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Abstract—Cooperative localization based on Impulse Radio -
Ultra WideBand (IR-UWB) is known to provide a centimeter-
level ranging resolution when the anchor nodes have perfectly
known positions. In Vehicular Ad-Hoc Networks (VANETs),
vehicles acting as “virtual anchor” nodes are highly mobile with
imperfect GNSS position estimates. The large difference between
measurement noises of the (Global Navigation Satellite Sys-
tem) GNSS position and the IR-UWB (Vehicle-to-Vehicle) V2V
ranging creates a bias in the localization filter, which is co-
operatively propagated to other anchor nodes, and therefore
significantly attenuates the benefits of IR-UWB for cooperative
localization. This paper compensates this drawback by a novel
2-step cooperative localization fusion framework. It first selects
the “virtual anchor” nodes with the lowest GNSS position
uncertainty to mitigate and stop the propagation of the bias.
Once all bias have been reduced, it refines the localization
precision through exhaustive fusion between “virtual anchors”.
This strategy increases the probability to reach a 40 cm precision
from 25% (conventional IR-UWB) to 95%, and even a 20cm
precision from 5% to 40%.

I. INTRODUCTION

Cooperative Intelligent Transport Systems (C-ITS) appli-
cations based on Vehicular Ad hoc NETworks (VANETs)
assume the availability of a Global Navigation Satellite Sys-
tem (GNSS) to provide each vehicle with its geo-positioning.
Although sufficient for Day-1 C-ITS applications (e.g. route
navigation, road hazard warning, or networking. . . ), the GNSS
accuracy, reliability and availability are clearly not suffi-
cient for Day-2 applications (e.g. Highly Autonomous Driv-
ing (HAD), safety of Vulnerable Road Users (VRU). . . ), which
require a constant centimeter-level localization accuracy. Co-
operative Localization (CLoc) is a promising strategy aiming
at reaching such high localization accuracy.

Conceptually speaking, CLoc in a VANET context increases
vehicles absolute geo-localization by considering their neigh-
boring vehicles as potential “virtual anchors” (i.e. anchor with
only approximate position knowledge). In this context, each
vehicle piggybacks its absolute geo-localization in a “Beacon”
sent over “V2X” technology1. Through the reception of these
“Beacons”, an “ego” vehicle becomes aware of the absolute
position estimate of its neighbors, and use the ’Beacon’ signal
statistics to further sample relative position information (e.g.
Vehicle-to-Vehicle (V2V) distances, relative angles. . . ). It then

1To remain technology neutral, a “Beacon” is a message periodically
broadcast by each node, while “V2X” (Vehicle-to-X) refers to any technology
capable of Device-to-Device (D2D) communication.

performs ad hoc trilateration and fuses with its on-board GNSS
position to enhance its own absolute geo-localization (See
Fig. 1). This vehicle in turn improves the geo-localization of
other vehicles by further broadcasting its enhanced position in
“Beacons”.

In literature, CLoc has already been applied in [1]–[3]
to fuse on-board GNSS estimates with opportunistic V2V
Received Signal Strength Indicators (RSSIs) out of “Beacons”
called Cooperative Awareness Messages (CAMs) [4] sent on
the V2X ITS-G5 technology2. The cooperative solution in [1]
is based on a dissimilarity matrix composed of V2V RSSI
measurements. The latter are injected as observations into an
Extended Kalman Filter (EKF), while using GNSS estimates
for initialization purposes only. In [2], [3], GNSS positions
and V2V RSSI measurements are combined within a global
EKF or Particle Filter (PF) framework, while compensating
for asynchronous input data. A major advantage of using
V2V RSSI is full compliance with future ITS-G5 connected
vehicles3. Yet, V2V RSSI is also known to provide limited
accuracy and reliability, especially in non-static multi-path
environments, where channel parameters (i.e., path loss, re-
flection, shadowing. . . ) fluctuate.

