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DiNoDB: an Interactive-speed Query Engine for
Ad-hoc Queries on Temporary Data

Yongchao Tian, Ioannis Alagiannis, Erietta Liarou, Anastasia Ailamaki, Pietro Michiardi, Marko Vukolić

Abstract—As data sets grow in size, analytics applications struggle to get instant insight into large datasets. Modern applications
involve heavy batch processing jobs over large volumes of data and at the same time require efficient ad-hoc interactive analytics on
temporary data. Existing solutions, however, typically focus on one of these two aspects, largely ignoring the need for synergy between
the two. Consequently, interactive queries need to re-iterate costly passes through the entire dataset (e.g., data loading) that may
provide meaningful return on investment only when data is queried over a long period of time. In this paper, we propose DiNoDB, an
interactive-speed query engine for ad-hoc queries on temporary data. DiNoDB avoids the expensive loading and transformation phase
that characterizes both traditional RDBMSs and current interactive analytics solutions. It is tailored to modern workflows found in
machine learning and data exploration use cases, which often involve iterations of cycles of batch and interactive analytics on data that
is typically useful for a narrow processing window. The key innovation of DiNoDB is to piggyback on the batch processing phase the
creation of metadata that DiNoDB exploits to expedite the interactive queries. Our experimental analysis demonstrates that DiNoDB
achieves very good performance for a wide range of ad-hoc queries compared to alternatives .
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1 INTRODUCTION

IN recent years, modern large-scale data analysis systems
have flourished. For example, systems such as Hadoop

and Spark [1], [2] focus on issues related to fault-tolerance
and expose a simple yet elegant parallel programming
model that hides the complexities of synchronization. More-
over, the batch-oriented nature of such systems has been
complemented by additional components (e.g., Storm and
Spark streaming [3], [4]) that offer (near) real-time analyt-
ics on data streams. The communion of these approaches
is now commonly known as the “Lambda Architecture”
(LA) [5]. In fact, LA is split into three layers, i) the batch
layer (based on e.g., Hadoop/Spark) for managing and pre-
processing append-only raw data, ii) the speed layer (e.g.,
Storm/Spark streaming) tailored to analytics on recent data
while achieving low latency using fast and incremental algo-
rithms, and iii) the serving layer (e.g., Hive [6], SparkSQL [2],
Impala [7]) that exposes the batch views to support ad-hoc
queries written in SQL, with low latency.

The problem with such existing large scale analytics
systems is twofold. First, combining components (layers)
from different stacks, though desirable, raises performance
issues and is sometimes not even possible in practice. For
example, companies who have expertise in, e.g., Hadoop
and traditional SQL-based (distributed) RDBMSs, would
arguably like to leverage this expertise and use Hadoop
as the batch processing layer and RDBMSs in the serving
layer. However, this approach requires an expensive trans-
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form/load phase to, e.g., move data from Hadoop’s HDFS
and load it into a RDBMSs [8], which might be impossible to
amortize, in particular in scenarios with a narrow processing
window, i.e., when working on temporary data.

Second, although many SQL-on-Hadoop systems
emerged recently, they are not well designed for (short-
lived) ad-hoc queries, especially when the data remains in
its native, uncompressed, format such as text-based CSV
files. To achieve high performance, these systems [9] pre-
fer to convert data into their specific column-based data
format, e.g., ORC [10] and Parquet [11]. This works per-
fectly when both data and analytic queries (that is, the
full workload) are in their final production stage. Namely,
these self-describing, optimized data formats play an in-
creasing role in modern data analytics, and this especially
becomes true once data has been cleansed, queries have
been well designed, and analytics algorithms have been
tuned. However, when users perform data exploration tasks
and algorithm tuning, that is when the data is temporary,
the original data format typically remains unchanged — in
this case, premature data format optimization is typically
avoided, and simple text-based formats such as CSV and
JSON files are preferred. In this case, current integrated data
analytics systems can under-perform. Notably, they often
fail to leverage decades old techniques for optimizing the
performance of (distributed) RDBMSs, e.g., indexing, that is
usually not supported.

In summary, contemporary data scientists face a wide
variety of competing approaches targeting the batch and the
serving layer. Nevertheless, we believe that these approaches
often have overly strict focus, in many cases ignoring one
another, thus failing to explore potential benefits from learn-
ing from each other.

In this paper, we propose DiNoDB, an interactive-speed
query engine that addresses the above issues. Our approach
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is based on a seamless integration of batch processing sys-
tems (e.g., Hadoop MapReduce and Apache Spark) with
a distributed, fault-tolerant and scalable interactive query
engine for in-situ analytics on temporary data. DiNoDB in-
tegrates the batch processing with the serving layer, by
extending the ubiquitous Hadoop I/O API using DiNoDB
I/O decorators. This mechanism is used to create, as an
additional output of batch processing, a wide range of
metadata, i.e., auxiliary data structures such as positional
maps and vertical indexes, that DiNoDB uses to speed-up
the interactive data analysis of temporary data files for data
exploration and algorithm tuning. Our solution effectively
brings together the batch processing and the serving layer
for big data workflows, while avoiding any loading and
data (re)formatting costs. While, clearly, no data analytics
solution can fit all Big Data use cases, when it comes to ad-
hoc interactive queries with a narrow processing window,
DiNoDB outperforms state-of-the-art distributed query en-
gines, such as Hive, Stado, SparkSQL and Impala.

In summary, our main contributions in this paper in-
clude:

• The design of DiNoDB, a distributed interactive
query engine. DiNoDB leverages modern multi-
core architectures and provides efficient, distributed,
fault-tolerant and scalable in-situ SQL-based query-
ing capabilities for temporary data. DiNoDB (Dis-
tributed NoDB) is the first distributed and scalable
instantiation of the NoDB paradigm [12], which was
previously instantiated only in centralized systems.

• Proposal and implementation of the DiNoDB I/O
decorators approach to interfacing batch processing
and interactive query serving engines in a data an-
alytics system. DiNoDB I/O decorators generate, as
a result of the batch processing phase, metadata that
aims to facilitate and expedite subsequent interactive
queries.

• Detailed performance evaluation and comparative
analysis of DiNoDB versus state-of-the-art systems
including Hive, Stado, SparkSQL and Impala.

The rest of the paper is organized as follows. In Section 2,
we further motivate our approach and the need for a system
such as DiNoDB. In Section 3, we describe the architecture
of DiNoDB. In Section 4 we give our experimental results
based on both synthetic and real-life datasets. Section 5
overviews related work. Section 6 concludes the paper.

2 APPLICATIONS AND USE CASES

In this section, we overview some of the contemporary
uses cases which span both batch processing and interac-
tive analytics in the data analytics flows. These use cases
include machine learning (Section 2.1) and data exploration
(Section 2.2). For each of these use cases we discuss: i) how
better communication between the batch processing and the
serving layer that DiNoDB brings may help, and ii) the
applicability of our temporary data analytics approach.

