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Abstract

Many authentication applications involving automatic speaker verifica-
tion (ASV) demand robust performance using short-duration, fixed or prompted
text utterances. Text constraints not only reduce the phone-mismatch be-
tween enrolment and test utterances, which generally leads to improved per-
formance, but also provide an ancillary level of security. This can take the
form of explicit utterance verification (UV). An integrated UV + ASV sys-
tem should then verify access attempts which contain not just the expected
speaker, but also the expected text content. This paper presents such a sys-
tem and introduces new features which are used for both UV and ASV tasks.
Based upon multi-resolution, spectro-temporal analysis and when fused with
more traditional parameterisations, the new features not only generally out-
perform Mel-frequency cepstral coefficients, but also are shown to be com-
plementary when fusing systems at score level. Finally, the joint operation of
UV and ASV greatly decreases false acceptances for unmatched text trials.

Index Terms

speaker verification, utterance verification, text dependent, constant Q
transform.
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1 Introduction

Automatic speaker verification (ASV) [1] technology has matured over recent
years to become a low-cost and reliable approach to person recognition. Example
applications include smart-phone log-in, telephone banking, logical and physical
access control [2]. In these and indeed in any other scenarios, both user conve-
nience and reliability are usually dependent on text constraints.

At one end of the spectrum of possible text constraints is text-independent ASV.
Here, both enrolment and testing are performed with free-text utterances. In some
sense, this approach is the most convenient, but the use of free text usually requires
long-duration utterances in order to marginalise mis-matching text content and thus
to ensure reliable performance.

At the other end of the spectrum is text-dependent ASV. This implies the use
of the same fixed-text phrase for both enrolment and test. The use of fixed-text
phrases may be less convenient but usually provides for better ASV performance
with short utterances on account of matching text content.

Text-dependent ASV can be addressed with an elementary ASV system, such
as a Gaussian mixture model system with a universal background model (GMM-
UBM) [3] or an i-vector system with probabilistic linear discriminant analysis
(PLDA) [4]. These systems on their own capture only implicitly the time sequence
information of the text content. Other approaches, such as those based on hidden
Markov models [HMM] [5], can capture this content explicitly but, being usually
more complex, typically require more data to train.

With user convenience being often a priority, alternative approaches to verify
the text content of short spoken utterances have been investigated. This approach
is referred to as utterance verification (UV). UV is the task of determining whether
or not a given utterance corresponds to a given text. The combination of ASV and
UV systems can then verify both the claimed speaker identity and text content of
a given utterance. Some works have addressed the tasks of UV and ASV jointly
by combining separate systems [6—8]. In [9] a number of different UV and ASV
strategies and their combination are compared using the RedDots database [10] and
specially designed protocols.

Recently, features based on the constant Q transform (CQT) [11] have been
successfully applied to a number of speech-related applications, including ASV [12,
13]. In these features, CQT is used to obtain variable-resolution spectra which pro-
vide a greater frequency resolution at low frequencies and a greater time resolution
at high frequencies. However, the frequency scale of such spectra is geometric.
This poses difficulties when it is coupled with traditional cepstral analysis, where
some post-processing is usually required to yield a linear frequency scale [12].
This multi-resolution analysis together with further post-processing may impose a
high computational load.

This work proposes to replace the CQT algorithm in [11] with the infinite im-
pulse response constant Q transform (IIR-CQT) proposed in [14] as a more effi-
cient alternative. It delivers multi-resolution time-frequency analysis in a linear



scale spectrum which is ready to be coupled with traditional mel-cepstral analy-
sis. The resulting features of combining IIR-CQT and cepstral analysis are called
infinite impulse response - constant Q, Mel-frequency cepstral coefficients (ICMC).

This paper reports the authors’ subsequent work on UV and text-dependent
ASV [9] with the new ICMC features to fully expose the potential. Specifically,
the contributions are as follows:

o new features for UV and ASYV - the paper introduces ICMC features which
are used to improve the performance of both ASV and UV systems;

e UV optimisation — the paper presents an assessment of UV performance us-
ing an HMM-UBM system and the dependence of performance on its con-
figuration;

e ASV optimisation — the paper presents an assessment of GMM-UBM, HMM-
UBM and i-vector approaches for short utterance, text-dependent ASV, and

e stand-alone and combined assessment — UV and ASV systems are as-
sessed independently and when combined with a decision-based fusion in
order to determine an optimal operating point.

