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Abstract—This paper considers the problem of jointly estimat-
ing two independent continuous-valued parameters sent over a
Gaussian multiple-access channel (MAC) subject to the mean
square error (MSE) as a fidelity criterion. We generalize the
parameter modulation-estimation analysis techniques proposed
by Merhav in 2012 to a two-user multiple-access channel model
to obtain outer bounds to the achievable region in the plane of the
MSE’s of the two user parameters, as well as the achievable region
of the exponential decay rates of these MSE’s in the asymptotic
regime of long blocks.

I. INTRODUCTION

First consider the classical problem of a single continuous–
valued random parameter U encoded into an N -dimensional
power-limited signal x(U) and transmitted over an additive-
white Gaussian noise (AWGN) channel [1], [2]. The N -
dimensional channel output vector, y = x(U) + z, where z
is a Gaussian noise vector with i.i.d. components, is used by
the receiver to estimate U by an estimator Û(y). The goal is to
derive a lower bound to the MSE, E(U − Û(y))2, that applies
to every modulator x(·) subject to a given power constraint
and to every estimator Û(y) [3, Chapter 8]. More recently in
[4], this class of transmission problems was given the name
parameter modulation-estimation and will likely become an
important mathematical framework to analyze various remote
sensing problems that may arise in fifth generation wireless
networks. The purpose of this work is to extend the described
problem to the model of the Gaussian multiple-access channel,
where two independent parameters, denoted by U1 and U2, are
conveyed from two separate encoders and jointly estimated
at the receiver. The aim is to derive outer bounds on the
best achievable region for the two MSE’s associated with any
modulators and estimators of these parameters.

The majority of work dealing with this class of problems
considers transmission on a continuous-time channel using
finite-energy waveforms without any bandwidth constraint.
Goblick [1] provided a lower bound which guarantees an MSE
of at least O(exp (−2E/N0)), where E is the energy used to
convey U and N0/2 is the two-sided power spectral-density of
the channel noise process. Goblick provided several examples
of parameter-modulation-estimation schemes, although only
one achieves what was later known to achieve the best asymp-
totic performance, namely E[Û − U ]2 ≤ O(exp (−E/3N0)).
This simple digital scheme is based on first partitioning the
parameter space into M equally-spaced bins and transmit-
ting the index of the bin in which the parameter lies to
the receiver, using M -ary orthogonal modulation. Another
parameter-modulation strategy in continuous-time is given in
[3, pp. 623] where the parameter is reflected in the delay
of a purely analog signaling pulse sent across the channel.
When the bandwidth of the pulse is allowed to grow without
bound, this scheme achieves the same exponential behaviour
as Goblick’s scheme and also provides a link with the classical
ranging problem where the objective is to estimate the random

delay of an incoming waveform perturbed by Gaussian noise
[5]. In [2], Wyner and Ziv show that Goblick’s lower bound
can be improved to O(exp (−E/2N0)). The works in [6]–[8]
further improve the factor in the denominator of the exponen-
tial function’s argument progressively from 2.889 to 2.896 and
finally to 2.970, virtually closing the gap to Goblick’s practical
scheme. The main contribution of [4] is the characterization
of the parameter modulation-estimation problem for finite-
dimensional transmission over the continuous-time AWGN
channel. In this paper we consider a discrete-time version of
the problem in [4] for a two-user discrete-time AWGN MAC
with independent parameters. The MAC model is important
for the study of the physical layer of the so-called Internet of
Things (IoT). The IoT will include energy-constrained objects
that provide low-periodicity sensory information to data cen-
ters via the uplink channel of fifth generation cellular networks.
A recent example of a similar scenario can be found in [9],
[10], where using an information-theoretic approach lower
bounds on the MSE region are provided for the transmission of
two correlated analog source samples with and without causal
feedback on a discrete-time AWGN MAC without a constraint
on the number of signaling dimensions.

