆ + i∆} (11)

≤ 1

M
Pr
{
|Û(y)− U | > ∆/2

}
(12)

We note that (12) is valid for all M and ∆ such that
(M − 1)∆ < 1. If we add the condition that M∆ > 1,
which amounts to 1/∆ < M < 1 + (1/∆) or equivalently
M = d1/∆e, the intervals in (11) become disjoint. This yields
(13) given at the top of the next page. Bounding the left hand
side (l.h.s.) of (13) using any zero-rate bound for M -ary signals,
PZR

(
E ,
⌈

1
∆

⌉)
yields the bound

d1/∆e (1 + ∆− d1/∆e∆)·PZR (E , d1/∆e) (14)

≤Pr
{
|Û(y)− U | > ∆/2

}
(15)

which is M times larger than the original result given by [1,
eq. (21)]. The lower bound LB(∆) corresponds to (14). The
right hand side of the last inequality given by (15) is related to
the MSE according to∫ 1

0

d∆ ·∆ · Pr{|Û(y)− U | > ∆/2} (16)

(a)

≤ 4

∫ 1

0

dζ · ζ · Pr{|Û(y)− U | > ζ} (17)

(b)
= 2E[Û(y)− U ]2 (18)

where in (a), we changed the integration variable to ζ = ∆/2
and the integration interval was extended to [0, 1), whereas in
(b), the following identity was used

E[Û(y)− U ]2 = 2

∫ 1

0

d∆ ·∆ · Pr{|Û(y)− U | > ∆}. (19)

Combining (12) with (16), the derivation of the improved
single-user lower bound is completed as

MSEs ≥
1

2

∫ 1

0

d∆ ·∆ · LB(∆) (20)

=
1

2

∞∑
i=2

∫ 1/(i−1)

1/i

d∆ ·
(
∆i+ ∆2i−∆2i2

)
· PZR (E , i) (21)

=
1

2

∞∑
i=2

3i− 2

6i2(i− 1)2
· PZR (E , i) . (22)

In what follows we consider two zero-rate bounds.
1) Shannon’s zero-rate bound [2]: In [2, eq. (81)] we have

the general zero-rate lower bound

P Shannon
ZR (E ,M) ,

1

M

M∑
m=2

Q

(√
m

m− 1

E
2σ2

)
(23)

which is valid for all N and can be used in conjunction with
(22) to bound the MSE for a point-to-point AWGN channel.
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1

d1/∆e

d1/∆e−1∑
i=0

Pr

{
|Û(y)− U | > ∆

2
, i∆ ≤ U ≤ 1− (d1/∆e − 1)∆ + i∆

}
≤ 1

d1/∆e
Pr

{
|Û(y)− U | > ∆

2

}
(13)

2) A new zero-rate lower bound : Using the converse for
the AWGN channel by Polyanskiy et al. introduced in [3,
Theorem 41], which provides a lower bound on the average
error probability for any M -ary signal set in N -dimensions,
we propose a new lower bound on the error-probability for
N →∞ under the finite-energy constraint in (2) given as

PP
ZR (E ,M) , Q

(√
E
σ

(1 + µ)−Q−1

(
1

M

))
(24)

for any arbitrarily small µ > 0. The derivation of PP
ZR (E ,M)

can be found in detail in Appendix A. The expression in (24)
is potentially tighter than (23) for low signal energies since it
increases to 1 with M for a fixed energy as is the case for
any real signal set. It is clearly looser asymptotically since the
energy exponent for fixed M is E/2σ2 and not E/4σ2.
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Fig. 1: Comparison of Zero-Rate Bounds with the error-
probability of a Simplex (M = 256)

We show a comparison of (23) and (24) with the error
probability of the simplex signal set for M = 256 in Figure
1. The Shannon bound (23) is widely believed to be the
optimal signal set for M -ary equal-energy signals. We see that
(24) is much closer to the Simplex error-probability for low
signal-energies (error probabilities below 10−2) and crosses the
Shannon bound at an error-probability around 10−10.

B. Upper bound on the MSE exponent

In this subsection, we introduce a new bound on the MSE
exponent εs defined by (5) that makes use of any upper bound
on the error exponent in a single user AWGN channel.

Theorem 1. For an arbitrary N -dimensional modulator x(U)
subject to a power constraint given by (2) for transmission
over the AWGN channel defined (1) and for R ≥ 0, the MSE
exponent εs defined by (5) is bounded as follows

εs ≤ min
R

[2R+ Eu(R)], (25)

where Eu(R) is any upper bound on the error exponent function
of the single user Gaussian channel.

Proof. Let us select ∆ = e−RN where R ≥ 0 is a parameter
(to be chosen later) in the general form of the bound

E[Û(y)− U ]2 ≥ 2

∫ 1

0

d∆ ·∆ · LB(∆), (26)

where LB(∆) is (14). Changing the integration variable on the
right-hand side (r.h.s.) of (26) to R, we obtain

E[Û(y)− U ]2 ≥ N

2

∫ ∞
0

dR · e−2RN · LB(e−RN ) (27)

The r.h.s. of (27) is bounded by an expression of the exponential
order of exp{−N minR[2R+ Eu(R)]} = e−NF where F

4
=

minR[2R + Eu(R)]. Finally, by taking the logarithms of both
sides of (27), dividing by −N , and passing to the limit N →∞,
the proof of Theorem 1 is completed.

As for an upper bound on the error exponent, Eu(R), of
the Gaussian channel, there are many options in the literature,
such as Shannon’s sphere-packing bound on the reliability
function of the Gaussian channel [2], or a more recent bound
by Ashikhmin et al. [4], or others such as [18] and [19]. In this
paper, we will use the results of [2] and [4] in our numerical
evaluations due to their lower computational complexity relative
to the others.

