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Coordinated Braking Strategies Supporting Mixed
Autonomous and Conventional Vehicles

Raj Haresh PATEL, Jérôme Härri

Abstract

Autonomous driving vehicles are becoming popular as a solution to reach
safe, efficient and comfortable mobility. However, at early market penetra-
tion, autonomous vehicles based on Cooperative ACC (C-ACC) policies will
have to co-exist in mixed traffic conditions with less autonomous vehicles,
such as Adaptive Cruise Control (ACC) or conventional vehicles. In this pa-
per, we introduce a simple concept by which vehicles with such advanced
technology would help avoid not only possible collisions onto other vehicles
in front (front end collisions) but also collisions of conventionally driven fol-
lowing vehicles onto itself (rear end collision), and this under non ideal cir-
cumstances, where vehicle gets informed about an obstacle later than usual
due to communication or sensing limitations. We show a superior perfor-
mance of our approach against a baseline ACC strategy, and our results en-
courage the possibility of keeping low inter vehicular spacing between con-
ventional and autonomous vehicles without fearing collisions.

Index Terms

Coordinated braking, coexistence, autonomous vehicle, conventional ve-
hicle, connected vehicle, V2X
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1 Introduction

An intelligent vehicle in our terminology is any vehicle which is able to take
smart decisions based on the geometry of the traffic, this vehicle which might be
required to be equipped with sensing technologies involving cameras, radars, li-
dars, etc for ACC and/or Vehicle to Vehicle (V2V) communication technology
for CACC. CACC based driving would involve communication between vehicles
for traffic flow where as ACC based driving would involve local decision making
based on distance and velocity as measured of immediate neighbors. CACC and
ACC equipped intelligent vehicles categorize under different levels of automation,
from 0: completely manually controlled conventional vehicle to 4: maximum com-
plete automation [1]. Current day CACC is categorized as level 2 automation. Such
intelligent vehicles with a sense of automation might solve a lot of issues related to
safety and traffic throughput.

Ideally, a full scale acceptance and adaptation of CACC based vehicles with
perfect automation (level 4), coordinating and cooperating within themselves to
drive would be desired. Platoons of such autonomous vehicles enabled with CACC
could provide even better results, but this could be foreseen not before a few
decades. At this early stage of deployment of autonomous vehicles, a mix of in-
telligent vehicles with different levels of automation and conventional manually
driven vehicles is seen. Thus we thus choose to work on this present day mixed
traffic scenario.

Figure 1: Mixed vehicular traffic scenario

From a controller perspective, behavior and control tasks for CACC in longi-
tudinal direction, (some also applicable to ACC) can be profiled into:
Profile 1. Speed control: when there are no vehicles in front
Profile 2. Vehicle following with gap maintaining strategies: when there is a vehi-
cle in front
Profile 3. Platoon related: forming or dissolution of a platoon
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Due to the high ratio of manually driven vehicles to intelligent vehicles, it is
more probable that an intelligent vehicle would have a manually driven vehicle as
its neighbor. Thus, either the autonomous vehicle would be travelling with no ve-
hicle in front(Profile 1.) and it may have a manually driven vehicle following it or
the autonomous vehicle would be behind a manually driven vehicle(Profile 2) as
depicted in fig.1. We focus on a scenario close to Profile 1 in this paper.

Statistics show around 25% of accidents happen with vehicle in front or with
the vehicle following [2]. Considering longitudinal motion, humans driving a ve-
hicle tend to react based on the vehicle in front and thus only care about preventing
accidents with the vehicle in front (front-end accident avoidance). The effect of
the behavior of the subject vehicle onto the following vehicle is not considered by
humans, leading to rear-end collisions. On the other hand, an intelligent vehicle
could consider vehicles at both ends and make an educated decision. Although in-
telligent vehicle can not force the following vehicle to act according to its wishes, it
can modify its own movement based on the actions of the following vehicle. How
can an intelligent vehicle avoid colliding with vehicle in front and play its part in
ensuring collision avoidance of the following vehicle onto itself even when the fol-
lowing vehicle doesn’t have ACC/CACC or AD is answered by us in the following
sections.