The next section describes the system model and problem
formulation. In Section III, we first study the (MSE1,MSE2)
region, where MSE1 and MSE2 are associated to the pa-
rameter estimates, using a generalization of Shannon’s zero-
rate lower bound [11] for the two-user discrete-time MAC
which allows us to characterize the MSE region in terms
of the signal energies without any limitation on the signal
dimensions. We note that we have currently opted for a simpler
bounding technique for the MAC than those considered in [6]–
[8] since they rely on the continuous-time infinite-bandwidth
assumption and are not directly applicable in discrete-time.
We also consider the exponential behaviour of (MSE1,MSE2)
by characterizing an inner-bound to the region of achievable
MSE exponents for any joint parameter-modulation estimation
scheme. To this end, we adapt the multiple-access results of
[12] to the discrete-time AWGN channel. To find the tightest
characterization, we also use the bounds on the Gaussian
reliability function proposed in [11] and the improved bounds
from [13] coupled with the results from [14] which provides
the means to make use of single-user error-exponents for the
characterization of multiuser channels. Finally, in Section IV,
we draw conclusions from our results.

II. SYSTEM MODEL

We consider an arbitrary parameter modulation-estimation
scheme for two random variables U1 and U2 which are
independent and uniformly distributed over the interval [0, 1).
They are conveyed by distinct modulators, x1(U1) and x2(U2)
over an N -dimensional real-valued AWGN MAC obeying the
following signal model

y = x1(U1) + x2(U2) + z, (1)

ayse.unsal@insa-lyon.fr
raymond.knopp@eurecom.fr
merhav@ee.technion.il


where z represents the Gaussian channel noise. The modulators
are constrained in energy as

||xj(Uj)||2 ≤ NSj = Ej , ∀Uj , for j = 1, 2 (2)

and the covariance matrix of the noise is Ezzt = σ2IN . At
the receiver we consider estimators Ûj(y) with corresponding
MSEj = E(Uj − Ûj(y))2. The objective of the next section
is to provide different characterizations of the regions which
dictate achievable (MSE1,MSE2) pairs for any choice of
modulators and estimators of (U1, U2). The first characteri-
zation does not impose any limit on the dimensionality N
and provides a direct characterization of (MSE1,MSE2). The
second assumes finite N and defines the region in terms of the
exponents (ε1, ε2) where

εj
4
= lim
N→∞

1

N
logE[Ûj − Uj ]2, for j = 1, 2. (3)

III. LOWER BOUNDS ON THE MSE
In this part, we firstly recall the single-user approach from

[4] and improve the lower bound on the MSE for any
parameter-modulator scheme without any constraint on the
number of signalling dimensions N , which will subsequently
be used in the corresponding bound for two modulators on the
MAC.

A. An improved lower bound for the single-user case

Let Û denote the estimate of uniformly distributed U over
the interval [0, 1). It is shown that for the single-user problem
described in Section I, the probability of the estimation error
|Û − U | to exceed some function of a positive parameter ∆
is lower bounded as Pr{|Û − U | > ∆/2} ≥ LB(∆) [4, eq.
21]. Here we have the following generalized hypothesis testing
problem with M equiprobable hypothesis,

Hi : ysingle = x(u+ i∆) + z, (4)

for i ∈ {1, · · · ,M} where the nuisance parameter u ∈
[0, 1− (M − 1)∆). LB(∆) is found by combining the Ziv-
Zakai approach with any lower bound on the average proba-
bility of error for an arbitrary encoding function of a given rate.
The probability of error of the optimal (ML) detector in the M -
ary hypothesis problem, denoted by Pe(u,∆) = Pr

(
î 6= i|u

)
,

is bounded as follows.∫ 1−(M−1)∆

0

du · Pe(u,∆)

≤ 1

M

M−1∑
i=0

∫ 1−(M−1)∆

0

du · Pr

{
|Û − U | > ∆

2

∣∣∣U = u+ i∆

}
(a)
=

1

M

M−1∑
i=0

Pr

{
|Û − U | > ∆

2
, i∆ ≤ U ≤ 1− (M − 1)∆ + i∆

}
=

1

M
Pr
{
|Û − U | > ∆/2

}
. (5)