In this paper, we propose to replace the ITS-G5-based
RSSI by Impulse Radio - Ultra WideBand (IR-UWB) Time-
of-Flight (ToF). Compared to ITS-G5 RSSI, IR-UWB ToF
is known to provide centimer-level distance resolutions. Our
approach combines local on-board GNSS positions, neigh-
boring GNSS positions sent over ITS-G5 technology, and
ToF ranging from IR-UWB in a PF framework. Although
similar ideas were presented in [5], [6], they are limited to
general wireless sensor networks, not considering potential
low GNSS neighboring estimates from moving vehicles. Our
contributions are threefold: (i) we illustrate the bias created
and propagated by CLoc strategies when fusing two types of
estimates with strongly different uncertainties (e.g. GNSS and
IR-UWB ToF); (ii) we propose a two-step CLoc strategy to
mitigate such bias, selecting first the best “virtual anchors”
with lowest GNSS uncertainties to break the propagation
of the bias, then exhaustively fusing estimates from other
neighbors, once the bias has been mitigated; (iii) we compare

2CAM and ITS-G5 are European counterparts to the Basic Safety Mes-
sage (BSM) and Dedicated Short Range Communication (DSRC) in the US.

3ITS-G5 is expected to be available in every vehicle sold from 2019.
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Fig. 1. “Ego” car receiving CAMs and exchanging ranging frames RFRAME
from/with single-hop “virtual anchors” to perform distributed CLoc. The CLoc
position beliefs (i.e. through fused GNSS and ITS-G5 RSSIs/IR-UWB ranges)
are expected to be more concentrated than the non-CLoc position beliefs (i.e.,
standalone GNSS).

our strategy against various benchmarks and illustrate our
superior performance.

The paper is organized as follows. In Section II, we formu-
late the CLoc problem. In Section III, we describe the specific
issues related to IR-UWB measurements and introduce the
2-step CLoc scheme. In Section IV, comparative simulation
results are presented. Finally, Section V concludes the paper
and provides an outlook of remaining challenges.

II. GENERAL PROBLEM FORMULATION

A. Cooperative Localization in VANETs

We consider here a set of cooperative GNSS-equipped
vehicles exchanging CAMs over ITS-G5 technology. In ad-
dition, these vehicles are also endowed with IR-UWB ranging
capabilities. The goal of an “ego” vehicle is to infer its position
(as part of its so-called “state” in the following) based on its
own estimated GNSS position, on V2V IR-UWB ranges with
respect to 1-hop neighbors, and on imperfect state information
from these neighbors, viewed as “virtual” anchors (i.e., esti-
mated locations and their related uncertainties, encapsulated
in the CAMs). Fig. 1 illustrates the CLoc concept. We do not
consider V2I communications here to assist positioning, even
though Road Side Units (RSU) could be helpful (e.g., ITS-G5
or WiFi access points (APs) in most urban environments). Our
aim is to remain independent from any additional infrastruc-
ture (i.e., other than the GNSS infrastructure itself), which not
only significantly reduces deployment costs but also operates
seamlessly in infrastructure-less roads.

B. Overall System Model

We first define the state vector θi,k = [x†i,k,v
†
i,k]† of

vehicle i including, for a 2-D system, its position xi,k =
[xi,k, yi,k]† and its velocity vi,k = [vxi,k, v

y
i,k]† at discrete time

step k4 according to its local timeline. In the following, we
describe the models for vehicle localization and tracking.

1) Mobility Model: We consider a stochastic mobility
model suitable to vehicular contexts, referred to as the modi-
fied Gauss-Markov mobility model [3], as follow:

θi,k+1 =

[
I2 α∆T · I2

02 α · I2

]
θi,k + (1− α)

[
∆T · I2

I2

]
v̄i

+
√

1− α2

[
∆T 2 · I2

∆T · I2

]
wi,k,

(1)

where α is the memory level, ∆T the time step, v̄i = [vxi , v
y
i ]†

the asymptotic 2-D velocity, wi,k = [wxi,k, w
y
i,k]† the 2-D pro-

cess noise vector, I2 the identity matrix of size 2×2. Note that
we use this mobility model to perform the prediction of both
“ego” and neighbors’ estimated locations and resynchronize
related data before fusion, like in [2], [3].