2 Problem Formulation

2.1 Mixed Traffic Scenario

Without loss of generality, we simplify the braking maneuver described in Fig-
ure 1 in a 1-D domain, consisting of an potential obstacle L, a C-ACC autonomous
vehicle A and a following regular vehicle B. de represents the distance to L re-
quiring an emergency braking by vehicle A in Fig. 2. dla ≥ de represents the
distance at which vehicle A becomes aware of the potential danger by object L
over V2X communication. Assuming an WiFi-based ITS-G5/DSRC technology
communicating over a 5.9GHz frequency band, dla is strictly bigger than the de-
tecting range of vehicleA own sensors. However, harsh communication conditions
(i.e. Non-Line-of-Sight, channel congestion. . . ) limit dla to a few hundred of me-
ters. In [3], An et al. investigated such typical emergency notification distance, and
notably considered that dla = 95.9m could be reached with 99.5% probability1.
Obviously, the longer dla, the lower is the probability for vehicle A to actually be
notified of the danger. We consider in this paper dla to be strictly bigger than de
(dla > de), so that vehicle A may use the distance ds = dla − de to adjust its brak-
ing strategy. DAB is the distance between vehicle A and vehicle B, which cannot

1Being notified of a danger by V2X technology at a distance D means receiving at least one
Emergency message before reaching distance D.
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Figure 2: Mixed traffic scenario considered in this paper, where autonomous vehi-
cle A detects an obstacle L via V2X communication.

be adjusted by vehicleA as in full C-ACC scenario, and only depend on vehicleB.
Finally, both vehicle A and vehicle B are assumed to drive at a similar speed V .

Considering the scenario previously described, vehicle A will be notified of a
danger and its C-ACC controller will initiate a braking maneuver. This paper will
investigate the capability of this maneuver to avoid an impact with the obstacle L
and also with the following vehicle B.

2.2 Braking Policy

The C-ACC vehicle A being isolated in mixed traffic with regular vehicle, its
maneuvering strategy will resemble that of baseline ACC. The Intelligent Driver
Model (IDM) [4], is a typical driving strategy implemented by industrial ACC [5].
The IDM is originally a microscopic traffic flow model falling in the case of Follow-
the-Leader models, and which therefore adjust a vehicle acceleration according
to the driving dynamics of the vehicle immediately following it. IDM has been
shown to not only avoid creating accident with preceding vehicles, and through
subsequent extensions (IIDM, IDM+) [6, 7] managed to optimize traffic capacity
and flow. We consider in this paper that vehicle A uses the IDM as part of its ACC.
Without loss of generality, the IDM may be modeled as follows:

aα = a ∗ (1− (
vα
v0

)δ − (
s∗(vα,∆vα)

sα
)2) (1)

where

s∗(vα,∆vα) = s0 + vα ∗ T +
vα∆vα

2 ∗
√
ab

(2)

and
sα = xα−1 − xα − lα−1 (3)

∆vα = vα − vα−1 (4)

where α is the vehicle being considered, α -1 is the vehicle in front and so on.
aα, vα, xα is the acceleration, velocity and the location of α. 2. A Perception

2For emergency situations like the one considered here, limitations on jerks or comfort are not
considered.
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Parameter description symbol value
Desired speed v0 96kmph
Free acceleration exponent δ 4
Desired time gap T 0.1s
maximum acceleration a 1.4 m/s2

Deceleration b 0.6*g m/s2

Length of vehicle la 4 m
Desired minimum distance s0 5 m

Table 1: IDM constants and their values

response time(tprt) of 1.3 sec is thus set for vehicleB [8], and we that both vehicles
A and B can support a maximum deceleration of 0.6*g [9].

Considering the mixed traffic scenario described in Sec.2.1, we evaluate the
reaction of the IDM to not only avoid collision with the obstacle L, but also with
preceding vehicle B. We implemented the IDM on Matlab, considering the sce-
nario parameters described on Table 1. Figure 3 illustrates the impact of the braking
manoeuver of vehicle A on the inter-distance between vehicle A and B. As it can
be seen, the IDM braking strategy brakes too strong and although it can avoid col-
lision with obstacle L, it cannot avoid a rear-collision with vehicle B. Although
this behavior strongly depend on the distance DAB , the IDM not considering rear-
traffic for its braking maneuver, and convention vehicle not adjusting their distance
to such cases, this is expected to happen, unless C-ACC/ACC consider coordinated
braking strategies.This is the objective of this paper.

Figure 3: Inter-distance between vehicle A and B, considering an IDM braking
strategy.
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2.3 Related Work

The car following models like Psycho-physical model by Wiedemann imple-
mented in VISSIM simulator [10,11], defines a decision making behavior of a man-
ually driven vehicle approaching the one in front. The approaching vehicle would
continue at the same velocity until it enters as deceleration perceptual threshold
which stimulates the driver to brake. Whereas Intelligent Driver’s Model(IDM) [4],
or a modified version of IDM is assumed to be a good basis for implementation of
ACC/CACC systems [5]. But it comes as a bit of a surprise that the calculated
deceleration at any moment based on IDM’s depends on the vehicle’s acceleration
capacity. IDM based ACC in vehicles take decisions locally and thus the presence
of following vehicles is not considered, similar is the case with the psycho-physical
model. According to our understanding IDM is designed to only avoid front-end
accidents and can not guarantee rear-end accident avoidance where as we in our
approach focus on front and rear end accident avoidance. We later prove in section
4 that indeed this is the case. Some reports doubt if responding to emergency sit-
uations would ever be a part of CACC/ACC [12] but we think they need to be for
full scale level 4 automation.