2.1 Machine learning
In the first use case – which we evaluate in Section 4 –
we take the perspective of a user (e.g., a data scientist)

Fig. 1. Machine learning use case.

focusing on a complex data clustering problem. Specifically,
we consider the task of learning topic models [13], which
amounts to automatically and jointly clustering words into
“topics”, and documents into mixtures of topics. Simply
stated, a topic model is a hierarchical Bayesian model that
associates with each document a probability distribution
over “topics”, which are in turn distributions over words.
Thus, the output of a topic modeling data analysis can be
thought of as a (possibly very large) matrix of probabilities:
each row represents a document, each column a topic, and
the value of a cell indicates the probability for a document
to cover a particular topic.

In such a scenario, depicted in Figure 1, the user typically
faces the following issues: i) topic modeling algorithms (e.g.,
Collapsed Variational Bayes (CVB) [14]) require parameter
tuning, such as selecting an appropriate number of top-
ics, the number of unique features to consider, distribu-
tion smoothing factors, and many more; and ii) comput-
ing “modeling quality” typically requires a trial-and-error
process whereby only domain-knowledge can be used to
discern a good clustering from a bad one. In practice, such
a scenario illustrates a typical “development” workflow
which requires: a batch processing phase (e.g., running CVB),
an interactive query phase on temporary data (i.e., on data
interesting in relatively short periods of time), and several
iterations of both phases until algorithms are properly tuned
and final results meet users’ expectations.

DiNoDB explicitly tackles such “development” work-
flows. Unlike current approaches, which generally require
a long and costly data loading phase that considerably
increases the data-to-insight time, DiNoDB allows querying
temporary data in-situ, and exposes a standard SQL inter-
face to the user. This simplifies query analysis and reveals
the main advantage of DiNoDB in this use case, that is the
removal of the temporary data loading phase, which today
represents one of the main operational bottlenecks in data
analysis. Indeed, the traditional data loading phase makes
sense when the workload (i.e., data and queries) is stable
in the long term. However, since data loading may include
creating indexes, serialization and parsing overheads, it
is reasonable to question its validity when working with
temporary data, as in our machine learning use case.

The key design idea behind DiNoDB is that of shifting
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Fig. 2. A typical data exploration architecture.

the part of the burden of a traditional load operation to the
batch processing phase of a “development” workflow. While
batch data processing takes place, DiNoDB piggybacks the
creation of distributed positional maps and vertical indexes
(see Section 3 for details) to improve the performance of
interactive user queries on the temporary data. Interactive
queries operate directly on temporary data files produced
by the batch processing phase, which are stored on a dis-
tributed file system such as HDFS [15].

2.2 Data exploration

In this section, we discuss another prominent use case –
which we also evaluate in Section 4 – and which is another
important motivation for our work. Here we consider a user
involved in a preliminary, yet often fundamental and time-
consuming, data exploration task. Typically, the user collects
data from different sources (e.g., an operational system, a
public API) and stores it on a distributed file system such
as HDFS for subsequent processing. However, before any
useful processing can happen, data needs to be “cleaned”
and studied in detail.

Data exploration generally requires visualization tools,
that assist users in their preliminary investigation by pre-
senting the salient features of raw data. Current state-of-
the-art architectures for data exploration can be summarized
as in Figure 2. A batch processing phase ingests “dirty” data
to produce temporary data; such data is then loaded into
a database system that supports an interactive query phase,
whereby a visualization software (e.g., Tableau Software)
translates user-defined graphical representations into a se-
ries of queries that the database system executes. Such
queries typically “reduce” data into aggregates, by filtering,
selecting subsets satisfying predicates and by taking repre-
sentative samples (e.g., by focusing on top-k elements).

In the scenario depicted above, DiNoDB reduces the
data-to-insight time, by allowing visualization software or
users to directly interact with the raw representation of
temporary data, without paying the cost of the load phase
that traditional database systems require, nor data format
transformation overheads. In addition, the metadata that

DiNoDB generates by piggybacking on the batch process-
ing phase (while data is “cleaned”), substantially improves
query performance, making it a sensible approach for appli-
cations where interactivity matters.

3 DINODB ARCHITECTURE AND IMPLEMENTATION

In this section, we present the architecture design of DiN-
oDB in detail. DiNoDB is designed to provide a seamless
integration of batch processing systems such as Hadoop
MapReduce and Spark, with a distributed solution for in-
situ data analytics on large volumes of temporary, raw data
files. First, we explain how DiNoDB extends the ubiquitous
Hadoop I/O API using DiNoDB I/O decorators, a mech-
anism that generates a wide range of auxiliary metadata
structures to speed-up the interactive data analysis using
the DiNoDB query engine. Then, we describe the DiNoDB
query engine, which leverages the metadata generated in
the batch processing phase to achieve interactive-speed
query performance.

In the remaining of this section we assume that both
the raw and the temporary data ingested and produced by
the batch processing phase, and used in the query serving
phase are in a structured textual data format (e.g., comma-
separated value files).

3.1 High-level design

The batch processing phase (e.g., in the machine learn-
ing and data exploration use cases outlined previously)
typically involves the execution of (sophisticated) analysis
algorithms. This phase might include one or more batch
processing jobs, whereby output data is written to HDFS.

The key idea behind DiNoDB is to leverage batch
processing as a preparation phase for future interactive
queries. Namely, DiNoDB enriches the Hadoop I/O API
with DiNoDB I/O decorators. Such mechanism piggybacks
the generation of metadata by pipelining the output tuples
produced by the batch engine into a series of specialized
decorators that store auxiliary metadata along with the origi-
nal output tuples. We further detail DiNoDB I/O decorators
and metadata generation in Section 3.2.

In addition to the metadata generation, DiNoDB capi-
talizes on data pre-processing by keeping output data in-
memory. To be more specific, we configure Hadoop to
store output data and metadata in RAM, using the ramfs
file system as an additional mount point for HDFS.1 Our
DiNoDB prototype supports both ramfs and disk mount
points for HDFS, a design choice that allows supporting
queries on data that cannot fit in RAM.

Both the output data and metadata are consumed by
the DiNoDB interactive query engine. As we detail in Sec-
tion 3.3, the DiNoDB interactive query engine is a massively
parallel processing engine that orchestrates several DiNoDB
nodes. Each DiNoDB node is an optimized instance of
PostgresRaw [12], a variant of PostgreSQL tailored to query-
ing temporary data files produced in the batch processing

1. This technique has been independently considered for inclusion
in a recent patch to HDFS [16] and in a recent in-memory HDFS
alternative called Tachyon [17]. Finally it is now added in the latest
version of Apache Hadoop [18]
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Fig. 3. Metadata generated by DiNoDB I/O decorators.

phase. To ensure high performance and low query execution
times, we co-locate DiNoDB nodes and HDFS DataNodes,
where the two share data through HDFS, and in particular
through its in-memory, ramfs mount.

3.2 DiNoDB I/O decorators

DiNoDB piggybacks the generation of auxiliary metadata
on the batch processing phase using DiNoDB I/O deco-
rators. Next, we introduce metadata currently supported
in our prototype, and outline the implementation of our
decorators to generate positional maps [12], vertical indexes
and statistics.

Positional maps. Positional maps are data structures that
DiNoDB uses to optimize in-situ querying. Contrary to a
traditional database index, a positional map indexes the
structure of the file and not the actual data. A positional
map (shown in Figure 3(a)) contains relative positions of
attributes in a data record, as well as the length of each row
in the data file. During query processing, the information
contained in the positional map can be used to jump to
the exact position (or as close as possible) of an attribute,
significantly reducing the cost of tokenizing and parsing when
a data record is accessed.