2 Infinite Impulse response - constant Q mel-frequency
cepstral coefficients

Recent research [12, 13] has shown that better performance for a range of
speaker modelling and classification tasks can be achieved by replacing the tra-
ditional short-time Fourier transform (STFT) with an alternative approach to time-
frequency analysis known as the constant Q transform (CQT) [11]. These findings
provided the stimulus behind its application to UV and ASV. Starting with a treat-
ment of the limitations of the STFT, we present the specific approach as follows.

2.1 Short-time Fourier transform

The classical STFT spectrogram is a visual representation of the spectro-temporal
composition of a signal through regularly spaced time intervals and frequency
bands. Different signals, such as speech, music or noise, give rise to different
spectro-temporal structure.

As aresult, spectro-temporal analysis requires a resolution adapted to the signal
in question. For example, a higher frequency resolution may be prefered for the
analysis of low-frequency content of voiced speech signals where the harmonic
density is typically high. Conversely, a higher time resolution may be required
to capture rapid modulation at high frequencies. As a consequence of competing
requirements, multi-resolution spectro-temporal representations are appealing for
the analysis of speech signals.



2.2 Constant Q transform

There are a number of alternatives to the constant resolution of the STFT [15—
17]. Rather than a constant resolution, some of these alternatives offer instead a
constant Q factor. The Q factor is a measure of the selectivity of each filter and is
defined as the ratio between the center frequency fi and the bandwidth § f:

_Jr
-5

The human perception system is known to approximate a constant Q factor
between 5S00Hz and 20kHz [18]. This is the main motivation for the constant Q
analysis of audio signals [19-21].

The constant Q transform (CQT) was introduced in 1978 by Youngberg and
Boll [17] and refined some years later in 1991 by Brown [11]. The CQT employs
geometrically distributed octaves and center frequencies. As a result, the CQT
provides for a higher frequency resolution at low frequencies and, conversely, a
higher temporal resolution for high frequencies.

Multi-resolution processing, however, carries a penalty in computation time.
In addition, the use of a geometric frequency scale can necessitate still more pro-
cessing to linearise the scale for decorrelation and modelling purposes [12,13].

The infinite impulse response-CQT (IIR-CQT) algorithm proposed in [14] pro-
vides a compromise between computational cost and design flexibility. The authors
of [14] propose a direct method to approximate a time-varying IIR (TV IIR) filter-
bank to accomplish the constant Q behavior in which the pole varies with frequency

(p = pln))

Q ey

Y (k) = X (k) + X(k+1) + p(k)Y (k — 1) 2)

where X is the discrete Fourier Transform of the signal computed after centering
the signal at time 0. Finally, a forward-backward TV IIR filtering is performed to
obtain zero-phase distortion.

The location of the pole varies for each frequency band along the real axis
in order to obtain different time window widths (wider for low frequencies and
narrower for high frequencies). Further details and the algorithm implementation
can be found in [14].

Unlike the CQT algorithm described in [11], frequency scale of spectrum de-
rived by the IIR-CQT algorithm is linear. This allows the direct coupling with
traditional cepstral analysis without further post-processing [12].

Figure 1 shows the difference between STFT (top) and IIR-CQT (bottom) de-
rived spectrograms for an arbitrary utterance from the RedDots database [10]. As
a result of multi-resolution analysis, harmonics at lower frequencies are better de-
fined in the IIR-CQT-derived spectrogram than in the STFI-derived spectrogram.
In addition, time resolution is improved at higher frequencies.
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Figure 1: Spectrograms of the utterance ‘the rate also yielded production equip-
ment’ for an arbitrary speaker in the RedDots database [10]. Spectrograms com-
puted with the STFT (top) and with the IIR-CQT (bottom).

2.3 Mel-cepstral analysis

As is the case for traditional STFT derived spectro-temporal estimates, cepstral
processing can be applied to individual spectral magnitude frame estimates derived
with the IIR-CQT. The cepstrum of a time sequence x(n) is obtained from the
inverse transformation of the logarithm of the spectrum.

The inverse transformation is normally implemented with the discrete cosine
transform (DCT). The cepstrum is then a (usually truncated) orthogonal decompo-
sition of the log spectrum. It maps /N Fourier coefficients onto ¢ < N independent
cepstrum coefficients which capture the most significant and relevant information
contained within the spectrum.