2) Observation Model: This paper considers two different
measurements, which are interdependently produced by a
GNSS receiver and an IR-UWB transceiver respectively.

a) GNSS Absolute Position: The 2-D estimated GNSS
position, xGNSS

i,k = [zxi,k, z
y
i,k]†, is affected by an additive noise

term nGNSS
i,k = [nxi,k, n

y
i,k]†, which is assumed to be i.i.d.

centered Gaussian [2], [3], [7], as follows:

zxi,k = xi,k + nxi,k, zyi,k = yi,k + nyi,k. (2)

b) IR-UWB V2V Ranges: Through a cooperative ranging
protocol (e.g., based on the Time of Arrival (ToA) estimation
of transmitted packets involved in multiple-way handshake
transactions [8] , node i can estimate the V2V distance zj→i,k
with respect to node j:

zj→i,k = ‖xi,k − xj,ki‖+ nj→i,k, (3)

where nj→i,k is an i.i.d. centered Gaussian noise term with
standard deviation σUWB.

In the following fusion filtering scheme, input observations
can be composed of GNSS and/or UWB range measure-
ments, depending on the cooperation level. Generally, given
the set S→i,k of vehicle i’s neighbors used as “virtual an-
chors” at time ki, the full measurement vector is zi,k =
[zxi,k, z

y
i,k, . . . , zj→i,k, . . .]

†, j ∈ S→i,k.

C. Fusion Particle Filter

The key idea of Particle Filters (PF) is to approximately
represent the a posteriori density p(θi,k|z1:k) by a particle
cloud {θ(p)

i,k , w
(p)
i,k }Pp=1 of random samples θ(p)

i,k with associated
weights w(p)

i,k , and to compute a state estimate (e.g., according
to the Minimum Mean Square Error (MMSE) estimator) based
on these samples and weights. At time step ki, the PF recur-
sively updates the previous particle cloud {θ(p)

i,k−1, w
(p)
i,k−1}Pp=1

using the observation zi,k by doing prediction step (i.e.,
approximating the predicted posterior p(θi,k|zi,1:k−1)) and

4Due to asynchronously sampled time instants, the index k is different
from one vehicle to others. The subscript of the “ego” vehicle is dropped for
notation brevity.



correction step (i.e., computing these weights w
(p)
i,k rely-

ing on the likelihood function given current observations,
p(zi,k|θi,k, . . . ,θj,ki , . . .), j ∈ S→i,k). We then propose to
apply the PF described in Algorithm 1 as the core filter/fusion
engine of our CLoc framework. Several variants aiming at
reducing V2V channel congestion and CAM overhead (e.g.,
through simplified cloud representation) are also proposed
in [9].

Algorithm 1 Bayesian bootstrap (iteration k, “ego” vehicle i)
1: receive CAMs from the set N→i,k of perceived neighboring vehicles,

read the RSSI values (optional), and extract the neighboring particle
clouds θ

(p)
j,k∗ , p = 1 . . . P , j ∈ N→i,k

2: perform prediction/data resynchronization at the “ego” estimation in-
stance k (i.e., the global time ti,k)

θ
(p)
j,ki
∼ p

(
θj,ki

∣∣∣θ(p)
j,k∗

)
, j ∈ {i} ∪ N→i,k,

w
(p)
j,k|k−1

= w
(p)
j,k−1 = 1/P, p = 1, . . . , P,

and build the local dynamic map (LDM) of vehicle i’s neighbors as the
first output

θ̂j,ki
≈

P∑
p=1

w
(p)
j,k|k−1

θ
(p)
j,ki

=
1

P

P∑
p=1

θ
(p)
j,ki

, j ∈ N→i,k

3: check the ranging protocol to access the available IR-UWB ranges to
the set S→i,k of “virtual anchors” in its UWB piconet, manipulating
the measurement and the corresponding observation model

zi,k =


[
zxi,k, z

y
i,k

]†
, if non-fusion instant k,[

zxi,k, z
y
i,k, . . . , zj→i,k, . . .

]†
, if fusion instant k,

4: update new weights according to the likelihood based on

w
(p)
i,k ∝ p

(
zi,k

θ(p)
i,k , . . . ,θ

(p)
j,ki

, . . .
)
, p = 1, . . . , P,

normalize them to sum to unity, and compute the approximate mean as
the second filter/fusion output

θ̂i,k ≈
P∑

p=1

w
(p)
i,k θ

(p)
i,k

5: perform resampling and broadcast

III. IR-UWB-BASED COOPERATIVE LOCALIZATION

A. IR-UWB Range Accuracy vs. “Anchors” Uncertainty

In our data fusion framework described in Sec. II-B, two
modalities are used, namely the estimated positions (i.e.,
that of both “ego” and neighboring vehicles) and IR-UWB
range measurements with respect to neighboring vehicles. The
filter naturally weights these modalities according to their
uncertainties (i.e., relying on a priori covariance matrices).