To keep the size of the generated positional map rela-
tively small to the size of a data file, the positional map deco-
rator implements uniform sampling, to store positions only for
a subset of the attributes in a file. The positional map decorator
implements sampling, to store positions only for a subset of
the attributes in a file. The user can either provide a sam-
pling rate so that the positional map decorator will perform
uniform sampling, or directly indicate which attributes are
sampled. An approximate positional map can still provide
tangible benefits: indeed, if the requested attribute is not
part of the sampled positional map, a nearby attribute po-
sition is used to navigate quickly to the requested attribute
without significant overhead. In Section 4.2.5, we show the
effect of different sampling rates in the query execution
performance.

Batch 
Processing

Fig. 4. DiNoDB I/O decorator overview.

Vertical indexes. The positional map can reduce the CPU
processing cost associated with parsing and tokenizing data;
to provide the performance benefit of an index-based access
plan, DiNoDB uses a vertical index decorator that accommo-
dates one or more key attributes for which vertical indexes
are created at the end of the batch processing phase. Such
vertical indexes can be used to quickly search and retrieve
data without having to perform a full scan on the temporary
output file. Figure 3(b) shows the in-memory data structure
of a vertical index. An entry in the vertical index has two
fields for each record of the output data: the key attribute
value and the record row offset value. As such, every key
attribute value is associated with a particular row offset in
the data file, which DiNoDB nodes use to quickly access
a specific row of a file. As decorators generate metadata
in a single pass, the key attribute values are not required
to be unique or sorted. Each time when the vertical index
decorator receives a tuple, it generates the index entry for
this tuple which is output to a vertical index file.

Statistics. Modern database systems rely on statistics to
choose efficient query execution plans. Query optimization
requires knowledge about the nature of processed data
that helps ordering operators such as joins and selections;
however, such statistics are available only after loading the
data or after a pre-processing phase. Currently DiNoDB
I/O decorators can compute the number of records and
the number of distinct values for specific attributes from
the batch processing phase as the statistics of the output
data. To achieve this, our statistics decorator uses the near-
optimal probabilistic counting algorithm HyperLogLog [19].
Statistics on attribute cardinality are used by DiNoDB to
improve the quality of the query plans for complex queries,
e.g., involving join operations. Other kinds of statistics (e.g,
skew in the distribution of values per attribute) can be easily
supported by DiNoDB I/O decorators as long as there exist
a one-pass algorithm to generate them.

Implementation details. DiNoDB I/O decorators are
designed to be a non-intrusive mechanism, that seamlessly
integrates systems supporting the classical Hadoop I/O
API, such as Hadoop MapReduce and Apache Spark.

DiNoDB I/O decorators operate at the end of the batch
processing phase for each final task that produces output
tuples, as shown in Figure 4. Instead of writing output
tuples to HDFS directly, using the standard Hadoop I/O
API, the tasks use DiNoDB I/O decorators, which build a
metadata generation pipeline, where each decorator iterates
over streams of output tuples and compute the various
kinds of metadata described above. For example, to gener-
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Algorithm 1 Positional map generation.
1: procedure INITIALIZE
2: open pmstream
3: end procedure
4: procedure PROCESS(tuple)
5: tuple consists of key attr0 and value

[attr1, attr2, · · · , attrn]
6: initialize tuplestring, as an empty string
7: for attr ∈ [attr0, attr1, attr2, · · · , attrn] do
8: if attr is sampled then
9: offset← getLength(tuplestring)

10: pmstream.write(offset)
11: end if
12: tuplestring ← tuplestring+′,′+attr
13: end for
14: len← getLength(tuplestring)
15: pmstream.write(len)
16: tuple.setString(tuplestring)
17: pass tuple to next decorator
18: end procedure
19: procedure CLOSE
20: close pmstream
21: end procedure

ate positional maps, the positional map decorator executes
Algorithm 1: The positional map decorator is initialized by
opening a positional map file stream pmstream (line 1-3);
the decorator continuously receives tuples from which lists
of attributes can be extracted (line 5); for each tuple, the
decorator constructs string tuplestring by iterating through
all attributes (line 7-13); during string construction, the
offsets of sampled attributes are written to pmstream (line
8-11); when tuplestring is fully formed, its length is also
written to pmstream (line 14-15); then the original tuple
and its tuplestring is passed to the next decorator (line 16-
17); when all tuples are processed, pmstream is closed so
that the positional map file is finalized (line 19-21).

To use DiNoDB I/O decorators, Hadoop users need to
replace the vanilla Hadoop OutputFormat class by a new
module called DiNoDBOutputFormat. Our prototype cur-
rently supports the TextOutputFormat sub-class, which
allows DiNoDB to operate on textual data formats. Specifi-
cally, the DiNoDBTextOutputFormat module implements
a new DiNoDBArrayWritable class which is used to
generate both the output data and its associated metadata.
If users work with Spark, before saving their result RDD
to HDFS (by method saveAsTextFile) they need to first
cast that result RDD to a DiNoDBRDD, which internally uses
DiNoDBOutputFormat as OutputFormat class.

DiNoDB I/O decorators are configured by passing a
configuration file to each batch processing job in Hadoop or
by setting parameters of DiNoDBRDD in Spark. Users specify
which metadata to generate and indicate parameters, such
as the sampling rate to use for the generation of positional
maps and the key attributes for the generation of vertical
indexes.

Discussion. Although currently DiNoDB focuses on tex-
tual data format, the same idea of generating metadata
could also be applied to other data formats, like binary

Fig. 5. Architecture of the DiNoDB interactive query engine.

files. Depending on different input data format, generated
metadata may be different. For example, if the data is in FITS
[20] data format, positional map is not needed anymore
because each tuple and attribute is usually located in a well-
known location. However, vertical indexes and statistics
would still help.

3.3 The DiNoDB interactive query engine

At a high level (see Figure 5), the DiNoDB interactive query
engine consists of a set of DiNoDB nodes, orchestrated
using a massively parallel processing (MPP) framework.
In our prototype implementation, we use the Stado MPP
framework [21], which nicely integrates PostgreSQL-based
database engines. DiNoDB ensures data locality by co-
locating DiNoDB nodes with HDFS DataNodes.

In the following sections, we first describe the DiNoDB
client (Section 3.3.1) and the DiNoDB nodes (Section 3.3.2).
Then, we describe how DiNoDB achieves fault-tolerance
(Section 3.3.3).

3.3.1 DiNoDB clients

A DiNoDB client serves as entry point for DiNoDB in-
teractive queries. It provides a standard shell command
interface, hiding the network layout and the distributed
system architecture from the users. As such, applications
can use DiNoDB just like a traditional DBMS.

DiNoDB clients accept application requests (queries),
and communicate with DiNoDB nodes. When a DiNoDB
client receives a query, it fetches the metadata for the “ta-
bles” (output files of the batch phase) indicated in the query,
using the MetaConnector module. The MetaConnector (see
Figure 5) operates as a proxy between DiNoDB and the
HDFS NameNode, and is responsible for retrieving HDFS
metadata information like partitions and block locations of
raw data files. Using HDFS metadata, the MetaConnector
guides the DiNoDB clients to query the DiNoDB nodes that
hold raw data files relevant to the user queries. Additionally,
the MetaConnector remotely configures DiNoDB nodes so
that they can build the mapping between “tables” and the
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related HDFS blocks, including all data file blocks, posi-
tional map blocks and vertical index blocks. In summary,
the anatomy of a query execution is as follows: i) using
the MetaConnector, a DiNoDB client learns the location of
every raw file block and pushes the query to the respective
DiNoDB nodes; ii) the DiNoDB nodes process the query in
parallel; and finally, iii) the DiNoDB client aggregates the
result.