1) Sphere-packing bound : For rates confined to [0, C),
where C = (1/2) log(1 +A) is the Gaussian channel capacity,
A = S/σ2 being the signal-to-noise ratio (SNR), Shannon’s
sphere-packing bound Esp(ψ(R), A) is an upper bound on the
reliability function of the Gaussian channel E(R,A) [2] with
ψ(R) = arcsin(e−R). The sphere-packing bound is given by

Esp(ψ(R), A) =
A

2
− Aδ

4
+

√
Aδ(Aδ + 4)

4
+R+ log 2

− log
(√

Aδ +
√
Aδ + 4

)
(28)

where δ = 1− e−2R. The only positive and real minimizer of
Esp(ψ(R), A) + 2R is obtained as

Rmin =
1

2
log

{
A+
√
A2 − 2A+ 9 + 3

6

}
. (29)

2) Upper Bound by Ashikhmin et al.: As for the second
alternative to be used for Eu(R) we have a more recent result by
Ashikhmin et al. [4, Theorem 1], which states that E(R,A) ≤
EABL(R,A), with EABL(R,A) being defined as

EABL(R,A) =min
0≤ρ≤ρk,l

max
w,d

[
min

(
Ad2

8
,
Aw2

8
− LABL(w, d, ρ)

)]
(30)

where 0 ≤ d ≤ dmax and d ≤ w ≤ wmax with

dmax =

√
2(
√

1 + ρkl −
√
ρkl)√

1 + 2ρkl
(31)

and

wmax =

√
2(
√

1 + ρ−√ρ)
√

1 + 2ρ
. (32)

ρkl is the root of the equality

R− (1 + ρ)H(ρ/(1 + ρ)) = 0. (33)
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Here H(x) denotes the binary entropy function. Lastly, for
the inner minimization function of the bound EABL(R,A),
LABL(w, d, ρ) is given by

LABL(w, d, ρ) =min

{
Ad2w2

8(4w2 − d2)
, FABL(1− w2/2, ρ)

}
(34)

with

FABL(x, ρ) = R− (1 + ρ)H(ρ/(1 + ρ))

+ log((x+
√

(1 + 2ρ)2x2 − 4ρ(1 + ρ))/2)

− (1 + 2ρ) log

(
(1 + 2ρ)x+

√
(1 + 2ρ)2x2 − 4ρ(1 + ρ)

2(1 + ρ)

)
.

(35)

In Section IV, the relation of these bounds with the two-
user setting are analyzed and in Section V, their performances
are numerically compared. It is worth mentioning that, unlike
Shannon’s results, the rate that minimizes EABL(R,A) cannot
be derived analytically.

IV. MULTIPLE-ACCESS CHANNEL

We consider the following auxiliary hypothesis testing prob-
lem, in analogy to the technique used for the single–user case:

Hi1,i2 : y = x1(u1 + i1∆1) + x2(u2 + i2∆2) + z, (36)

for i1 ∈ {0, · · · ,M1 − 1} and i2 ∈ {0, · · · ,M2 − 1}, where
u1 ∈ [0, 1− (M1 − 1)∆1), u2 ∈ [0, 1− (M2 − 1)∆2). Both
u1 and u2 are known to the receiver. As in the single–user case,
we will derive two types of results. The first corresponds to
fixed values of M1 and M2 (and ∆1, ∆2), which will yield non-
asymptotic results on the MSE’s themselves. The second type
of results refers to the asymptotic regime of large N , where M1

and M2 are allowed to grow exponentially with N , at arbitrary
rates to be optimized, and our asymptotic results concern the
asymptotic exponential rates of the two MSE’s.

A. Outer bounds on the region of achievable MSE pairs

We denote the conditional probability of error as a function
of (u1, u2) by

Pe(u1, u2,∆1,∆2) = Pr {(̂ı1, ı̂2) 6= (i1, i2)|u1, u2} (37)

where the overall probability of error is Pe =∫
u1
du1· (u1)

∫
u2
du1 · p(u2) · Pe(u1, u2,∆1,∆2) with

p(.), ı̂1 and ı̂2 being the probability density function, the
estimates of i1 and i2, respectively. As noted in Section II-B,
the results in this paper are presented for the case where the
sources are uniformly distributed over [0, 1) and the adaptation
to other choices of source distributions is straightforward. A
lower bound on Pe(u1, u2) will now be derived by generalizing
Shannon’s zero-rate lower bound for the Gaussian MAC. The
overall probability of error for this channel can be decomposed
into three terms as follows:

Pe = Pr (̂ı1 6= i1, ı̂2 = i2) + Pr (̂ı1 = i1, ı̂2 6= i2)

+ Pr (̂ı1 6= i1, ı̂2 6= i2) (38)

Here we need a two–user counterpart of LB(∆), to be depen-
dent on two parameters, ∆1,∆2 for U1, U2, respectively, that
is denoted by LB(∆1,∆2) where

Pr{|Û1(y)− U1| > ∆1/2 or |Û2(y)− U2| > ∆2/2}
≥ LB(∆1,∆2), (39)

with the l.h.s. being further upper bounded using the union
bound, to yield

Pr{|Û1(y)− U1| > ∆1/2}+ Pr{|Û2(y)− U2| > ∆2/2}
≥ LB(∆1,∆2). (40)

LB(∆1,∆2) is to be specified later. In a similar way to the
derivations that results in (12), one achieves∫ 1−(M1−1)∆1

0

du1 · p(u1)

∫ 1−(M2−1)∆2

0

du2 · p(u2) · Pe(u1, u2,∆1,∆2) ≤

Pr
{
|Û1(y)− U1| > ∆1/2

}
+ Pr

{
|Û2(y)− U2| > ∆2/2

}
d1/∆1e d1/∆2e

.

(41)

(41) is obtained by introducing the condition of Mj∆j > 1,
which is equivalent to Mj = d1/∆je, for j = 1, 2. We note
that (41) is valid for all Mj and ∆j such that (Mj−1)∆j < 1.
A detailed derivation of (41) can be found in Appendix C.

1) Shannon’s zero-rate bound adapted to the MAC: Shan-
non’s bound is based on first upper bounding the average
squared Euclidean distance between all pairs of modulated
signals and this should be carried out for each of the three terms
of eq. (38). In the first term in (38) there are M1(M1 − 1)/2
possible signal pairs, and so, the average squared Euclidean
distance between all such pairs is upper bounded by

D2
1(u1, u2) ≤ 2M1E1

M1 − 1
(42)

Similarly, for the second term of (38), we have

D2
2(u1, u2) ≤ 2M2E2

M2 − 1
(43)

with M2(M2 − 1)/2 signal pairs of user 2. For the third term,
there are M1M2(M1− 1)(M2− 1) possible pairs that differ in
both indices, so that

D2
12(u1, u2) ≤ 2M1E1

M1 − 1
+

2M2E2
M2 − 1

(44)

The reader is referred to Appendix B for a detailed derivation of
eqs. (42)-(44). By progressively removing points at the average
distance as in [2, eq. (81)], we obtain the overall bound as
follows.