The challenge behind IR-UWB cooperative localization is
related to the largely different levels of uncertainty between
these two modalities, i.e. the uncertainty of IR-UWB ranging
is rather small in comparison with that of the predicted position
(from GNSS, position prediction/resynchronization, out-of-
date CAMs...). Would these two modalities be uncorrelated,
the filter would easily reject the outlier. However, these two
modalities are strongly correlated, as the IR-UWB ranging
is only valid as function of the estimated position of the

True vehicle’s position Trilateration-based positional belief

Predicted/perceived positional belief Estimated positional belief

(a) (b)

Fig. 2. Simplified illustration of the effect of biased positions of “virtual
anchors” on “ego” filter correction with high-accuracy IR-UWB range mea-
surements.

sender. Accordingly, the filter will be influenced by the large
uncertainty and loose its correction power, as conceptually
illustrated on Fig. 2. We first consider on Fig. 2(a) the
case where both modalities have similar levels of uncertainty
(belief). When the ego vehicle receives the predicted position
and the IR-UWB ranging estimates, the filter manages to
reduce its own position uncertainty (i.e. red bold circle from
orange circle). But when the predicted position of the neighbor
includes a large bias, the IR-UWB in turn becomes strongly
biased and actually increases the uncertainty (belief) of the
estimated ego position and shift it further away from the true
position, as depicted as a bold red circle on Fig. 2(b).

Selecting the right “virtual” anchors is therefore critical in
IR-UWB cooperative localization, as each vehicle in turn will
cooperatively participate to the localization process, further
propagating its uncertainty and as such impacting the uncer-
tainty of its neighboring vehicles.

B. Two-Step Cooperative Localization Strategy

So as to cope with the previous harmful phenomena, we
propose a two-step CLoc procedure.

1) Bias mitigation step: This first step, called “bias mitiga-
tion”, let each vehicle selectively cooperates with neighbors
that have the presumably best estimated positions. This is
achieved by encapsulating the confidence level of estimated
position (e.g. GNSS position covariance matrix) either in
CAMs or in dedicated IR-UWB ranging packets. The Bayesian
Cramér-Rao Lower Bound (BCRLB)-based link selection pro-
posed in [3] is a potential strategy to the Bias mitigation step.
However, this solution cannot handle the case, where neigh-
bors’ position beliefs can be very concentrated but strongly
biased. A BCRLB-based link selection accounting only for the
variance will fail to remove the biased position estimates of
the “virtual” anchors. The approach followed here is to to let
vehicles equipped with high-class GNSS receivers (e.g., RTK,
PPP. . . ) inform their neighbors about their high reliability (i.e.,
through CAMs). Accordingly, neighboring vehicles may rely
on this information to avoid biased “virtual” anchors.



Fig. 3. Constellation of the evaluated VANETs and heterogeneous GNSS
configuration in highway scenario.

Then after a few iterations, by integrating only contributions
from presumably bias-free neighbors and thus by avoiding
bias propagation, all vehicles in the proximity will have
significantly reduced their own possible bias.

2) Accuracy refinement step: When the biases in the po-
sition estimates of the “virtual” anchors are alleviated, one
can then benefit from them as accurately localized neighbors.
In other word, exhaustive CLoc is preferred in this so-called
“accuracy refinement” step to boost the localization accuracy
to the fullest.

IV. SIMULATION RESULTS

We model a common 3-lane highway, where 10 ITS-G5
connected vehicles endowed with IR-UWB ranging capabili-
ties5 are driving steadily in a common direction at the average
speed of 110 km/h (i.e., ≈ 30 m/s) for 60 seconds, as shown
in Fig. 3. In this paper, we consider a realistic heterogeneous
scenario where vehicles have the same visibility to the satellite
constellation, but suffer from disperse and independent GNSS
levels due to different receiver capability (e.g., RTK, PPP vs.
basic receivers)6 as in [3] (See Fig. 3). We implemented the
2-step fusion framework described in Sec. II-B and Sec. III
on Matlab, where most relevant simulation parameters are
summarized in Table I, and the the different tested algorithm
are specified in Table II.