Note that, since the DiNoDB nodes are co-located with
the HDFS DataNodes, DiNoDB inherits fault-tolerance from
HDFS replication. If a DiNoDB client detects a failure of
a DiNoDB node, or upon the expiration of a timeout on
DiNoDB node’s responses, the DiNoDB client will issue the
same query to another DiNoDB node holding a replica of
the target HDFS blocks. We discuss DiNoDB fault-tolerance
in more details in Section 3.3.3.

3.3.2 DiNoDB nodes
The DiNoDB nodes are based on PostgresRaw [12], a query
engine optimized for in-situ querying. In the following,
we first briefly recall how PostgresRaw differs from native
PostgreSQL and then explain all the details behind DiNoDB
nodes, and differences with respect to PostgresRaw.

PostgresRaw. PostgresRaw is a centralized instantiation
of the NoDB paradigm [12], and is a variant of PostgreSQL
that avoids the data loading phase and executes queries
directly on data files. PostgresRaw adopts in-situ query-
ing instead of loading and preparing the data for queries.
To accelerate query execution, PostgresRaw tokenizes only
necessary attributes and parses only qualified tuples. More-
over, PostgresRaw incrementally builds a positional map,
which contains relative positions of attributes in a line, and
updates it during the query execution: as such, the more
queries are executed, the more complete and useful (for
performance) the positional map will be.

From PostgresRaw to DiNoDB nodes. DiNoDB nodes
instantiate customized PostgresRaw databases which exe-
cute user queries, and are co-located with HDFS DataNodes.
In the vanilla PostgresRaw [12] implementation, a “table”
maps to a single data file. Since the HDFS files are instead
split into multiple blocks, DiNoDB nodes use a new file
reader mechanism that can access data on HDFS and maps
a “table” to a list of data file blocks. In addition, the vanilla
PostgresRaw implementation is a multiple-process server,
which forks a new process for each new client session, with
individual metadata and data cache per process. Instead,
DiNoDB nodes place metadata and data in shared memory,
such that user queries – which are sent through the DiNoDB
client – can benefit from them across multiple sessions.

DiNoDB nodes can take advantage of the fact that data
is naturally partitioned into HDFS blocks to leverage mod-
ern multi-core processors. Hence, data and the associated
metadata can be easily accessed by multiple instances of
PostgresRaw, to allow node level parallelism. DiNoDB users
can selectively indicate whether raw data files are placed on
disk or in memory. Hence, DiNoDB nodes can seamlessly
benefit from a memory-backed file system to dramatically
improve query execution times.

Exploiting metadata. DiNoDB nodes leverage positional
map files generated in the pre-processing phase when exe-
cuting queries, instead of only populating them incremen-

tally as in PostgresRaw. In the case of the approximate
positional maps, DiNoDB nodes use the sampled attributes
as anchor points, to retrieve nearby attributes within the
same row, required to satisfy a query. When vertical indexes
are available, DiNoDB nodes use them to speed up queries
with low selectivity, by employing an index-based access
plan as a replacement for a full sequential scan. Both the
positional map and the vertical index files are loaded by a
DiNoDB node when the first query requires them. As our
performance evaluation shows (see Section 4), the metadata
loading time is almost negligible, when compared to the
execution time of the query.

Data update. If new data is injected to an existing
table without using DiNoDB I/O decorators (e.g., manually
upload), there is no associated metadata pre-generated. In
this case, DiNoDB nodes can still exploit the available
metadata and do not require new metadata for the newly
added data to process queries. Partially-available metadata
can still accelerate query execution. The missing metadata
can be generated incrementally after a few queries and
kept in DiNoDB nodes’ memory. HDFS is an immutable
filesystem, which means that both data and metadata can
not be modified after being written. If part of data is deleted,
the associated metadata needs to be deleted as well.

3.3.3 Fault tolerance

In a nutshell, the key idea behind DiNoDB fault tolerance is
to exploit HDFS n-way replication, in which every HDFS
block on a given node is replicated to n-1 other nodes.
As DiNoDB nodes co-locate with HDFS DataNodes, user
queries can be directed to multiple nodes: in case one node is
not available, DiNoDB clients automatically forward queries
to other nodes with replicas of the data. By virtue of pro-
active request redirection, DiNoDB can address the issues
related to latency-tail tolerance [22].

However, the default HDFS replication mechanism is
not suited for DiNoDB: indeed, HDFS does not guarantee
data and metadata generated by DiNoDB I/O decorators
to be replicated on the same nodes. For example, some
blocks assigned to DataNode D1 may be replicated across
DataNodes D2 and D3, whereas other blocks assigned to
D1 might be replicated differently, e.g., on DataNodes D4

and D5.
We thus proceed with the design of a new replication

mechanism for HDFS that is tailored to DiNoDB, which
achieves two objectives: (i) it co-locates data blocks with the
corresponding metadata blocks and (ii) it allows selecting
different “storage levels” for replicas, to save on cluster re-
sources. To address data/metadata co-location, our DiNoDB
prototype implements a per-node n-way replication. Every
block assigned to a given DataNode Di is systematically
replicated across the same DataNodes Dj and Dk. We are
aware that, on the long run, such simple approach may lead
the HDFS subsystem to be poorly balanced. An alternative
approach that we are currently considering is to create a new
Hadoop Output Format that, similarly to Apache Parquet
[11], supports “containers” that include data and metadata.
Finally, DiNoDB supports different storage levels across
replicas: as such, a “primary” replica can be tagged to be
stored in the HDFS ramfs mount point, while “secondary”
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replicas are instead stored in an HDFS disk-based mount
point [23].

4 EXPERIMENTAL EVALUATION

We now present a detailed experimental evaluation of DiN-
oDB using both real and synthetic datasets. We compare
DiNoDB against state-of-the-art data analytics systems, in-
cluding Impala, SparkSQL, Hive on Tez and Stado. Stado,
an MPP system based on PostgreSQL, needs to load the
data before executing queries, while Hive on Tez executes
queries directly on data files stored in HDFS. Impala and
SparkSQL can execute queries either directly on data files
or after creating a copy of data in a new file format such as
Parquet. Additionally, SparkSQL provides functionality to
cache data files in memory as Resilient Distributed Dataset
(RDD) [24].

Our goal here is to perform a comparative analysis across
all systems showing the aggregate query execution time, which
accounts for the total time to execute a certain number of
queries on temporary output data of the batch processing
phase. Additionally, we highlight the merits and applicabil-
ity of metadata generated by the DiNoDB I/O decorators.

4.1 Experimental Setup

All the experiments are conducted in a cluster of 9 machines,
with 4 cores, 16 GB RAM and 1 Gbps network interface each.
The underlying distributed file system is HDFS. Eight ma-
chines are configured as worker nodes (DataNode), while
the remaining one is acting as a coordinator (NameNode) in
HDFS. To avoid disk bottlenecks, all the datasets are stored
in HDFS with a ramfs mount point on each DataNode.