Based upon auditory critical bands [22], Mel-scaling is normally applied prior
to cepstral analysis. Mel-scaling is commonly employed in a range of speech pro-
cessing taks and is typically extracted according to:

M 1
g(m—3)m
MF = log [M F — </
CO(@) = 3 log MF(m) [ - ] ©
where the Mel-frequency spectrum is defined as

K
MF(m) =" |X (k)" Hp, () @
k=1
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where k is the DFT index, H,, (k) is the triangular-shaped weight function for the
m-th Mel-scaled bandpass filter. Normally, the number of coefficients ¢ is less than
the number of Mel-filters M. Typically, M = 25 and g varies between 13 and 20.

This paper investigates the combination of the IIR-CQT with Mel-scaling and
cepstral analysis. This is achieved by replacing X (k) in Equation 4 with Y (k)
from Equation 2. The resulting features are referred to as Infinite impulse response
Constant Q Mel-frequency Cesptral coefficients (ICMC).

3 UV system

A number of different approaches to UV were reported in [9], including GMM-
UBM, HMM-UBM, dynamic time warping and a forced alignment system. The
HMM-UBM system was found to outperform the alternatives and was thus adopted
for all work repoted here.

The HMM-UBM system reported in [9] is a 2-layer model similar in nature
to the so-called HiLam approach to text-dependent ASV introduced in [5]. The
model is a left-to-right, utterance-dependent HMM with continuous observation
densities modeled with GMMs adapted from an utterance-independent UBM pre-
trained with external data.

Utterances are first split into [V equal-sized segments, where N is the number
of HMM states. Each state is a GMM and is estimated by adapting the UBM to the
corresponding utterance segment using maximum a posteriori (MAP) adaptation.
A number of Viterbi realignment and readaptation sequences are then applied to
optmise the model.

UV scores are the likelihood ratio given the data and either the utterance-
dependent HMM or the utterance-independent UBM. The number of HMM states
and the number of Gaussian mixtures per state are empirically optimised and are
the same for each utterance.

In UV experiments different numbers of GMM components of 8, 16, 32 and
64 were evaluated. In addition, different number of HMM states of 14, 24 and 34
were assessed. The UBM was trained on male speech from the TIMIT database.

Two different score normalisation approaches are also investigated. Mean-
Norm subtracts from the utterance score the mean score produced by all alterna-
tive utterance models. MaxNorm subtracts from the utterance score the maximum
score produced by all the alternative utterance models. Note that these normal-
ization techniques can only be applied in a practical scenario if the universe of
pass-phrases is limited (10 in this case).

4 ASYV systems

This section describes the three ASV systems used for the experimental work
reported in this paper.



41 GMM-UBM

The GMM-UBM system is the de facto standard approach to ASV. The UBM
represents the speaker-independent acoustic space [3] and is trained with an ex-
pectation maximisation algorithm on a large quantity of external data. Speaker-
specific models are then learned from the UBM using MAP adaptation. Only the
UBM means are adapted. The UBM was trained using speech data from the TIMIT
corpus' and all models have 512 components.

4.2 HMM-UBM

The HMM-UBM system is described in [23]. A universal, text and speaker-
independent HMM [24] is learned with the data of 157 speakers from the RSR2015
database (approximately 30 phrases/speaker over 9 sessions) without any speech
transcriptions and with several iterations of the Baum Welch algorithm. Speech
transcriptions are not utilized for HMM training, thus model parameters reflect
general temporal information only.

Speaker dependent models are derived from the HMM-UBM using enrollment
data with MAP adaptation [25]. Three MAP iterations are used with a relevance
factor of 10 and only Gaussian mean parameters are adapted. The number of
HMM-UBM states and Gaussian components per state are optimized to minimize
the equal error rate (EER) on the impostor-correct condition (see Section 5.1) of the
development set. Test utterance scores are obtained from their forced alignment to
the claimed target model and the universal HMM-UBM and then the corresponding
log-likelihood ratio.

4.3 i-vector

The i-vector system is based on original work in [4].

i-vectors are extracted using a GMM-UBM of 512 components with diagonal
co-variance matrices which are learned using the same data as that used to learn
the universal HMM-UBM as described above.

Each target is represented by an average i-vector computed over the phrase-
wise i-vectors of their enrollment data. Test utterance i-vector are extracted in the
same way and then compared to those of the claimed target in the usual way. We
consider an i-vector dimension of 400.