TABLE I
MAIN SIMULATION PARAMETERS.

Parameter Value

Memory level α 0.95
Tangential acc. uncertainty 1 [m/s2]
Perpendicular acc. uncertainty 0.1 [m/s2] (to satisfy road constraints)
Sampling period ∆T 0.1 [s]
Std. of GNSS x- or y-errors 1.5 [m] (non-degraded), 9 [m] (degraded)
GNSS rate 10 [Hz]
CAM rate 10 [Hz] (critical)
Std. of UWB ranging noise 0.2 [m]
Number of particles 1,000

TABLE II
DESCRIPTION OF DIFFERENT UWB CLOC SCHEMES

Scheme Degraded GNSS node Non-degraded GNSS node

Conventional CLoc Exhaust. CLoc Exhaust. CLoc

2-step semi-CLoc
Select. CLoc (first)

Non-CLoc (all)
Exhaust. CLoc (second)

2-step full-CLoc
Select. CLoc (first) Non-CLoc (first)

Exhaust. CLoc (second) Exhaust. CLoc (second)
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Fig. 4. Empirical CDF of localization errors considering degraded GNSS for
different schemes w.r.t. fused modalities and CLoc techniques.

A. Results

Fig. 4 and Fig. 5 compare the localization performance at
degraded GNSS vehicles in terms of empirical Cumulative
Density Functions (CDFs) and Root Mean Square Errors (RM-
SEs) respectively, whereas Fig. 6 shows similar comparison
at non-degraded GNSS ones by means of empirical CDFs.
As expected and in accord with previous studies from [2],
[3], [9], [10], the fusion of several modalities (e.g., on-board
GNSS position and ITS-G5 RSSIs/IR-UWB ranges) yields
localization accuracy gain comparing with the standalone
solutions (e.g., GNSS). Nevertheless, one expects that the
highly accurate IR-UWB ranges would considerably boost
the localization accuracy beyond what unreliable RSSIs could
give. However, as shown in the three figures (e.g., Fig. 4,
5, and 6), when being associated with conventional CLoc,
the fused GNSS+IR-UWB only provides comparable accuracy
with the combined GNSS+RSSI. The biased “virtual” anchors
strongly impact the conventional fusion of GNSS position and
IR-UWB ranges. Under degraded GNSS vehicles, it does not
produces any accuracy gain compared to GNSS+RSSI, while
in non-degraded GNSS vehicles, only modest improvements
are observed. This can be explained as follows. Our PF fuses
three source of information i.e., the predicted position, the

5We leave the investigation of a partial penetration of IR-UWB to future
work.

6We leave the investigation of a heterogeneous visibility to satellite con-
stellation to future work.



TABLE III
OVERALL PERFORMANCE COMPARISON OF DIFFERENT LOCALIZATION SCHEMES

Scheme Degraded GNSS vehicles Non-degraded GNSS vehiclesa

Med. [m] WC [m] P (0.2 m) P (0.4 m) Acc. gainb Med. [m] WC [m] P (0.2 m) P (0.4 m) Acc. gainb

Standalone GNSS 0.63 1.27 8.9% 29.9% – 0.22 0.43 46.6% 86.0% –
Conv. CLoc (RSSI) 0.48 0.91 14.4% 38.8% 23.8% 0.20 0.42 49.1% 87.7% 9.1%

Conv. CLoc (IR-UWB) 0.53 0.92 4.0% 24.8% 15.9% 0.23 0.37 42.6% 94.8% -4.5%
2-step semi-CLoc (IR-UWB) 0.41 0.64 5.1% 45.7% 34.9% 0.22 0.43 46.6% 86.0% 0.0%
2-step full-CLoc (IR-UWB) 0.24 0.34 36.17% 95.7% 61.9% 0.18 0.29 57.7% 99.7% 18.2%

a Remind that non-degraded GNSS vehicles do not cooperate in the 2-step semi-CLoc, hence, the accuracy performance is the same as that of the standalone filtered GNSS
approach.

b Accuracy gain (negative value in case of degradation) w.r.t. standalone filtered GNSS solution in median error (i.e., CDF = 50%).
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Fig. 5. Localization RMSE considering degraded GNSS as a function of time
for different schemes w.r.t. fused modalities and CLoc techniques.
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Fig. 6. Empirical CDF of localization errors considering non-degraded GNSS
for different schemes w.r.t. fused modalities and CLoc techniques.