We compare DiNoDB with Impala (version 1.4), Spark-
SQL (version 1.1.0), Hive (version 0.13.1) on Tez (version
0.4.1) and PostgreSQL-based Stado. For DiNoDB, we assign
3 out of 4 cores to a DiNoDB node and we balance the data
of the underlying HDFS file system across the 3 cores. The
fourth core acts as a server and coordinates the three client-
sessions of PostgresRaw. All the other systems also fully
utilize CPU resources, either by multithreading (Impala
and SparkSQL) or by multiprocessing (Hive on Tez and
PostgreSQL-based Stado). In our experiments, we evaluate
SparkSQL in two ways: i) by caching the entire table in
memory as RDD before query execution (we label this
variant of SparkSQL as SparkSQLc); and ii) the “normal”
execution without caching (labeled as SparkSQL). Similarly,
we evaluate Impala in two ways: i) by converting the dataset
from text format to Parquet format before query execution
(labeled as ImpalaP); and ii) the “normal” execution without
converting (labeled as ImpalaT). A brief comparison among
these systems can be found in Table 1.

4.2 Experiments with synthetic data

In this section, we use a synthetic dataset of 70 GB contain-
ing 5∗107 tuples. Each tuple has 150 attributes with integers
uniformly distributed in the range [0-109). The DiNoDB I/O
decorators already produce a 3.5 GB positional map file
(with 1/10 sampling rate) and a 1.1 GB vertical index file,
where we choose the first attribute as the key attribute.
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Fig. 6. DiNoDB vs. other distributed systems: Positional map reduces
the cost of accessing data files.

We use as input a sequence of SELECT PROJECT SQL
queries that effectively simulate the kind of workload in a
data exploration use case, which involves mainly filtering
and selecting subsets of data. We discuss the exact queries
in more detail in each experiment.

4.2.1 Random queries (stressing PM)
In this experiment, we show the benefit of using po-
sitional maps in DiNoDB. We use as input a se-
quence of 10 SELECT PROJECT SQL queries of the fol-
lowing template: select ax from table where ay <
100000. Attributes ax and ay are randomly selected and the
selectivity is 0.1‰. We examine two categories of systems
that evaluate queries i) directly on data files and ii) on
loaded data. Specifically, Hive on Tez, SparkSQL, ImpalaT
and DiNoDB execute queries directly, without any data
loading process. ImpalaP and Stado require to load the data
before querying, while SparkSQLc uses the first query to
load the data in a memory-backed RDD (lazy loading).

Figure 6 plots the query execution time of the 10 queries.
For queries over loaded data we also report the required
loading time. Considering the aggregate query execution
time for the 10 queries, DiNoDB is more than three times
faster than the second fastest system, ImpalaT. Additionally,
when it comes to individual query times DiNoDB consis-
tently outperforms systems executing queries on data files.
DiNoDB achieves that by exploiting the positional map that
is generated by the DiNoDB I/O decorators to reduce the
CPU cost of accessing data files (parsing and tokenizing).
On the other hand, SparkSQLc, ImpalaP, and Stado achieve
shorter query execution times only after spending 150,
155 and 2352 seconds, respectively, for data loading. In
Section 4.2.3, we further investigate the trade-off between
initially investing time to prepare the data for querying
versus quickly accessing the data on files.

4.2.2 Key attribute based queries (stressing VI)
In this experiment, we demonstrate the impact of exploiting
the vertical indexes in DiNoDB. We use as input a sequence
of 10 SELECT PROJECT SQL queries following the template:
select ax from table where akey < 100000. The
attribute in the WHERE clause is no longer a random at-
tribute, but the attribute which we set as the key attribute by
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TABLE 1
Comparison of Systems

Systems DiNoDB ImpalaT ImpalaP SparkSQL SparkSQLc Hive on Tez Stado
Loading requirement no no yes no yes no yes

Indexing support
yes, by pre-

generated index no column-oriented no no no yes

505

289

69

5.8

159 169

2355

0

100

200

300

400

500

2300

2400

Hive on Tez SparkSQL ImpalaT DiNoDB ImpalaP SparkSQLc Stado

E
x
e

cu
ti

o
n

 T
im

e
 (

se
c)

Q10 Q9

Q8 Q7

Q6 Q5

Q4 Q3

Q2 Q1

load

...

Fig. 7. DiNoDB vs. other distributed systems: Vertical indexes signifi-
cantly improve DiNoDB’s performance.

an appropriate configuration of the DiNoDB I/O decorators.
The selectivity is again 0.1‰.

Figure 7 shows the query execution time of the query
sequence. DiNoDB significantly benefits from exploiting the
generated VI file to perform index scan access to the data
(saving CPU and I/O cost). Overall, the average query cost
of DiNoDB is less than 1 second. On the other hand, Hive on
Tez, SparkSQL and ImpalaT that do not have an indexing
mechanism, have similar performance as in the random
query experiment above. Since Stado uses PostgreSQL as the
local database system in our experiments, it supports index
scan on data. However, it needs an additional 9 seconds
delay for the index building phase, so in total (including the
data loading phase), Stado needs about 80 seconds before it
is able to execute any queries.

Vertical indexes dramatically accelerate query execution
in DiNoDB if queries hit the key attribute. In this experi-
ment, DiNoDB’s query execution time is competitive com-
pared to Stado, ImpalaP and SparkSQLc (besides the first
query which is very slow for SparkSQLc). However, unlike
those systems, DiNoDB does not require any data loading
phase. Again, considering the aggregate query execution
time for 10 queries, DiNoDB is more than 10 times faster
than the second fastest system we study, ImpalaT.

4.2.3 Break-even point
In the previous experiments we show that for a relatively
low number of queries, DiNoDB outperforms other dis-
tributed systems. In this experiment, we are interested in
finding the break-even point, that is the number of queries
DiNoDB can execute before its performance becomes equal
or worse than the alternative systems. To this end, we
use the same dataset and the same query patterns as in
Section 4.2.1, for a sequence of 200 queries. We compare
DiNoDB with Stado, SparkSQLc and ImpalaP.
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Fig. 8. DiNoDB is a sensible alternative for data exploration scenarios
even for a long sequence of queries.

The results, shown in Figure 8, indicate that for this
workload, 100 queries represent the break-even point. If
users execute less than 100 queries on temporary data,
DiNoDB outperforms alternative approaches. For more than
100 queries, ImpalaP and SparkSQLc perform better than
DiNoDB. In this case, the cost of converting the initial
dataset to Parquet and RDD, respectively, is amortized.
Clearly, a large number of queries on temporary output data
as part of the illustrative exploratory use cases we consider
in this work, is unlikely, making DiNoDB a sensible choice.

4.2.4 Impact of data format
In the previous experiments we compared different data an-
alytics systems assuming native, uncompressed, data format
such as text-based CSV (or JSON). For Impala, in partic-
ular, we considered the transformation from text-based to
the columnar Parquet format (ImpalaP) as the “loading”
phase of ImpalaP. Although we expect our assumption of
raw, text-based input to be reasonable for temporary data of
various applications (with such temporary data being the
focus of this paper and DiNoDB), one may argue that the
comparison to ImpalaP has not been entirely “fair” so far
— as a user may write the output of a Hadoop job directly
in Parquet format making it ready for ImpalaP and hence
avoiding the need for loading/conversion phase.