Before scoring, i-vectors are post-processed using the iterative conditioning
algorithm with spherical normalization (Sph) described in [26] in order to com-
pensate for session variability. The normalisation procedure is trained using the
same data as that used for GMM-UBM learning. Scores are then calculated us-
ing probabilistic linear discriminant analysis (PLDA) in which Gaussian priors are
assumed for speaker and channel factors. Scores between the claimed target (w;)

'nttps://catalog.ldc.upenn.edu/LDC9351



and test (ws) i-vectors are then calculated according to:

p(wh w2|9non)

score(wy, w) = log (5)
where 6., defines the hypothesis that i-vectors w; and ws are from the same
speaker, whereas 0,,,,, represents the alternative hypothesis. For PLDA training,
same-speaker utterances are considered to come from different speakers, thereby
resulting in the order of 4710 utterances for PLDA learning (157 speakers, 30 pass-
phrases/speaker over 9 sessions). For more details about the PLDA and Sph algo-
rithm are available in [26-29].

S Experimental setup

This section describes the experimental setup, including metrics, databases,
protocols and feature extraction.

5.1 Maetrics and evaluation

UV and ASV performance are assessed in terms of the EER. In contrast, and
in order to illustrate more clearly difference in performance with and without UV,
combined performance is expressed in terms of false acceptance rate (FAR) and
false rejection rate (FRR). As illustrated in Table 2, in addition to the one tar-
get correct (TC) condition in which both the utterance and speaker labels match,
there are three types of impostor trial where either the utterance or speaker do not
match. They are the target wrong (TW), impostor correct (IC) and impostor wrong
(IW) [10] conditions. Accordingly, FAR performance is furthermore illustrated
independently for each impostor trial, namely FAR(TW), FAR(IC) and FAR(IW).
The operation point for ASV is when FRR and FAR(IC) are equal. We selected
this operation point to tune the system to give balanced performance when the
text content matches. Then, FAR(TW) and FAR(IW) are expected to be lowered
by the joint operation of the UV module. Lastly, performance is evaluated for
UV and ASV systems in isolation and when combined. Combination is achieved
through score level fusion by means of logistic regression and is performed with
the BOSARIS toolkit?.

5.2 Database and protocols

Experiments are conducted with speech data collected in connection with the
RedDots challenge® [10]. Since the challenge relates exclusively to ASV, new
protocols are created to support UV and ASV experiments. Due to the limited
number of female subjects in the RedDots corpus, only male speakers are included

https://sites.google.com/site/bosaristoolkit/
3https ://sites.google.com/site/thereddotsproject/home



Table 1: Database description for UV experiments.

’ H Development ‘ Evaluation ‘

Test Utterances 1049 1536
Matched-Text trials 1049 1536
Unmatched-Text trial 9441 13824

Table 2: Database description for ASV experiments.

’ H Development ‘ Evaluation ‘

Number of Targets 96 152

Target Correct (TC) 1011 1108

Target Wrong (TW) 9099 9972
Impostor Correct (IC) 9059 22220
Impostor Wrong (IW) 81535 200172

in the protocols. They are formed from a subset of part 01 of the evaluation subset
which contains utterances of 10 common phrases.

Data from 9 different speakers are used for training utterance models. This
results in a total of 1485 utterances used for training (roughly 148 files per phrase).
The development set is formed with data from 10 speakers whereas the evaluation
set contains data from a different set of 30 speakers. Table 1 gives details of the UV
development and evaluation protocols: number of utterances, number of matched-
text (target) trials, and number of unmatched-text (nontarget) trials. As regards
ASYV, each speaker-and-passphrase dependent model is enrolled with 3 utterances.
Table 2 shows details of the ASV development and evaluation protocols: number
of target speakers-passphrase models, number of target trials (target-correct), and
number of nontarget trials (target-wrong, impostor-correct and impostor wrong).

Note that, while part 04 of the evaluation, namely the text-prompted condition,
may at first seem better suited to the development and assessment of UV systems, it
relates to the verification of speaker-sentence pairs. As such, it is not suited to both
the independent and combined assessment of UV and ASV, hence the approach
adopted here.

5.3 Feature extraction

Both UV and ASV experiments are performed independently and when com-
bined using two feature extraction methods. Mel-frequency cepstral coefficients
(MFCC) serve as the baseline for comparisons with performance when using the
new ICMC features. Except for differences in the underlying approach to spectro-
temporal analysis (STFT for MFCC versus [IR-CQT for ICMC), the two configu-
rations share an identical configuration.

The common processing is as follows. Pre-emphasised speech signals are
frame-blocked using a sliding window of 20 ms with a 10 ms shift. The power
spectrum is obtained using either the STFT or the IIR-CQT from Hamming win-



dowed frames before 19th order static coefficients (excluding the O-th coefficient)
are extracted using the discrete cosine transform (DCT) of 20 log-power, Mel-
scaled filterbank outputs. For IIR-CQT, a Q factor of 96 was empirically deter-
mined.