The rest of the work can be classified into a domain different than the above
mentioned three profiles mentioned in the introduction, in general under collision
avoidance algorithms. Specific collision avoidance algorithms are designed for
specific scenarios. Most of the work till date has been on collision avoidance be-
tween subject vehicle and vehicle in front and comparatively little on the influence
of actions of subject vehicle onto following vehicle. In [13, 14] authors discuss
collision avoidance for autonomous vehicles based on steering rather than braking,
where as an innovative approach based on elastic band theory is proposed involv-
ing non linear algebraic equations for collision avoidance systems in [15]. In [16]
authors focus on collision avoidance based on predicting intent of nearby vehi-
cles. Other application area is collision avoidance during automated lane changing
where an approach is presented in [17].

On the other end, to avoid rear end collisions, traditional mindset was to have
larger inter vehicular distances [18] states the recommended headway in Germany
is 1.8 s. where as authors in [19] suggest increasing communication range. In order
to avoid such collisions, either the following vehicle should be informed as to when
by latest it should start braking [20] or alternately leading vehicle can accelerate
at the last moment [21]. The use of infrared sensors in place of Dedicated Short
Range Communications(DSRC) is suggested in [22] to transfer certain informa-
tion. All of these ideas revolve around the concept of V2V communications. What
happens when the following vehicle doesn’t have neither any V2V communication
technology nor sensors, cameras, etc? Are rear end collisions inevitable?
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3 Modeling

In order to avoid vehicle B hitting vehicle A upon strong braking maneuvers,
we propose in this work to decompose the braking strategy of vehicleA in a smooth
and hard braking phases. We illustrate this concept on Figure 4, where we repre-
sent the distances in Figure 2 in a Time domain. Vehicle A will need to come
to a full halt at time T , which corresponds to moving a distance dla on Figure 4.
Conceptually speaking, vehicle A braking strategy includes a weak braking time
interval Tweak(∆t), during which it will perform a smooth braking, and a hard
braking time interval T − Tweak(∆t) during which it will brake harder. The chal-
lenge is to determine the braking duration ∆t corresponding to the weak braking
maneuver. ∆t is not unique and can take multiple values within a time interval
Trange(tup; tlow), corresponding to an upper bound to avoid collision with obstacle
O and a lower bound to avoid collision with vehicle B.

Figure 4: Relation between ∆t and Trange

To determine the tup and tlow, we model the deceleration curves between vehi-
cle A and vehicle B on Figure 5. Vehicle B is assumed to perform a hard braking
maneuver after a fixed reaction time TPRT , while vehicle A will perform a linear
braking maneuver, without reaction time. The benefit of a smooth deceleration
may be illustrated by decomposing the braking maneuvers of both vehicles in four
phases: Phase A, correspond to vehicle B’s reaction time, and where only vehicle
A brakes. Phase B, corresponds to both vehicles braking, A smoothly and B hard.
Phase C corresponds to both vehicles braking hard, while phase D is when both
vehicles come to a halt (collision or not).

Now, to ensure collision-free ride, the following conditions need to be ensured:

#1 – Upper bound of Trange (tup) : dla > 0 to avoid front end collision

#2 – Lower bound of Trange (tlow) : dab > 0 to avoid rear end collision

Ensuring #1: Total distance covered by A before halting must be smaller than
initial distance dla(t = 0). (L is stationary in longitudinal direction). Simplifying
kinematic equations to obtain conditions for #1 we get:

∆t2(
decemax

24
) + ∆t(

v

2
) + (

v2

2 ∗ decemax
− dla) < 0 (5)

Ensuring #2: As A and B behave differently in different time intervals, cal-
culation for #2 need to be split into the four phases previously described. Within
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Figure 5: Deceleration profile of vehicles

each phase, the deceleration profile of both vehiclesA andB remains constant. We
therefore decompose the #2 for each of the four phases below:

• Interval A: t ∈ [0, tprt)

dab(t) = dab,(t=0) +
decemax ∗ t3

6∆t
> 0 (6)