Here, we compare the raw performance of ImpalaP
(with data already in Parquet format) and DiNoDB (with
data in text-based CSV format), with ImpalaT (using also
text format) as a reference. We run a sequence of SE-
LECT PROJECT queries, varying the number of projected
attributes from 1 to 150 (i.e., all attributes, where the query
boils down to a “select * from table where ax <
100000” query), while keeping the 0.1‰ selectivity and
running 50 queries per experiment.
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Fig. 9. Latency in function of the number of projected attributes.

19.8
22.2

25.1
26.9

29.5
32.9

3.5

1.5

0.8
0.5

0.1 0
0

0.5

1

1.5

2

2.5

3

3.5

4

0

5

10

15

20

25

30

35

1 per 10 1 per 25 1 per 50 1 per 75 only row
length

no pm

M
et
ad

at
a 
si
ze
 (G

B)

Ex
ec
ut
io
n 
Ti
m
e 
(s
ec
)

Sampling rate of positional map

query execution time

metadata size

Fig. 10. Different sampling rate of positional map.

Figure 9 shows the average query latency with standard
deviation against the number of projected attributes. This
experiment shows that ImpalaP and DiNoDB consistently
outperform ImpalaT, but that the comparison between Im-
palaP and DiNoDB is not conclusive. ImpalaP outperforms
DiNoDB for a relatively small number of projected attributes
(i.e., less than 30 attributes), whereas DiNoDB has the edge
when the number of projected attributes is larger. We can
also observe that the performance of DiNoDB is relatively
constant with respect to the number of projected attributes,
which makes it suitable for a wide range of ad-hoc queries.
Besides pre-generated metadata, another advantage of DiN-
oDB comes from the feature inherited from PostgresRaw
[12] called selective parsing: DiNoDB delays the binary trans-
formation of projected attributes until it knows that the
selectivity condition is satisfied for the given tuple. Since
the selectivity of queries is very low, DiNoDB significantly
reduces the CPU processing costs compared with ImpalaT
and ImpalaP.

4.2.5 Impact of approximate positional maps
As we described in Section 3.2, we use a uniform sampling
technique to keep PM metadata small. We investigate how
different sampling rates of PM influence query execution
cost. We use the same dataset and query sequence as in

Section 4.2.1. We vary the sampling rate of PM from 1/10,
1/25, 1/50, 1/75, 0 (only containing the length of row) to no
PM at all.

The results, shown in Figure 10, illustrate the trade-off
between query execution time and space constraints. With
more positions kept in the PM, DiNoDB achieves lower
query execution times, but the metadata file of PM is larger.
If a user is more sensitive to query execution time, she can
choose a more aggressive sampling rate of PM. Otherwise,
if cluster resources are limited, users can choose lower
sampling rates, which result in smaller PM files. Besides
pre-generated PM metadata, DiNoDB also incrementally
generates PM during query execution. Therefore, as shown
in Figure 10, the difference in query execution time is more
significant in the first few queries when PM is not detailed
enough.

4.2.6 Scalability

In this section, we study the scalability of DiNoDB, com-
pared to ImpalaT. Both systems perform a sequential scan
operation (i.e., in case DiNoDB uses the positional map but
not the vertical index).

Scaling the number of attributes. In this experiment,
we fix the number of records (rows) of the synthetic dataset,
but we vary the number of attributes in the range between
25 and 200 attributes (dataset size from 12 GB to 96 GB).
For each of these datasets, we execute a sequence of 50
SELECT PROJECT SQL queries in the same template as
in Section 4.2.1. The average query execution time with
standard deviation of DiNoDB and ImpalaT are shown in
Figure 11(a). DiNoDB average query execution time is al-
most constant when the number of attributes grows thanks
to PM metadata; clearly, PM metadata size grows with the
number of attributes in the data. Instead, ImpalaT scales
linearly with the number of attributes since it needs to parse
every attribute (or byte) in a row: hence, it needs more
CPU cycles when there are more attributes. ImpalaT has
roughly the same performance as DiNoDB when there are
25 attributes. However, if the number of attributes exceeds
50, which is often the case the data analytics scenarios of
our use cases, ImpalaT needs much more time to execute a
query than DiNoDB.

Scaling the dataset size. In this experiment, we keep
constant the number of attributes to 100, and vary the num-
ber of records (rows) in the synthetic dataset. We compare
DiNoDB and ImpalaT when dataset size ranges between 25
and 100 GB, by executing 50 SELECT PROJECT SQL queries
on each dataset. The average query execution time with
standard deviation is shown in Figure 11(b). We observe
that both ImpalaT and DiNoDB average query latency scale
linearly with the dataset size. However, the slope for DiN-
oDB is less steep than that of ImpalaT.

Discussion. The DiNoDB I/O decorators that generate
PMs are crucial for the performance of DiNoDB, especially
for datasets with many attributes. Note, that our prototype
implementation of DiNoDB does not enjoy many of the
important optimizations that are available for Impala, such
as efficient data type handlers, just-in-time compilation and
so on.



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 10

25 50 100 150100 200
0

2

4

6

8

10

12

14

Number of Attributes

A
vg

 Q
u

er
y 

E
xe

cu
ti

o
n

 T
im

e(
se

c)

 

 

ImpalaT

DiNoDB

(a) scaling the number of attributes

25 50 75 100
0

2

4

6

8

10

12

14

Dataset Size (GB)

A
vg

 Q
u

er
y 

E
xe

cu
ti

o
n

 T
im

e 
(s

ec
)

 

 

ImpalaT

DiNoDB

(b) scaling the dataset size

Fig. 11. DiNoDB vs. ImpalaT: Scalability.

4.3 Experiments with real life data
In this section, we give two examples of use cases we
describe in Section 2 using real life data. One is a topic
modeling use case and the other is a data exploration use
case. In both examples, we show the query performance in
different systems as well as the overhead of DiNoDB I/O
decorators in the batch processing phase.

4.3.1 Experiment on machine learning
Here, we focus on a topic modeling use case, described in
Section 2.1. We use a 40 GB dataset collected by Symantec2,
consisting of roughly 55 million emails (in JSON format)
tagged as spam by their internal filtering mechanism. To
better understand the features of these spam emails, data
scientists in Symantec often try to discover topics that occur
in these collections of emails. In this experiment, we first
play the role of a data scientist involved in topic modeling,
and use Apache Mahout (version 0.11), a scalable machine
learning library for Hadoop MapReduce. The CVB algo-
rithm is iterative, and thus consists of multiple Hadoop
MapReduce jobs with many intermediate data outputs.
Since users are usually only interested in the final output, we

2. Symantec: www.symantec.com
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Fig. 12. The processing time of the last stage of topic modeling with
Mahout.

instruct our DiNoDB I/O decorators to generate metadata
solely in the last stage, upon algorithm termination, in
which the distribution of documents and topics is finalized.