RASTA filtering is then applied before delta and delta-delta coefficients are
computed from the static parameters thereby resulting in feature vectors of dimen-
sion 57. Speech activity detection (SAD) based on energy modelling is applied to
discard low-energy content. Finally, cepstral mean and variance normalization are
applied to compensate for channel variation.

5.4 Integration of UV and ASV

In this scenario, we simultaneously verify the spoken content as well as the
speaker identity and accept the claim only if both are correct. In this paper, the
UV and ASV system are combined in two different methods. In the first strategy,
score level fusion is performed on the scores obtained from two systems. The fu-
sion is performed using linear regression method using BOSARIS toolkit where
the trials from TC condition are used as target and the rests as non-target. In the
second integration method, decision level fusion is performed on the binary de-
cision (i.e., accept/reject) available from the UV and ASV systems. For this, the
decision thresholds are computed first separately on two individual tasks to pro-
duce the binary decision labels. Then the decision labels are combined by ’AND*
operation.

6 Experimental results

Performance is first assessed for UV and ASV in independence and then when
combined.

6.1 Standalone UV

UV results for the development set are illustrated in Table 3 in terms of EER
for both MFCC and ICMC features. Results are shown for different numbers of
HMM states and GMM components. Different rows show performance with and
without normalisation and for two fusion strategies.

For smaller GMMs (8 and 16 components), ICMC features outperform MFCC,
while MFCC gives better performance for more complex models (32 and 64 com-
ponents). Without normalisation, ICMC features generally outperform MFCC,
while MFCC features mostly outperform ICMC features for MeanNorm and MaxNorm,
with the latter providing the best results. The best performance achieved with
MEFCC features is 0.20% EER with 14 HMM states and 32 Gaussian components
per state. The best performance for ICMC features is 0.45% EER with 24 HMM
states and 32 Gaussian components per state. In these optimum configurations, rel-
ative improvements of 93% and 83% are achieved for MFCC and ICMC features,
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Table 4: Utterance verification results using the standalone UV protocol, measured
in EER (%), on evaluation set. Best classifier configurations based on the results
on development set are selected.

l System H noNorm ‘ meanNorm ‘ maxNorm ‘

MFCC 438 243 0.71
ICMC 4.16 2.09 0.78
[ Fusion | 342 [ 187 | o051 |

Table 5: ASV performance of i-vector system with MFCC and ICMC features, in
terms of EER (%), for IC condition, on the development set for different speaker
factors in PLDA (channel factor is kept full rank i.e. equal to the dimension of
i-vector).

Speaker factors
Feature 200 [ 250 [ 300 [ 350 | 400

MEFCC 560 | 530 | 499 | 5.07 | 4.98
ICMC 6.31 | 569 | 533 | 527 | 5.21

with respect to un-normalized scores. The fusion of max-normalised MFCC and
ICMC scores delivers an EER of 0.19%. Finally, the fusion of the two best MFCC
and ICMC max-normalised scores obtains the same performance.

Results for the evaluation set using the two best configurations for MFCC and
ICMC features are reported in Table 4. Here the trend is reversed, with ICMC
feature producing slightly better performance than MFCC. Once again, MeanNorm
and MaxNorm are effective. The best EER of 0.51% is achieved with the fusion of
max-normalised MFCC and ICMC scores. Taking results for the evaluation set as
a whole, MFCC and ICMC features are consistently complementary.

6.2 Standalone ASV

Fig. 2 illustrates the performance of the GMM-UBM system against relevance
factor for the TW, IC and IW conditions of the development set. For the IC condi-
tion, optimal performance is obtained with relevance factors of 4 and 2 for MFCC
and ICMC features respectively, corresponding to EERs of 3.19% and 2.26%. Fur-
thermore ICMC features are shown to universally outperform MFCC features.

Results for the HMM-UBM system are illustrated in Figure 3 for the IC con-
dition on the development set and for MFCC and ICMC features, using different
number of HMM states and GMM components for a fixed relevance factor of 10.
Performance varies in the intervals 5.28 £ 3.18% (meanzvariance of EER) and
4.51% =+ 1.32% for MFCC and ICMC, respectively. Best performance is obtained
in the case of MFCC features with 4 states and 64 components and with 14 states
and 32 components in the case of ICMC features.