• Interval B: t ∈ [tprt,∆t)

dab(t) = dab,(t=0) +
decemax ∗ t3

6∆t
− decemax ∗ (t− tprt)2

2
> 0 (7)

• Interval C: t ∈ [∆t, T = min(Ta, Tb) or T = Ta = Tb]

dab(t) = dab,(t=0) +
decemax∗(∆t2−3∗t∗∆t−3∗t2prt+6∗t∗tprt)

6 > 0 (8)

• Interval D: t ∈ [Ta, Tb] ... for Tb > Ta:

dab(t) = dab,(t=T ) + (
(v + decemax ∗ (Ta − tprt))2

2 ∗ decemax
) (9)

or interval t ∈ [Tb, Ta]... for Tb < Ta:

dab(t) = dab,(t=T ) − (
(v + decemax ∗ (Tb − 0.5 ∗∆t))2

2 ∗ decemax
) (10)
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Equations corresponding to #1 and #2 return a set of possible values defining
the time interval Trange. The specific value ∆t that vehicle B takes depends on its
adopted driving strategy, the mean ∆t = (tup − tlow)/2 being taken by default.

4 Evaluation

We evaluated on Matlab our coordinated braking strategy first alone and then
against the IDM ACC strategy. In order to illustrate the parameters influencing
Trange, consider three cases: (i) we fix all parameters and draw the attention on
choosing the right parameters value of ∆t; (ii) we then keep the same parameters
as before, but adjust the speed v; (iii) finally, we consider the road conditions (ice,
rain, etc..).

dab [m] 5 8 10 15 20
Trange [s] 2.4 to 2.8 2.1 to 2.8 2.0 to 2.8 1.6 to 2.8 1.2 to 2.8

Table 2: Distance between autonomous and conventional vehicle and correspond-
ing time to reach maximum deceleration for v = 96kmph; dla(t = 0) = 95.9m;
highway scenario

For the first set of evaluation, we fixed the parameters of dla = 95.9m, dab =
5m, v = 96km/h. Accordingly, the set of equations 5- 10 provides Trange be-
tween [2.4,2.8], which can be verified from table 2. For different ∆t values, Fig. 4
illustrates the variation of dab vs time where as Fig. 4 illustrates the variation of dla.
Intersection of a plot with x-axis indicates zero distance between A and B which
implies a rear-end collision. Thus, a value of ∆t should be chosen such that the
plot doesn’t intersect x-axis in both the sub-plots or Fig. 6. The Upper bound tup
can be determined graphically from Figure 4 (thus #1 resolved), while the Lower
bound tlow can be determined graphically from Figure 4 (thus#2 is resolved). Now,
a value ∆t can be chosen from Trange according to different driving policies or pa-
rameters configured by the vehicle owner. In our simulations, we took the default
value (mean of Trange, i.e. ∆t = (tup − tdown)/2).

To further illustrate the consequences of an inaccurate ∆t, we consider three
different cases in Figure 7. The first case corresponds to conditions on ∆t are not
respected, and ∆t is chosen smaller than the acceptable Trange. In this case, it can
be seen that A collides with B (i.e. rear end collision for (∆t < tlow)).The second
case corresponds to the desired scenario where conditions on ∆t are observed. ∆t
is chosen from the calculated Trange, and collisions are avoided (i.e. ∆t ∈ Trange).
The third case correspond to the case, where ∆t is too big and A fails to brake and
collides into L (i.e. front end collision for ∆t > tup).

For the second set of evaluation, we focus changing the velocity v of the ve-
hicles, yet keeping on having a constant dab = 5m. The objective is to find the

8



(a) Calculating lower bound for Trange (b) Calculating upper bound for Trange

Figure 6: Getting vales for Trange

minimum dla and the corresponding Trange for ∆t to be used by vehicle A to
avoid any collision. Results are summarized in the following Table 3.3

Velocity [m/s2] dla(t=0)[m] Trange [s]

v = 30 kmph; low speed limit scenario

10 x
15 1.6 to 2.5
20 1.6 to 4.6

v = 50 kmph; urban city with stricter speed limits

20 x
30 2.1 only
35 2.1 to 2.9
40 2.1 to 3.9

v = 70 kmph; urban city scenario

50 x
55 2.3 to 2.5
60 2.3 to 3.1
70 2.3 to 4.3

v = 96 kmph; highway scenario

90 x
95.9 2.4 to 2.8
100 2.4 to 3.1
110 2.4 to 4
120 2.4 to 4.9

Table 3: Trange corresponding to braking strategies for different vehicular speed.