DiNoDB I/O decorators overhead. First, we compare the
Mahout topic modeling job to the one assembled with our
DiNoDB I/O decorators, to study the overhead that it may
impose on the pre-processing phase. In general, machine
learning algorithms executed on large datasets take quite a
long time to complete. Topic modeling is not an exception; in
our experiments, we set the two most important parameters
of CVB to 20 topics and 5 iterations3. We run both the
Mahout topic modeling job with DiNoDB I/O decorators
and without DiNoDB I/O decorators4. The resulting output
file is a text file of roughly 23 GB, containing the probability
matrix with 55 million rows and 21 columns. The metadata
which is generated by our DiNoDB I/O decorators mecha-
nism is about 880 MB (with 1/5 sampling rate for positional
map).

The overall runtime of Mahout topic modeling job is
approximately 5 hours and 40 minutes. In particular, we
run the last stage both without DiNoDB I/O decorators and
with DiNoDB I/O decorators 10 times to measure the over-
head of DiNoDB I/O decorators. The average processing
time with standard deviation of the last stage is shown in
Figure 12, which shows that the overhead of DiNoDB I/O
decorators is about 16 seconds. This overhead, relative to the
processing time of the last stage and the overall runtime of
Mahout topic modeling job, demonstrates that the overhead
introduced by our DiNoDB I/O decorators is essentially
negligible.

Query performance. In this experiment, we query the
output of the topic-modeling phase: the output data file
is a “doc-topic” table, in which each row consists in a
document identifier and the probability that such document
belongs to each of the 20 topics. Hence, the output data
file has one INT attribute (docid, which also serves as

3. These parameters have been discussed with domain experts, who
require a reasonable number of topics for manual inspection.

4. Native Mahout outputs results of topic modeling in binary through
SequenceFileOutputFormat class and needs command vectordump to
transform data to text format. In contrast, in our experiment we let
Mahout output results in text format directly by replacing Sequence-
FileOutputFormat class with TextOutputFormat class (without DiNoDB
I/O decorators) or DiNoDBTextOutputFormat class (with DiNoDB I/O
decorators)
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Fig. 13. Query execution time in machine learning use case (Symantec
dataset).

the key attribute) and 20 FLOAT attributes (probabilities).
In order to understand if spam emails are well assigned
to different topics, we would like to know which subset
of emails have the highest probability to be in each topic.
Therefore, the queries we execute with DiNoDB choose the
top-10 spam emails per topic, sorted by probability mea-
sure: select docid, p_topic_x from table order
by p_topic_x desc limit 10, where docid is docu-
ment (email) id and p_topic_x is the probability of that
document belonging to topic x. Note that, since the queries
are not based on the selectivity of the key attribute (docid),
DiNoDB does not use VI, and solely relies on the PM file to
improve performance.

The result of a 10-query sequence for each system is
shown in Figure 13. For a fair comparison, we penalize
DiNoDB by adding the 16 seconds overhead of DiNoDB
I/O decorators (as seen in Figure 12) to the query execution
time of DiNoDB, although we believe that users are much
more sensitive to the latency in interactive analytics than
the latency in batch processing. With the help of posi-
tional map file generated by the DiNoDB I/O decorators,
DiNoDB still achieves one of the shortest execution times
for this sequence of queries, being only slightly slower
only from ImpalaP and ImpalaT even though the overhead
from batch processing was taken into account. Notice that
if the overhead of DiNoDB I/O decorators in the batch
processing phase is not considered in the query execution
time, DiNoDB achieves the shortest execution time. Like in
Section 4.2 SparkSQLc, ImpalaP and Stado have very short
single query execution cost, which is less than 1 second, but
they all need to first load data. Note that, if we compare the
loading time of SparkSQLc and ImpalaP with their loading
time in section 4.2, we find that Impala has a better support
for data type FLOAT than SparkSQL.

4.3.2 Experiment on data exploration
In this section, we focus on the data exploration use case,
described in Section 2.2. We use a trace file which is the
result of merging all the log files of Ubuntu One5 servers
for 30 days (773 GB of CSV text). Now, let’s assume that a
user is interested in knowing the features of files stored in

5. http://en.wikipedia.org/wiki/Ubuntu One
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Fig. 14. The batch processing time in data exploration use case (Ubuntu
One dataset)

Ubuntu One. To better analyze this trace, this user filters out
unnecessary information like server’s RPC logs and creates
a new data file called “FileObject” in which original trace
is reorganized based on files. So, this user chooses to write
Hadoop programs to pre-process the trace file.

DiNoDB I/O decorators overhead. Here, we compare
the normal Hadoop pre-processing job to the one assem-
bled with DiNoDB I/O decorators, to study the overhead
brought by DiNoDB I/O decorators. In “FileObject” file,
each row/record represents a file stored in Ubuntu One
server. Each row has 26 attributes, giving detailed informa-
tion, e.g., mime type, creation time, file size, etc. To produce
this “FileObject” file, we run both the original Hadoop job
and the Hadoop job with DiNoDB I/O decorators 10 times.
The resulting output is about 40 GB in size, containing in-
formation of 137 million unique files. A 2.2 GB PM metadata
file is generated by DiNoDB I/O decorators mechanism
(with 1/10 sampling rate). As shown in Figure 14, the av-
erage processing time of original Hadoop job is 1 hour and
13 minutes and 28 seconds. With DiNoDB I/O decorators,
the Hadoop job needs about 20 seconds extra time, which
is 0.45% of the total batch processing cost. This overhead of
DiNoDB I/O decorators is also negligible as in the machine
learning use case.

Query performance. In this experiment, we compare the
performance of the aforementioned systems when quering
the result data file, “FileObject”. The queries6 we use in this
experiment compute, for example, the number of distinct
file extensions that users of the Ubuntu One service store,
how many times the most popular file is downloaded, etc.
The result of a 10-query sequence is shown in Figure 15.
For a fair comparison the 20 seconds overhead of DiNoDB
I/O decorators (as seen in Figure 14) is added to the query
execution time of DiNoDB. We find that query execution
time of SparkSQLc, ImpalaP and Stado is much longer than
in the previous experiments. That’s because the queries
executed in this experiment are more complex, by selecting
more attributes and using operators like group by and
aggregation. DiNoDB outperforms alternative systems ex-
cept ImpalaT when considering total query execution time
including DiNoDB I/O decorators overhead.

6. www.eurecom.fr/∼tian/dinodb/ubuntuone.html provides details
on the dataset schema and the queries we used in our experiments.
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Fig. 15. Query execution time in data exploration use case (Ubuntu One
dataset).

We note that, in this experiment as well as the respective
experiment in Section 4.3.1, ImpalaT query performance is
on par with that of DiNoDB (without DiNoDB I/O deco-
rators overhead). This is because when there are not many
attributes (e.g., 20), the advantage of DiNoDB is not that
obvious, as we demonstrated in Section 4.2.6.

4.4 Impala with DiNoDB I/O decorators
Metadata generated by DiNoDB I/O decorators in the batch
processing phase can also be beneficial to other systems:
they are not confined to be used in conjunction with DiN-
oDB. In this section, we present how Impala performs when
we implant the DiNoDB I/O decorators in the workflow.