We note that (5) is valid for all M and ∆ such that
(M − 1)∆ < 1. If we add the condition that M∆ > 1,
which amounts to 1/∆ < M < 1 + (1/∆) or equivalently
M = d1/∆e, the intervals in step (a) become disjoint and
cover the entire range 0 ≤ U ≤ 1, i.e. for i = M − 1, U
cannot exceed 1 and for i = 0, U ≥ 0. This bound is related
to the MSE as∫ 1

0

d∆ ·∆ · Pr{|Û − U | > ∆/2}

(a)

≤ 4

∫ 1

0

dδ · δ · Pr{|Û − U | > δ} (b)
= 2E[Û − U ]2. (6)

In step (a) the integration variable is changed according
to δ = ∆/2 and the integration interval is stretched
to [0, 1) whereas in (b) the following identity is used
E[Û − U ]2 = 2

∫ 1

0
d∆ ·∆ · Pr{|Û − U | > ∆}. Let us denote

E[Û − U ]2 by MSEs, combining (5) with (6), the improved
single-user lower bound is given by

MSEs ≥
1

2

∫ 1

0

d∆ d1/∆e∆ (1 + ∆−∆ d1/∆e)PZR (E , d1/∆e)

= 1/2

∞∑
i=2

∫ 1/(i−1)

1/i

d∆
(
∆i+ ∆2i−∆2i2

)
PZR (E , i)

= 1/2

∞∑
i=2

3i− 2

6i2(i− 1)2
PZR (E , i) (7)

where PZR (E , i) = 1
i

∑i
m=2Q

(√
m
m−1

E
2σ2

)
[11]. Note that,

resulting bound on the error probability (5) is M times larger
than the original result given by [4, eq. (21)] which improves
(7) in terms of the factor in front of the exponent.

B. Lower bounds on any linear combinations of the MSE’s in
a two-user MAC

For the joint estimation of (U1, U2), we have the following
generalized hypothesis testing problem,

Hi,i′ : y = x1(u1 + i∆1) + x2(u2 + i′∆2) + z, (8)

for i ∈ {1, · · · ,M1} and i′ ∈ {1, · · · ,M2} where u1 ∈
[0, 1− (M1 − 1)∆1), u2 is similarly in a bin of size ∆2 ,
u2 ∈ [0, 1− (M2 − 1)∆2). Both u1 and u2 should be seen
as nuisance parameters unknown to the receiver. We will
consider two types of results using the above problem. The
first corresponds to fixed values of M1 and M2 (and ∆1, ∆2),
that will yield non-asymptotic results on the MSE’s themselves
(for any N ). The other type of results refers to the asymptotic
regime of a long block N , where M1 and M2 are allowed to
grow exponentially with N , at arbitrary rates to be optimized,
and our asymptotic results concern the asymptotic exponential
rates of the two MSE’s. We denote the conditional probability
of error as a function of (u1, u2) by Pe(u1, u2,∆1,∆2) =

Pr
(

(̂i, î′) 6= (i, i′)|u1, u2

)
where the overall probability of

error is Pe =
∫
u1
du1p(u1)

∫
u2
du1p(u2)Pe(u1, u2,∆1,∆2)

with p(.) being the probability density function. A lower bound
on Pe(u1, u2) can be derived by generalizing Shannon’s zero-
rate lower bound for an AWGN MAC. The overall probability
of error for this channel can be decomposed in three terms as

Pe = Pr
(
î = i, î′ 6= i′|u1, u2

)
+

Pr
(
î 6= i, î′ = i′|u1, u2

)
+ Pr

(
î 6= i, î′ 6= i′|u1, u2

)
. (9)

Shannon’s bound [11, eq. (80)] is based on first computing
the average squared Euclidean distance between pairs of mod-
ulated signals which should be done for each of the terms
corresponding to the three types of error events in (9). In
the first term of (9) there are M2(M2 − 1) possible signal
pairs and so the average squared Euclidean distance between
all such pairs is D2