Pe(u1, u2,∆1,∆2) ≥ P Shannon
ZR (E1, E2,M1,M2) (45)

where P Shannon
ZR (E1, E2,M1,M2) is given at the top of the next

page by (46).
Combining (40) and (41) with (46), we finally obtain

LB(∆1,∆2) as given by (47) at the top of the following page.
2) An alternative zero-rate bound: In the proof of Theorem 4

from [16], the authors showed that the overall error probability
(38) of a two-user Gaussian MAC with codebooks C1 and C2 is
lower bounded by the error probability of the single-user code
C1 + C2 under an average power constraint. In our case, the
resulting lower bound using an average power constraint is still
valid since a peak energy/power constraint can only increase
the error probability. Note that in our case the sum codebook
has energy E1+E2 and cardinality M1M2. The error probability
of the sum codebook can then be lower bounded by (24) using
E1 +E2 and M1M2 to replace E and M , respectively. Including
the single-user lower bounds for each user, the overall bound on
the zero rate error probability is the maximum of three functions
as given by (48) at the top of the next page where PP

ZR (E ,M)
is given by (24).

In the next theorem, we state the first main result for the
two-user setting.
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P Shannon
ZR (E1, E2,M1,M2)

=
1

M1

M1∑
m=2

Q

(√
m

m− 1

E1
2σ2

)
+

1

M2

M2∑
m=2

Q

(√
m

m− 1

E2
2σ2

)
+

1

M1M2

M1∑
m1=2

M2∑
m2=2

Q

(√
m1

m1 − 1

E1
2σ2

+
m2

m2 − 1

E2
2σ2

)
(46)

LB(∆1,∆2)
4
= d1/∆1e d1/∆2e (1 + ∆1 − d1/∆1e∆1) (1 + ∆2 − d1/∆2e∆2)PZR (E1, E2, d1/∆1e , d1/∆2e) (47)

PP
ZR(E1, E2,M1,M2) = max

{
PP

ZR (E1,M1) , PP
ZR (E2,M2) , PP

ZR (E1 + E2,M1M2)
}

(48)

Theorem 2. For arbitrary modulators xj(Uj), j = 1, 2, trans-
mitting subject to power limitations, S1 and S2, respectively,
over the two–user Gaussian MAC (6), the following inequalities
hold

MSE1 ≥ max

{
MSEs,1, max

0<θ≤1

(
C1(θ)

2
− MSE2

θ2

)
, (49)

max
0<θ≤1

θ2

(
C2(θ)

2
−MSE2

)}
, (50)

MSE2 ≥ max

{
MSEs,2, max

0<θ≤1

(
C2(θ)

2
− MSE1

θ2

)
, (51)

max
0<θ≤1

θ2

(
C1(θ)

2
−MSE1

)}
, (52)

where MSEs,j denotes the lower bound on the MSE in esti-
mating the parameter Uj , j = 1, 2, in the single–user case
(or equivalently, when the other parameter is known), given by
(22), with

C1(θ) =

∫ 1

0

d∆ ·∆ · LB(∆, θ∆) (53)

C2(θ) =

∫ 1

0

d∆ ·∆ · LB(θ∆,∆) (54)

and LB(., .) is defined in (47).

Proof. Let θ be an arbitrary parameter, taking on values in
[0, 1], and for a given ∆, set ∆1 = ∆ and ∆2 = θ∆. Now, by
integrating both sides of (40) w.r.t. ∆, we have∫ 1

0

d∆ ·∆ Pr{|Û1(y)− U1| > ∆/2} (55)

+

∫ 1

0

d∆ ·∆ Pr{|Û2(y)− U2| > θ∆/2} ≥ C1(θ). (56)

For the derivation of C1(θ), the reader is referred to Appendix
D. Now, (55) is upper bounded by 2E[Û1(y)−U1]2. As for the
second term given by the l.h.s. of (56), similarly, we get∫ 1

0

d∆ ·∆ ·Pr

{
|Û2(y)− U2| >

θ∆

2

}
≤ 2

θ2
·E[Û2(y)−U2]2.

(57)
Combining this with (55) and the r.h.s. of (56), we obtain

MSE1 ≥
C1(θ)

2
− MSE2

θ2
. (58)

Since this inequality holds true for every θ ∈ [0, 1], the tightest
bound of this form is obtained by maximizing the r.h.s. over θ
in this interval, which yields

MSE1 ≥ max
0≤θ≤1

[
C1(θ)

2
− MSE2

θ2

]
. (59)

We also observe that the single–user bound MSE1 ≥ MSEs,j

trivially holds since it is equivalent to a “genie-aided” scenario,
where user 1 is fully informed on the exact value of U2.

The equivalence of (58) using C1(θ) could be given also for
user 2 as

MSE2 ≥ θ2C1(θ)

2
− θ2MSE1. (60)

By the same token, eq. (60) implies that

MSE2 ≥ max
0≤θ≤1

θ2

[
C1(θ)

2
−MSE1

]
. (61)

To obtain the remaining bounds, interchange the roles of the
two users, which amounts to the use of C2(θ). This completes
the proof of Theorem 2.

In Section V, we present numerical evaluation results of (49)-
(52) for different values of θ and SNR.

B. Upper Bounds on the MSE exponents

In this subsection, we introduce upper bounds on the achiev-
able region of the MSE exponents defined by (8). The core idea
is to pass from the zero–rate bound of the previous subsection,
where M1 and M2 were fixed (independent of N ), to positive
rate bounds, where M1 = eNR1 and M2 = eNR2 , R1 and
R2 being subject to optimization. Our main result of this
subsection, is asserted in the following theorem.