First and second approaches assume decent road conditions. If a road surface
with some oil or sand spill (roads considered dirty) is considered, maximum de-
celeration is physically restricted to 4m/s2 [23]. In this third set of evaluation, we
limit deceleration accordingly. Simulations show no matter what if the vehicles are

3In the following tables, x means either rear-end or front-end collision is bound to take place
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Figure 7: Three cases - rear end collision, no collision, front end collision

travelling at 96km/h with dab= 5 m, and dla = 95.9m collision can not be averted
(i.e. A will collide with either B or L). For these reasons, the maximum speed
limit should be capped, say to 80km/h (50mph) which in turn returns Trange of
[2.3 s; 3.2 s]. Alternately, under optimal road conditions which allows braking up
to 8m/s2, maximum velocity permitted can be increased up to 110km/h (68mph)
such that with ∆t values [2.3s;2.4s] collisions could be avoided.

We complete our evaluation through a comparison against the IDM ACC mech-
anism. IDM [4], among other car following models aim to follow the vehicle in
front and avoid accidents with it. Let A follow IDM and B be manually driven.
A upon notification of an object in front(L) will try to follow it, according to the
acceleration value given by IDM. As soon as it realises that L is not moving lon-
gitudinally and dla is decreasing it would result into a warning or an emergency
scenario. IDM under normal conditions observes a comfortable level of say below
2 m/s2, but to consider its response to an emergency, the deceleration capacity
has been raised to the mean value of maximum deceleration, 0.6*g (5.88) m/s2.
IDM parameters are the same as Table 1. We illustrate on Figure 8, Figure 10 and
Figure 10 the performance enhancement from our coordinated braking maneuver
against IDM.

The plots on the right of Figures[ 8, 9, 10] showcases the performance of
our algorithm compared to IDM’s shown on the left. Acceleration profile of our
algorithm (on right) is compared to one with IDM applied on vehicle A is shown

10



Figure 8: Acceleration profile of vehicles; vehicleA following:IDM(left) proposed
algorithm(right)

in fig. 8. Considering this is an emergency maneuver, restrictions related to the
implementation delay are not considered for IDM model, but the maximum pos-
sible deceleration is capped to the mean of the maximum deceleration of vehicles
(around 5.88 m/s2). At 2.8 seconds, the acceleration jumps from around -4 to 0
m/s2 which is due to rear end collision of vehicle A with B. Same is the inter-
pretation of Figure 9 which shows sudden fall of velocity to zero after the accident
between A and B. Figure 10 shows the vehicles maintaining their position after
collision at 2.8 sec, where as Figure 3 shows distance between vehicles A and B
over time for two different algorithms. These figures clearly supports our claim
that IDM indeed couldn’t assure collision avoidance of the following vehicle onto
itself where as our proposed algorithm does.

5 Conclusions

In this paper, we investigated coordinated braking strategies for autonomous
vehicles driving among conventionally driven vehicles. In such conditions, au-
tonomous vehicles are not able to synchronize with preceding vehicles to adjust
their maneuver, which can lead to read-collision in case of too harsh braking ma-
neuvers. we propose in this work a dynamic braking strategy, where a first phase
avoids strong brake to mitigate read-collision, and a second phase perform a con-
ventional brake to avoid forward collision.
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Figure 9: Velocity profile of vehicles; leading vehicle following:IDM(left) pro-
posed algorithm(right)

Figure 10: Locations of vehicles; leading vehicle following:IDM(left) proposed
algorithm(right)
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Via simulation, we show the superiority of the proposed algorithm over ACC/C-
ACC algorithms like IDM, which manage to avoid forward collision at the cost of
a read-collision. Although tested only on IDM, we believe our approach may be
generalized to other ACC strategies, as they usually do not consider their preceding
vehicles.

The proposed approach also proves that even at high velocities (96kmph) and
low inter vehicular distance(5m), safety is not compromised provided the leading
vehicle brakes smoothly and increases the braking strength to its maximum over
∆t seconds. This split of time between gradual increase and maintaining maximum
deceleration needs to be from a range (Trange) such that there are no collisions nei-
ther with the vehicle in front nor with the one behind. Obviously collisions can not
be avoided if the distance between subject vehicle and the obstacle is too low for it
to brake at even the maximum strength.

This concept of collision avoidance doesn’t require constant V2V communica-
tion for CACC(or sensing for ACC), rather just once to inform about(or sense) an
obstacle. Thus, chances of failure leading to a collision are pretty low. Obviously
probability of accidents would be considerably reduced if range of communication
systems or sensing technologies improve, but it would inturn have an impact on
the communication network. The current scenario thus encourages us to look into
alternate collision avoidance techniques similar to the one proposed here.
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