In this experiment, an Impala user operates on the
output data generated by a batch processing phase on the
Ubuntu One server logs described previously. Let’s assume
the user wants to compute the number of times that files
of a particular type, which are stored on the Ubuntu One
service, are downloaded during a given period of time.
In this case, in addition to the “FileObject” output file, a
“DownloadRecord” output file is also produced in the batch
processing phase. In “DownloadRecord” file, each record
represents a download operation from Ubuntu One servers.
Thus, our user instructs Impala to join two output data
files. We run Hadoop jobs with and without DiNoDB I/O
decorators 10 times to measure the overhead of DiNoDB
I/O decorators when only statistics decorator is used. The
average batch processing time with standard deviation is
shown in Figure 16 which shows that, on average, statistics
decorator only brings an extra 8 seconds overhead.

Next, we compare Impala in three situations: i) executing
queries without statistics, ii) executing queries after generat-
ing statistics using the built-in command “Compute Statis-
tics” and iii) executing queries with statistics generated by
DiNoDB I/O decorators during the batch processing phase7.
We execute 4 queries in each case and we show the results in
Figure 17 where the overhead of statistics decorator is also
included. In the first case, without statistics, Impala cannot
choose an optimal query plan for the join operator, so the
query execution time is the longest. In the second case, the
query latency is quite short, but Impala needs to spend more

7. Statistics metadata can be passed to Impala by injecting them into
the Impala metastore
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than 1 minute to generate statistics before it can execute
the queries. With DiNoDB I/O decorators, Impala achieves
the lowest execution time even with the overhead from
batch processing: this demonstrates the flexibility of our
approach, and validates the design choice of piggybacking
costly operations in the batch processing phase.

5 RELATED WORK

Several research works and commercial products com-
plement the batch processing nature of Hadoop/MapRe-
duce [1], [25] with systems to query large-scale data at
interactive speed using a SQL-like interface. Examples of
such systems include HadoopDB [26] and Vertica [27]. These
systems require data to be loaded before queries can be ex-
ecuted: in workloads for which data-to-query time matters,
for example due to the ephemeral nature of the data at hand,
the overheads due to the load phase, crucially impact query
performance. In [28] the authors propose the concept of
“invisible loading” for HadoopDB as a technique to reduce
the data-to-query time; with invisible loading, the loading
to the underlying DBMS happens progressively and on
demand during the first time we need to access the data. In
contrast to such systems, DiNoDB avoids data loading and
is tailored for querying raw data files leveraging metadata.
Such files are built in DiNoDB with a lightweight piggy-
backing mechanism for workloads involving a preliminary
data processing phase such as machine learning and data
exploration use cases.
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Shark [29] presents an alternative design: it relies on
a novel distributed shared memory abstraction called Re-
silient Distributed Datasets (RDDs) [24] to perform most
computations in memory while offering fine-grained fault
tolerance. Shark builds on Hive [6] to translate SQL-like
queries to execution plans running on the Spark system
[2], hence marrying batch and interactive data analysis.
Recently, SparkSQL [30] was announced as the Shark re-
placement in the Spark stack, as the new SQL engine for
Spark designed from ground-up. The main characteristic
of SparkSQL is that, just like Shark, it works with Spark’s
RDDs. Hence, both SparkSQL and Shark require a variant of
data loading, to transform the raw HDFS data file and bring
it into the RDD representation, in order to benefit fully from
the Spark’s in-memory low-latency processing. In contrast,
DiNoDB achieves low latency while working on raw files,
entirely avoiding data loading.

Impala [7] is a state-of-the-art massively parallel pro-
cessing (MPP) SQL query engine that runs in Hadoop. As
such, Impala is probably the closest system to DiNoDB.
However, while co-located with Hadoop, Impala does not
leverage the possible synergy between batch processing of
Hadoop and analytics power of a MPP SQL query engine.
In this paper, we exactly propose such a synergy, and build
DiNoDB to validate our approach. Namely, in DiNoDB
batch processing generates metadata (e.g., positional maps
and vertical indexes) that helps expedite SQL analytical
queries. In this work, we demonstrate that the synergy
between batch processing and query engines is beneficial
for the analytical phase.

SCANRAW [31], [32] is proposed as a novel database
physical operator, which loads data speculatively using
available I/O bandwidth. PostgresRaw [12] is a centralized
DBMS that avoids data loading and transformation prior to
queries. DiNoDB leverages PostgresRaw as a building block
to obtain DiNoDB nodes, which are to be seen as enhanced
version of PostgresRaw (see Section 3.3.2 for detailed com-
parison between DiNoDB nodes and PostgresRaw). A crit-
ical difference between DiNoDB and these works is that,
DiNoDB is a distributed, massively parallel system for
large-scale data analytics integrated with Hadoop batch
processing framework, whereas PostgresRaw and SCAN-
RAW are centralized database solutions. Dremel [33] and
GLADE [34] adopt multi-level aggregation to overcome
single node bottleneck. This approach could be applied to
DiNoDB to improve its scalability in future work.

Finally, DiNoDB shares some similarities with several
research work that focuses on improving Hadoop perfor-
mance. For example, Hadoop++ [35] modifies the data
format to include a Trojan Index so that it can avoid full
file sequential scan. Furthermore, CoHadoop [36] co-locates
related data files in the same set of nodes so that a future
join task can be done locally without transferring data in
network. However, these systems require users to write spe-
cific Hadoop program, which could be complex and hard.
Therefore, neither Hadoop++ nor CoHadoop are suitable for
interactive raw data analytics, like DiNoDB is.

To conclude, we compare our current version of DiNoDB
with a preliminary version, presented in [37]. The prelim-
inary version of DiNoDB used HadoopDB to orchestrate
DiNoDB nodes, which suffered from the inherent overhead

of the HadoopDB framework when it came to interactive
queries. Therefore, we replaced HadoopDB with a mas-
sively parallel architecture, but had to address fault toler-
ance of such an architecture. Moreover, our current version
of DiNoDB introduces DiNoDB I/O decorators, which are
easy to implement and help couple batch layer and serving
layer more seamlessly. As a result, our current version of
DiNoDB outperforms state-of-the-art analytics systems such
as SparkSQL and Impala, for temporary data.

6 CONCLUSION

Parallel data processing systems such as Hadoop MapRe-
duce have received increasing attention, for their promise to
analyze any amount or kind of data. However, with such
systems, users had to move and load the data produced in
the batch-processing phase into a fast relational database,
to achieve interactive-speed data manipulation. The specter
of “leaving something important behind” related to data
movement and adaptation has led academics and the in-
dustry to designing new systems that would expose a
standard, interactive way to manipulate data, while being
fully integrated in a growing ecosystem of data processing
tools.

In this work, we presented the architecture of DiNoDB,
a distributed system tuned for interactive-speed queries
on temporary data files generated by large-scale batch-
processing frameworks. As shown by our extensive exper-
imental evaluation, for the use-cases DiNoDB targets – ad
hoc queries on a narrow processing window, our system
outperforms current SQL-on-Hadoop solutions. DiNoDB
uses a decorator mechanism that enhances the standard
Hadoop I/O API and piggybacks the creation of auxiliary
metadata required for interactive-speed query performance.
In addition, DiNoDB I/O decorators seamlessly integrate
with existing frameworks and distributed storage systems.

Our experimental evaluation, that we do on both syn-
thetic and real-world datasets, highlights the key benefits
of DiNoDB in a number of prominent use cases, making it
suitable for a wide range of ad-hoc analytical workloads.
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