Theorem 3. For arbitrary N -dimensional parameter modula-
tors xj(Uj), j = 1, 2 transmitting subject to power constraints
given by (7) across the two–user Gaussian MAC (6), the MSE
exponents are bounded by

ε1 ≤ min

{
εs,1, inf

α: F (α)+2α≥ε2
F (α), inf

α: G(α)≥ε2
G(α) + 2α

}
(62)

ε2 ≤ min

{
εs,2, inf

α: G(α)+2α≥ε1
G(α), inf

α: F (α)≥ε1
F (α) + 2α

}
(63)

where

F (α)
4
= min

R
[Eu(R,R+ α) + 2R]}, (64)

G(α)
4
= min

R
[Eu(R+ α,R) + 2R]} (65)

with Eu(R1, R2) and εs,j denoting any upper bound on the
reliability function of the two–user Gaussian MAC and the
single-user bound on the MSE exponent in estimating the
parameter Uj , j = 1, 2, introduced in Theorem 1, respectively.
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Proof. Substituting ∆ = e−RN and θ = e−αN into (60) and
changing the integration variable on the r.h.s. of (60) to R, we
obtain

MSE1+e2αNMSE2 ≥
N

2

∫ ∞
0

dR·e−2RN ·LB(e−RN , e−(R+α)N )

(66)
By the Laplace integration method [20] the r.h.s. of (66) is
of the exponential order of exp{−N minR[Eu(R,R + α) +
2R]} = exp{−NF (α)}. The l.h.s. is of the exponential order
of exp{min{ε1, ε2 − 2α}}. Thus, we obtain

min{ε1, ε2 − 2α} ≤ F (α) ∀α ≥ 0. (67)

In other words, for every α ≥ 0, there exists λ ∈ [0, 1] such
that λε1 + (1− λ)(ε2 − 2α) ≤ F (α) or equivalently

ε1 ≤ inf
α≥0

sup
0≤λ≤1

F (α) + (1− λ)(ε2 − 2α)

λ

= inf
α: F (α)+2α≥ε2

F (α). (68)

Substituting ∆ = e−RN and θ = e−αN into (60) and changing
the integration variable on the r.h.s. to R, we get max{ε1 −
2α, ε2} ≤ G(α) ,∀α ≥ 0 that yields the following bound on
ε1 as

ε1 ≤ inf
α≥0

sup
0≤λ≤1

(
G(α) + (1− λ)ε2

λ
+ 2α

)
= inf
α: G(α)≥ε2

G(α) + 2α. (69)

The overall bound on ε1 is the maximum of the three bounds
given by (68), (69) and the bound on the single–user MSE
exponent given by (25). The bound to ε2 is obtained in the
very same manner.

For the purpose of numerical evaluation, we will study three
different alternatives for Eu(R1, R2) to be used in bounding
the MSE exponents (62)-(63) assuming equal energy on both
transmitters, i.e. S1 = S2 = S. Clearly, equal energy on both
users will result in the same exponent F (α) (or G(α)).

1) Divergence bound: Eu(R1, R2) is chosen as the sphere-
packing bound of [5], taking the auxiliary channel W to be a
Gaussian MAC with noise variance σ2

w. For inputs of powers as
defined by (7), the rate region of the auxiliary Gaussian MAC
W is given by

Rj ≤
1

2
log

(
1 +

S
σ2
w

)
(70)

R1 +R2 ≤
1

2
log

(
1 +

2S
σ2
w

)
, (71)

where

σ2
w ≥ min

{
S

e2R1 − 1
,

S
e2R2 − 1

,
2S

e2(R1+R2) − 1

}
4
= σ2

0(R1, R2), (72)

for σ2
0(R1, R2) > σ2. Thus,

Esp(R1, R2) =
1

2

[
σ2

0(R1, R2)

σ2
− ln

(
σ2

0(R1, R2)

σ2

)
− 1

]
= min{D(R1,S), D(R2,S), D(R1 +R2, 2S)}, (73)

where the divergence function is defined using [5, eq. (5.27)]
as

D(R,S)
4
=

1

2

[
S

σ2(e2R − 1)
− ln

(
S

σ2(e2R − 1)

)
− 1

]
.

(74)

The derivation of the upper bound on the sphere-packing bound
Esp(R1, R2) for the Gaussian MAC is given in Appendix E. We
first need to calculate

F (α) = inf
R>0
{2R+ Esp(R,R+ α)}

= inf
R>0

{
2R+

1

2

[
σ2

0(R,R+ α)

σ2
− ln

(
σ2

0(R,R+ α)

σ2

)
− 1

]}
= min{F1, F2(α), F12(α)}, (75)

with

F1 = inf
R≥0

[2R+D(R,S)] (76)

F2(α) = inf
R≥0

[2R+D(R+ α,S)] (77)

F12(α) = inf
R≥0

[2R+D(2R+ α, 2S)]. (78)

The channel rates that minimize the three exponents F1, F2(α)
and F12(α) given by (76)-(78) are denoted respectively by R∗1,
R∗2 and R∗12 that are derived and presented in detail in Appendix
F. Using these rate functions we can reformulate the minimum
functions F ∗1 , F ∗2 (α) and F ∗12(α) as functions of R∗1, R∗2 and
R∗12, respectively. Due to the constraint in (62), we choose the
α satisfying

ε2 ≤ min{F ∗1 , F ∗2 (α), F ∗12(α)}+ 2α. (79)

The constraint ε2 ≤ F ∗1 + 2α yields

α ≤ F ∗1 − ε2
2

4
= α1(ε2). (80)

The constraint ε2 ≤ F ∗2 (α)+2α gives no requirement concern-
ing α, it is simply the single-user bound for user 2. For the
two-user component ε2 ≤ F ∗12(α) + 2α we get

α ≤ 1

2
(F ∗12(α)− ε2)

4
= α2(ε2). (81)

Thus, the constraint becomes

α ≤ α∗(ε2)
4
= max{α1(ε2), α2(ε2)} (82)

resulting in the overall bound

ε1 ≤ F [α∗(ε2)] (83)
= min{F1, F2[α∗(ε2)], F12[α∗(ε2)]}. (84)

The roles of the users should be interchanged to obtain the
upper bound for ε2 as a function of ε1. The overall upper
bound on the achievable region of the MSE exponents is the
intersection of the two. Note that the upper bound on the MSE
exponent in a point-to-point channel that is derived using (27)
in the previous part is equivalent to (76).