GNSS positions, and the distance information to the imperfect
“virtual” anchors. The PF is tricked to put more confidence
on the UWB-based trilateration due to the small ranging
noise variance in the observation model. Accordingly, when

integrating the biased localized neighbors, the fused position
estimates also become biased. Furthermore, a closer look
at Fig. 5 (bottom) reveals that the trend in RMSE of the
two standalone GNSS and GNSS+RSSIs schemes are rather
similar, but are different from the GNSS+IR-UWB ranges
solution. It means the filter looks at the large RSSI noise
variance in the observation model, then decides to use these
RSSIs as an assistant modality after the predicted and GNSS
positions. In contrast, accurate IR-UWB ranges make the filter
mainly rely on them, therefore, the trend in the curves of
UWB-based CLoc approaches are different from that of GNSS
scheme. In case of non-degraded GNSS (See Fig. 6), the
bias effect does not seem to be severe. In this case, the
GNSS uncertainty is concentrated so the filer gives higher
weight to the GNSS estimate. Accordingly, it is able to correct
the bias caused by the trilateration procedure. However, the
performance gain is limited due to the same cause previously
described.

When employing the proposed 2-step CLoc, we observe
that when the biases in position estimates of the vehicles
are mitigated in the first step (See Fig. 5 (top)), the fused
GNSS+IR-UWB then yields to remarkable performance in
the “accuracy refinement” phrase. In particular, we observe
in Fig. 5 (top) that in spite of good initialization, conventional
GNSS+UWB ranges scheme performing exhaustive fusion
gets biased after only 3 iterations, then converges to inaccurate
values and give large confidence to them. The proposed
CLoc, however, waits until all vehicles’ position estimates
are improved by the bias refinement phase, then boosts the
performance by the exhaustive fusion phase. Between the
semi-CLoc and full-CLoc, we obviously show that the latter
solution is more effective and gives excellent accuracy. This
can be explained as non-degraded GNSS vehicles can also
improve their position estimates by cooperating with degraded
GNSS ones after the mitigation step, and because degraded
GNSS nodes benefit more by cooperating with more accurate
ones. Finally, Table III summarizes the overall performance
comparison. We show the probability to reach a 20 cm and
40 cm position accuracy in the case of degraded and non
degraded GNSS. Next to it, we provide the accuracy gain,
w.r.t the baseline standalone GNSS. We draw the attention that
the CLoc approach proposed in this paper provides a 40 cm
position accuracy (almost reaching 100% probability) in both



degraded and non-degraded GNSS. It even manages to provide
a 20 cm position accuracy with 36% and 57% probability
for degraded and non degraded GNSS respectively. This is a
straight 61% and 18% accuracy gain in degraded and non-
degraded GNSS respectively.

V. CONCLUSION

Cooperative Localization (CLoc) based on V2V Impulse
Radio - Ultra Wide Band (IR-UWB) range estimates is a
powerful strategy to increase up to a centimeter level the
precision of the absolute positions of future connected vehi-
cles. However, CLoc ends up being inefficient when fusing
measurements with strongly different uncertainties, which is
typically the case when fusing GNSS position estimates with
IR-UWB ranging estimates. We proposed in this paper a novel
2-step CLoc strategy specifically targeted at mitigating this
issue.

We illustrated how a bias is created by the GNSS large
uncertainties on the IR-UWB estimates, which is then fur-
ther propagated to other vehicles via cooperative position
exchanges. Our 2-Step strategy prevents bias propagation by
selectively using the best neighbors in the first step, then co-
operating with all neighbors to boost the localization accuracy
in the second step. This approach managed to provide a 40 cm
geo-localization precision with 95% probability (compared to
25% for GNSS+IR-UWB), and even a 20 cm precision up to
36% probability (against 4% for GNSS+IR-UWB).

Future works will consider how to estimate the biases in
order to capture the worst-case situation when all vehicles are
poorly localized (e.g., in urban canyons or tunnels). It will
also attempt to estimate the threshold between heterogeneous
uncertainties, above which the bias start penalizing CLoc.
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