In the i-vector system, channel factors are kept full rank (i.e. equal to the
dimension of i-vector) and the value of speaker factor is varied to find the optimal

11



6
Relevance Factor —

Figure 2: ASV performance of GMM-UBM system with MFCC and ICMC features,
in terms of EER (%), for TW, IC and IW conditions on the development set for

various values of the relevance factor.

EER [%]

16 32
Number of Gaussian per HMM-UBM state

W vFCC

= icMc

B HMM-UBM states 4

B HMM-UBM states 14
HMM-UBM states 24

B HMM-UBM states 34

Figure 3: ASV performance of HMM-UBM system with MFCC and ICMC features,
in terms of EER (%), for IC condition, on the development set for various number

of states and Gaussian components in HMM-UBM.
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Table 6: Text-dependent speaker recognition performance (in terms of EER %) for
different tasks on development and evaluation set using different ASV systems and
fusion.

l H Development ‘ Evaluation ‘

GMM-UBM (MFCC) 3.19 2.14
GMM-UBM (ICMC) 2.26 156
HMM-UBM (MFCC) 3.99 2.26
HMM-UBM (ICMC) 3.54 1.67

i-vector (MFCC) 4.98 2.78
i-vector (ICMC) 5.21 3.83
] Fusion I 168 | 103 |

speaker verification performance on the development set (for IC condition in terms
of lowest EER value) as presented in Table 5. EER decreases with an increasing
value of speaker factor on both features. Best performance is achieved when both
number of channel and speaker factors are equal to the full dimension of i-vector.

A comparative summary of ASV performance for each of the three independent
systems and for their score-level fusion is presented in Table 6 for the IC condition
of both development and evaluation sets. Most likely due to the short-duration
nature of the RedDots database [10], the simplest GMM-UBM system is the best
performing. With the exception of the i-vector system, results for ICMC features
are better than those for MFCC features, for both development and evaluation sets.
The reason of the inverse performance trend of MFCC and ICMC on i-vector has
to be further investigated.

Results for fused ASV systems are illustrated in the last row of Table 6. Fusion
results stem from the combination of scores produced by each of the three systems
and with each of the two different features configurations (six systems) using lo-
gistic regressions. In contrast to previous work in [9], fusion weights are optimised
with TC trial scores used as positives and IC trial scores used as negatives. Fusion
results in the lowest EERs for both development and evaluation sets.

6.3 Effect of combined UV in text-dependent ASV performance

First, results for ASV in isolation, in terms of FAR and FAR for the selected
operation points (using IC trials as impostors), are illustrated in Table 7. Then,
two different UV + ASV integration strategies are illustrated in the final two rows.
The penultimate row shows results for score fusion, whereas the last row illustrates
results for decision fusion.

ASV system in fusion in isolation does not help in reducing the FAR for the TW
condition. This is not unexpected since, without UV, ASV on its own offers little
potential to reject incorrect pass-phrases. However, when UV and ASV are com-
bined, FAR(TW) is greatly decreased for the two proposed combination schemes
(from 2.85% to 0.79% and 0.00% in the development set for the two combinations,
respectively). Nevertheless, this has the cost of increasing FRR slightly. Decision
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fusion outperforms score level fusion, which further degrades FRR and FAR(IC).
This is expected since, in score fusion, UV scores are raising the overall ASV score,
and therefore increasing FAR when text matches. Results nonetheless indicate that
both combined approaches lead to considerably lower FARs. In the evaluation
set, similar systems’ behavior is found. Compared to our prior work in [9], errors
related to matched text trials (TC and IC) are significantly lower, while keeping
unmatched text errors (FAR(TW) and FAR(IW)) virtually to 0%.

7 Conclusions

This paper has presented a new feature for utterance verification (UV) and
automatic speaker verification (ASV). Referred to as infinite impulse response -
constant Q Mel-frequency cepstral coefficients (ICMC), the new multi-resolution
approach is better adapted than the short-term Fourier transform (STFT) to the
spectro-temporal analysis and parameterisation of speech signals. The use of ICMC
features improves the performance of a UV system based on spectro-temporal
modelling and also the performance of three different approaches to text-dependent
ASV. The fusion of UV with the three different ASV systems leads to the best
overall performance, decreasing false acceptances related to unmatched text to 0%
while just slightly increasing false rejections.

The work demonstrates the potential of UV to improve text-dependent ASV
performance. Even so, UV is still a research field in its relative infancy. One can
thus readily expect significant developments in the coming years.
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