2) Shannon’s sphere-packing bound : As a second alterna-
tive to the divergence bound by Nazari, we adopt Shannon’s
sphere-packing bound studied Section III-B1 to the two-user
setting through the error exponent region for the MAC intro-
duced in [16, Theorem 4]. The authors of [16] show that for
the Gaussian MAC with equal signal powers, denoted by S,
an outer bound on the error exponent region is dictated by
three inequalities. The first two error exponents Ej , j = 1, 2
are bounded from above by Esu(Rj ,S/σ2) and correspond
to the two single-user error events, and the third exponent
Esu(R1 + R2, 2S/σ

2) corresponds to the joint error event. In
all inequalities, Esu(R) represents any upper bound on the
reliability function of the single-user AWGN channel. Let us
denote the three exponents which make use of the sphere-
packing bound (28) by F1,Sh, F2,Sh(α) and for the two-user
component by F12,Sh(α).
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The single-user components are functions of the minimum
rate given as

F ∗1,Sh = 2Rmin + Esp(ψ(Rmin), A) (85)

F ∗2,Sh(α) = F ∗1,Sh − 2α (86)

F12,Sh(α) has to be optimized numerically since it does not lend
itself to closed form analysis. Using (28), the third exponent as
the two-user component is

F12,Sh(α) = min
R′≥α2

[2R′ − α+ Esp(ψ(2R′), 2A)] (87)

where R′ = R + α/2 and A = S/σ2. Similarly the two–
user component F12,Sh(α) with the minimum rate is denoted by
F ∗12,Sh(α). The derivation of the bounds on the error exponents
follow through in the same way as shown in the previous case
that makes use of the divergence bound by simply replacing
the three exponents in (83) by F ∗1,Sh, F

∗
2,Sh and F ∗12,Sh.

3) The upper bound by Ashikhmin et. al. : The third alter-
native for Eu(R1, R2) is introduced by Ashikhmin et al. in [4,
Theorem 1], which is a tighter bound on the reliability function
E(R,A) with SNR A, and we denote it by EABL(R,A). Note
that EABL(R,A) coincides with (28) above a certain rate. It is, in
fact, a convex combination of (28) with a tighter low-rate bound
which coincides with the zero-rate exponent unlike (28). We
were not able to characterize the MSE exponents analytically
for the Ashikhmin et al. upper bound. Similar to the Shannon’s
sphere–packing bound, we denote the three error exponents by
F1,ABL, F2,ABL(α) and F12,ABL(α), which are

F1,ABL = min
R≥0

2R+ EABL(R,A) (88)

F2,ABL(α) = F1,ABL − 2α (89)
F12,ABL(α) = min

R≥0
[2R+ EABL(2R+ α, 2A)] (90)

where R′ = R + α/2. The optimal values are replaced in
(68) to determine the MSE exponents. It should be mentioned
that the MSE exponent region in this case may coincide for
some choice of SNR with the region based on (28) since the
two error exponents coincide for some rates. In Section V, the
three bounds on the MSE exponents in a two-user MAC are
numerically evaluated and their performances are compared as
a function of various values of SNR.

V. NUMERICAL RESULTS

In Figure 2, we first present a numerical evaluation of the
bounds for the single-user problem that was treated in Section
III with several bounds proposed for the same problem from
the literature alongside one achievable scheme.

Following the order of the curves in the legend, M -ary Scalar
Quantization and M -ary Simplex refers to the exact MSE of
a uniform scalar quantizer with log2M bits that is mapped
to a regular M -ary simplex. Note that this combination has
an exponential behaviour as O(e−E/6) which is higher than
that of all the lower bounds. We also show the rate-distortion
lower bound from Goblick [6] behaves like 1

2πee
−E for the sake

of comparison. The four remaining lower bounds make use of
the results from [1] and the work reported here. The two new
lower bounds correspond to (24) and (23) combined with (22).
The previously best lower bound corresponds to (23) combined
with the lower bound through the use of [1, eq. 13]. We also
show a conjectured bound which results from the combination
of the improved single-user lower bound with simplex signals.
Namely, the conjectured bound is obtained through substituting
the exact error-probability of a regular M -ary simplex as the
error probability PZR (E , i) in the improved lower bound (22).

0 5 10 15 20 25

-60

-50

-40

-30

-20

-10

0

Fig. 2: Comparison of lower bounds on the MSE for a point-
to-point channel

Fig. 3: Numerical evaluation of the lower bounds (49)-(52) for
an SNR of 3 dB

Fig. 4: Numerical evaluation of the lower bounds (49)-(52) for
an SNR of 6 dB
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Fig. 5: Numerical evaluation of the lower bounds (49)-(52) for
an SNR of 9 dB

The validity of this bound depends on the validity of the Weak
Simplex Conjecture. It is interesting to note that the bound
obtained through the use of (24) with (22) comes very close to
the conjectured bound even for moderate signal energies.

Fig. 6: Numerical evaluation of the upper bounds on the error
exponents for different values of SNR.

In Figures 3-5, we present numerical evaluation of the lower
bounds on the MSE pairs presented in Theorem 2 by (49)-(52)
for different values of SNR and all possible values of θ where
the dotted and solid boundaries represent the bounds using (46)
and (48), respectively. Note that the signal-to-noise ratio (SNR)
is set equal on both transmitters as E/σ2. The wall and floor,
the vertical and horizontal parts of the black curve to the axes,
correspond to MSEsingle,j . The red and blue curves represent
all possible bounds for θ ∈ [0, 1). The convex hulls are depicted
in solid and dotted black curves using the two-user adaption of
the classical Shannon’s zero-rate bound given by (46) and the
lower bound given by (48).

In Figure 6, the three bounds on the MSE exponents in-
troduced in Theorem 3 are numerically evaluated for different
values of SNR, which is chosen equal on both transmitters.
Clearly, the divergence bound is the weakest one for all values
of SNR, whereas the outer bound evaluated using the reliability

function bound by Ashikhmin et al., labeled as ABL in the
legend, is the tightest. It seems to coincide with the bound
using (28) for high SNR levels in the portion not dominated
by the single-user error-event. It is worth mentioning the
difference between the performance of the divergence bound
and reliability function is most significant for low SNR levels.

APPENDIX

A. The derivation of the new zero-rate lower bound

[3, Theorem 41] provides a lower bound on the average
error probability for the AWGN channel as a function of the
statistics of two random variables HN and GN . Specifically,
HN is defined as [3, eq. 205]

HN = C +
log2 e

2

(22C/N − 1)

22C/N

n∑
i=1

(
1− Z2

i +
2σ√
S
Zi

)
,

(A.1)
where C = N

2 log2

(
1 + S

σ2

)
and Zi are all i.i.d. N (0, 1). In

order to simplify this for the finite-energy case, consider the
random variables Q0 = 1√

N

∑N
i=1 Zi so that Q0 ∼ N (0, 1)

and Q1,N = 1
N

∑N
i=1 Z

2
i , so that Var(Q1,N ) = 2

N . The first
condition for the Polyanskiy et al. converse is that

Pr (HN ≥ γn) = 1− ε(E ,M,N) (A.2)

where ε(E ,M,N) is the average probability of error. Express-
ing the right-hand tail of the c.d.f. of HN in terms of Q0 and Q1

yields (A.3) and rearranging (A.3) in terms of Q0 provides (A.4)
as both are given at the top of the next page. Now, 1 − Q1,N

converges to 0 with N , so we have the following bound on
(A.4) which is tight for large N and some µN > 0

Pr (HN ≥ γN )

≤ Pr(Q1,N ≤ 1 + µN ) Pr

(
Q0 ≥

(γN − C)

log2 e

22C/N

√
E/σ

− µN
√
E

2σ

)
+ Pr(Q1,N > 1 + µN )

≤ Pr

(
Q0 ≥

(γN − C)

log2 e

22C/N

√
E/σ

− µN
√
E

2σ

)
+ ηN

= Q

(
(γN − C)

log2 e

22C/N

√
E/σ

− µN
√
E

2σ

)
+ ηN (A.5)

where

ηN = Pr(Q1,N > 1 + µN )

= 1− 1

Γ
(
N
2

)γ (N
2
,
N(1 + µN )

2

)
≤ (1 + µN ) e−

NµN
2 (A.6)

using [21, p.1325,Lemma 1]. Combining (A.5) with (A.2)
yields

(γN − C)

log2 e

22C/N

√
E/σ

− µN
√
E

2σ
≤ Q−1 (1− ε(E ,M,N)− ηN )

(A.7)
Turning now to the GN , from [3, eq. 204] we have

GN = C − (22C/N − 1) log2 e

2

N∑
i=1

(
1 + Z2

i − 2

√
1 +

σ2

S
Zi

)
= C − E log2 e

2σ2
(1 +Q1,N ) +

log2 e

σ
2C/N

√
EQ0 (A.8)

Rearranging Pr (GN ≥ γN ) in terms of Q0 yields (A.12) where
step (a) is obtained using (A.7). Polyanskiy’s bound in [3,
eq.208] on the signal-set cardinality M is given by (A.13)
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Pr (HN ≥ γN ) = Pr

(
C +

N(22C/N − 1) log2 e

22C/N+1
(1−Q1,N ) +

N(22C/N − 1) log2 e

22C/N
Q0 ≥ γn

)
(A.3)

Pr (HN ≥ γN ) = Pr

(
Q0 ≥

(γN − C)

log2 e

22C/N

√
E/σ

+

√
E

2σ
(1−Q1,N )

)
(A.4)

Pr (GN ≥ γN ) = Pr

(
Q0 ≥

(γN − C)

log2 e
√

(E/σ)2C/N
+

√
E

2C/N
1 +Q1,N

2σ

)
(A.9)

≥ (1− ηN ) Pr

(
Q0 ≥

(γN − C)

log2 e
√

(E/σ)2C/N
+

√
E

2C/N
1 +Q1,N

2σ

∣∣∣∣∣Q1,n ≤ 1 + µN

)
(A.10)

(a)

≥ (1− ηN ) Pr

(
Q0 ≥

Q−1 (1− ε(E ,M,N)− ηN )

23C/N
+ µN

√
E

σ23C/N+1
+

√
E

2C/N

(
σ−1 +

µN
2σ

))
(A.11)

= (1− ηN )Q

(
Q−1 (1− ε(E ,M,N)− ηN )

23C/N
+ µN

√
E

σ23C/N+1
+

√
E

2C/N

(
σ−1 +

µN
2σ

))
(A.12)

M ≤ 1

Pr(GN ≥ γN )
≤

[
(1− ηN )Q

(
Q−1 (1− ε(E ,M,N)− ηN )

23C/N
+ µN

√
E

σ23C/N+1
+

√
E

2C/N

(
σ−1 +

µN
2σ

))]−1

(A.13)

ε(E ,M,N) ≥ Q

(√
E
σ

((
1 +

E
Nσ2

)(
1 +

µN
2

)
+
µN
2

)
−
(

1 +
E

Nσ2

)3/2

Q−1

(
1

M(1− ηN )

))
− ηN (A.14)

which finally results in ε(E ,M,N) in (A.14) when rearranged
for the error probability. Now, limN→∞ ηN = 0, so the limiting
expression becomes

lim
N→∞

ε(E ,M,N) ≥ Q

(√
E
σ

(1 + µ)−Q−1

(
1

M

))
(A.15)

for any arbitrarily small µ > 0. The obtained bound is given
by (24) in Section III-A2.

B. The average squared Euclidean distance derivation for a
two-user MAC

The average squared Euclidean distance for the pairs repre-
sented by the first term in (38) is given by

D2
2(u1, u2) =

1

M2(M2 − 1)

M2∑
i′1=1

M2∑
i′2=1

N∑
n=1

∣∣x2,i′1,n
− x2,i′2,n

∣∣2
≤ 2M2

(M2 − 1)
E2 (A.16)

Note that the derivation given above also applies to D2
1(u1, u2)

with M1 and E1 instead of M2 and E2, respectively. See [22,
Section 3.7.1, pg. 173] for the full derivation. For the third term,
we get (A.23).

C. Bounding the error probability in a MAC
Here we will apply the modification applied to the single-

user derivation that resulted in the improved lower bound
(22) to the two-user MAC. The upper bound on the overall
error probability given by (41) is derived as in (A.24)-(A.30)
for MP = M1M2 on the next page. We set the following
relationships as M1 = d1/∆1e and M2 = d1/∆2e that yields
the lower bound LB(∆1,∆2) given by (47) in Section IV-A.

D. Derivation of C1(θ)

As in Theorem 2, setting ∆2 = θ∆ and ∆1 = ∆ in (47)
yields C1(θ) as derived in (A.33)-(A.37). By analogy, C2(θ)
can be obtained by swapping the roles of the two users.

E. Divergence Bound- Upper Bounding Esp(R1, R2) for the
Gaussian MAC

Consider the Gaussian MAC defined in (6). For convenience,
let us consider the subclassW of additive Gaussian MAC’s Y ∼
N (x1+x2, σ

2
w). First, let us calculate the maximum conditional

mutual informations, I(X1;Y |X2) and I(X2;Y |X1).

I(X1;Y |X2) = I(X1;X1 +X2 +N |X2) (A.38)
= h(X1 +X2 +N |X2)− h(X1 +X2 +N |X1, X2) (A.39)
= h(X1 +N |X2)− h(N) (A.40)

≤
∫ ∞
−∞

dxp2(x) · h(X1 +N |X2 = x)− 1

2
log(2πeσ2

w)r

(A.41)

≤
∫ ∞
−∞

dxp2(x) · 1

2
ln[2πeVar{X1 +N |X2 = x}] (A.42)

− 1

2
log(2πeσ2

w) (A.43)

≤ 1

2
ln[2πeEVar{X1 +N |X2}]−

1

2
log(2πeσ2

w) (A.44)

=
1

2
ln[2πemmse{X1 +N |X2}]−

1

2
log(2πeσ2

w) (A.45)

≤ 1

2
ln[2πeE{(X1 +N)2}]− 1

2
log(2πeσ2

w)

≤ 1

2
log
(
1 + S/σ2

w

)
. (A.46)
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D2
12(u1, u2) =

1

M1M2(M1 − 1)(M2 − 1)

M1∑
i1=1

M2∑
i′1=1

∑
i2 6=i1

∑
i′2 6=i′1

N∑
n=1

∣∣(x1,i1,n − x1,i2,n) + (x2,i′1,n
− x2,i′2,n

)
∣∣2 (A.17)

=
1

M1(M1 − 1)

M1∑
i1=1

∑
i2 6=i1

N∑
n=1

|x1,i1,n − x1,i2,n|2 +
1

M2(M2 − 1)

∑
i′1=1

∑
i′2 6=i′1

N∑
n=1

|x2,i′1,n
− x2,i′2,n

|2 (A.18)

+
2

M1M2(M1 − 1)(M2 − 1)

M1∑
i1=1

M2∑
i′1=1

∑
i2 6=i1

∑
i′2 6=i′1

N∑
n=1

Re
(
(x1,i1,n − x1,i2,n)(x2,i′1,n

− x2,i′2,n
)∗
)

(A.19)

=
1

M1(M1 − 1)

M1∑
i1=1

M1∑
i2=1

N∑
n=1

|x1,i1,n − x1,i2,n|2 +
1

M2(M2 − 1)

M2∑
i′1=1

M2∑
i′2=1

N∑
n=1

|x2,i′1,n
− x2,i′2,n

|2 (A.20)

+
2

M1M2(M1 − 1)(M2 − 1)

M1∑
i1=1

M2∑
i′1=1

M1∑
i2=1

M2∑
i′2=1

N∑
n=1

Re
(
(x1,i1,n − x1,i2,n)(x2,i′1,n

− x2,i′2,n
)∗
)

(A.21)

=
2

M1(M1 − 1)

M1

M1∑
i=1

||x1,i||2 −
N∑
n=1

∣∣∣∣∣
M1∑
i=1

x1,i,n

∣∣∣∣∣
2
+

2

M2(M2 − 1)

M2

M2∑
i′=1

||x2,i′ ||2 −
N∑
n=1

∣∣∣∣∣
M2∑
i′=1

x2,i′,n

∣∣∣∣∣
2
 (A.22)

≤ 2M1

(M1 − 1)
E1 +

2M2

(M2 − 1)
E2 (A.23)

Pe =

∫ 1−(M1−1)∆1

0

du1p(u1)

∫ 1−(M2−1)∆2

0

du2p(u2)Pe(u1, u2) (A.24)

≤ 1

MP

M1∑
i=1

M2∑
i′=1

∫ 1−(M1−1)∆1

0

du1

∫ 1−(M2−1)∆2

0

du2 Pr
{
|U1 − Û1(y)| > ∆1/2|U1 = u1 + i∆1, U2 = u2 + i′∆2

}
(A.25)

+
1

MP

M1∑
i=1

M2∑
i′=1

∫ 1−(M1−1)∆1

0

du1

∫ 1−(M2−1)∆2

0

du2 Pr
{
|U2 − Û2(y)| > ∆2/2|U1 = u1 + i∆1, U2 = u2 + i′∆2

}
(A.26)

+
1

MP

M1∑
i=1

M2∑
i′=1

∫ 1−(M1−1)∆1+i∆1

i∆1

du1

∫ 1−(M2−1)∆2+i′∆2

i′∆2

du2 Pr
{
|U1 − Û1(y)| > ∆1/2|U1 = u1, U2 = u2

}
(A.27)

+
1

MP

M1∑
i=1

M2∑
i′=1

∫ 1−(M1−1)∆1+i∆1

i∆1

du1

∫ 1−(M2−1)∆2+i′∆2

i′∆2

du2 Pr
{
|U2 − Û2(y)| > ∆2/2|U1 = u1, U2 = u2

}
(A.28)

=
1

MP

M1∑
i=1

M2∑
i′=1

Pr

{
|U1 − Û1(y)| > ∆1

2
|i∆1 ≤ U1 ≤1−(M1 − 1)∆1 + i∆1, i

′∆2 ≤ U2 ≤1−(M2 − 1)∆2 + i′∆2

}
(A.29)

+
1

MP

M1∑
i=1

M2∑
i′=1

Pr

{
|U2 − Û2(y)| > ∆2

2
|i∆1 ≤ U1 ≤1−(M1 − 1)∆1 + i∆1, i

′∆2 ≤ U2 ≤1−(M2 − 1)∆2 + i′∆2

}
(A.30)

d1/∆1e−1∑
i=0

d1/∆2e−1∑
i′=0

[
Pr

{
|U1 − Û1(y)| > ∆1

2
|i∆1 ≤ U1 ≤ 1− (M1 − 1)∆1 + i∆1, i

′∆2 ≤ U2 ≤ 1− (M2 − 1)∆2 + i′∆2

}
+ Pr

{
|U2 − Û2(y)| > ∆2

2
|i∆1 ≤ U1 ≤ 1− (M1 − 1)∆1 + i∆1, i

′∆2 ≤ U2 ≤ 1− (M2 − 1)∆2 + i′∆2

}]
(A.31)

=
[
Pr
{
|Û1(y)− U1| > ∆1/2

}
+ Pr

{
|Û2(y)− U2| > ∆2/2

}]
≥ LB(∆1,∆2) (A.32)

Similarly, I(X2;Y |X1) ≤ 1
2 log(1+S/σ2

w). Both upper bounds
are achieved at the same time if X1 and X2 are independent,
zero–mean, Gaussian random variables with variances S1 =
S2 = S. Thus, the conditions R1 ≥ I(X1;Y |X2) and R2 ≥
I(X2;Y |X1), are equivalent to the condition

σ2
w ≥ max

{
S

e2R1 − 1
,

S
e2R2 − 1

}
4
= σ2

0(R1, R2), (A.47)

where σ2
0(R1, R2) is assumed larger than σ2 since (R1, R2) are

assumed in the achievable region of the real underlying channel
P . Now,

D(N (x1+x2, σ
2
w)‖N (x1+x2, σ

2)) =
1

2

[
σ2
w

σ2
− ln

(
σ2
w

σ2

)
− 1

]
,
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C1 (θ) =

∫ 1

0

d∆∆
(
d1/∆e+ ∆ d1/∆e − d1/∆e2 ∆

)(
d1/(θ∆)e+ θ∆ d1/(θ∆)e − d1/(θ∆)e2 θ∆

)
PZR (E1, E2, d1/∆e , d1/(θ∆)e) (A.33)

=

∞∑
i=1+d 1

θ e
I (diθe= d(i− 1)θe)

∫ 1
θ(i−1)

1
θi

d∆∆
(
diθe+ ∆ diθe − diθe2 ∆

) (
i+ θ∆i− i2θ∆

)
(A.34)

+

∞∑
i=1+d 1

θ e
I (diθe 6= d(i− 1)θe)

(∫ 1
θ(i−1)

1
dθ(i−1)e

d∆∆
(
d(i− 1)θe+ ∆ d(i− 1)θe − d(i− 1)θe2 ∆

) (
i+ θ∆i− i2θ∆

)
(A.35)

+

∫ 1
dθ(i−1)e

1
θi

d∆∆
(
diθe+ ∆ diθe − diθe2 ∆

) (
i+ θ∆i− i2θ∆

))
PZR (E1, E2, diθe , i) (A.36)

+

∫ 1

1/(θd 1
θ e)

d∆2∆ (1−∆)
(
d1/θe+ θ∆ d1/θe − d1/θe2 θ∆

)
PZR (E1, E2, 2, d1/θe) (A.37)

whose minimum under the constraint (A.47) is

D(N (x1 + x2, σ
2
0(R1, R2))‖N (x1 + x2, σ

2))

=
1

2

[
σ2

0(R1, R2)

σ2
− ln

(
σ2

0(R1, R2)

σ2

)
− 1

]
. (A.48)

Since this is independent of (x1, x2), the outer maximization
over Q degenerates, and the end result is

Esp(R1, R2) ≤ 1

2

[
σ2

0(R1, R2)

σ2
− ln

(
σ2

0(R1, R2)

σ2

)
− 1

]
4
= Ēsp(R1, R2) (A.49)

F. Minimization of the error exponents for the divergence
bound

The minimization of the first exponent F1 given by (76) can
be written explicitly as

F1 = min
R≥0

2R+
1

2

{
S

e2R − 1
− ln

S
e2R − 1

− 1

}
(A.50)

Taking the first derivative of the function above based on R
and equating to zero as follows

d

dR
F1(R) = 2 +

1

2

{
−2Se2R

(e2R − 1)2
+

2e2R

e2R − 1

}
= 0 (A.51)

yields 3x2 − (S + 5)x+ 2 = 0,with x = e2R. The rate value
that minimizes the first error exponent is obtained as

R∗1 =
1

2
(log(S + 5 +

√
(S)2 + 10S + 1)− log(6)). (A.52)

Using R∗1, we finally get

F ∗1 = ln

(
S + 5 +

√
f1,S

6

)

+
1

2

[
6S

S − 1
√
f1,S

− ln

(
6S

S − 1
√
f1,S

)
− 1

]
. (A.53)

with f1,S = S2 + 10S + 1 There is no difference in the
minimization the second exponent F2(α) apart from the role
of α. The minimum of F2(α) is given by

F2(α)∗ = F ∗1 − 2α (A.54)

where R∗2 = 1
2 (log(S+ 5 +

√
S2 + 10S + 1)− log(6)). Lastly,

for the last exponent F12(α) we have the following mini-
mization based on R for simplification we use the following
change of variables R′ , R + α

2 . Using our new variable

R′ the minimization becomes F12(α) = minR′≥α2 2R′ − α +
1
2

{
2S

e4R′−1
− ln 2S

e4R′−1
− 1
}

. Taking the first derivative of the
third exponent and equating to zero

d

dR′
F12(R′) = 2 +

1

2

{
−8Se4R′

(e4R′ − 1)2
+

4e4R′

e4R′ − 1

}
(A.55)

we get 2x2− (2S + 3)x+ 1 = 0,with x = e4R′ . R∗12 denotes
the root of this equality which gives the minimum for the last
exponent as follows.

F ∗12(α) =
1

2
ln

(
2S + 3 +

√
f12,S

4

)
+

4S
2S − 1 +

√
f12,S

+
1

2
ln

8S
2S − 1 +

√
f12,S

− α (A.56)

with f12,S = (2S)2 + 12S + 1.
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