2(u1, u2) ≤ 2M2E2/(M2 − 1). Similarly,
the average squared Euclidean distance for the second term
of (9) is bounded as D2

1(u1, u2) ≤ 2M1E1/(M1 − 1) with
M1(M1 − 1) possible signal pairs for this user. For the third
term, there are M1M2(M1 − 1)(M2 − 1) possible pairs that
differ in both indices, so that we have

D2
12(u1, u2) ≤ 2M1E1/(M1 − 1) + 2M2E2/(M2 − 1). (10)



The proofs of D2
1(u1, u2), D2

2(u1, u2) and D2
12(u1, u2) are

omitted here due to space constraints. By progressively re-
moving points at the average distance as in Shannon’s original
bound [11, eq. 81], we obtain the overall bound on (9) as
follows.

Pe ≥ PZR(E1, E2,M1,M2)

=
1

M1

M1∑
m=2

Q

(√
m

m− 1

E1
2σ2

)
+

1

M2

M2∑
m=2

Q

(√
m

m− 1

E2
2σ2

)

+
1

M1M2

M1∑
m1=2

M2∑
m2=2

Q

(√
m1

m1 − 1

E1
2σ2

+
m2

m2 − 1

E2
2σ2

)
.

(11)

In a two-user MAC, the error is defined as either one of the
sources being in error. In this case, we have an extended ver-
sion of the lower bound LB(∆) using the positive parameters
∆1,∆2 for U1, U2, respectively as

Pr{|Û1−U1| > ∆1/2 or |Û2−U2| > ∆2/2} ≥ LB(∆1,∆2),

where the left-hand side (l.h.s.) is further upper bounded by
the union bound to yield

Pr{|Û1−U1| > ∆1/2}+Pr{|Û2−U2| > ∆2/2} ≥ LB(∆1,∆2).
(12)

As for upper bounding the error probability Pe, we have∫ 1−(M1−1)∆1

0

du1 · p(u1)

∫ 1−(M2−1)∆2

0

du2 · p(u2)

Pe(u1, u2,∆1,∆2)

(a)

≤

(
Pr
{
|Û1 − U1| > ∆1/2

}
+ Pr

{
|Û2 − U2| > ∆2/2

})
d1/∆1e d1/∆2e

(13)

which is simply the generalization of (5) to the MAC problem.
Step (a) of the upper bound (13) is obtained by introducing the
condition of Mj∆j > 1, which is equivalent to Mj = d1/∆je,
for j = 1, 2. We note that (13) is valid for all Mj and ∆j such
that (Mj − 1)∆j < 1. Combining (12) and (13) with (11), we
finally have

LB(∆1,∆2) ≥ (d1/∆1e d1/∆2e) (1 + ∆1 − d1/∆1e∆1)

(1 + ∆2 − d1/∆2e∆2)PZR (E1, E2, d1/∆1e , d1/∆2e) .
(14)

We now state the first main result.

Theorem 1. For arbitrary parameter-modulators
xj(Uj), j = 1, 2 transmitting over a two-user Gaussian
MAC defined by (1) and a fixed free parameter θ ∈ [0, 1), we
have that

MSEj ≥ max

(
MSEs,j , max

0<θ≤1

[
C(θ)/2−MSE3−j/θ

2
])

,

(15)
where MSEs,j denotes the lower bound on the MSE in esti-
mating the corresponding source in an AWGN point-to-point
channel given by (7), with C(θ) =

∫ 1

0
d∆ ·∆ · LB(∆, θ∆)

and LB(., .) is given by (14).

Proof. Letting ∆2 = θ∆ and ∆1 = ∆ and integrating both
sides of (12) w.r.t. ∆ yields∫ 1

0

d∆ ·∆
(

Pr{|Û1 − U1| > ∆/2}+ Pr{|Û2 − U2| > θ∆/2}
)

≥ C(θ),
(16)

which is further bounded as

MSE1 +
MSE2

θ2
≥ C(θ)

2
. (17)

Optimizing over θ provides the second term of the maximiza-
tion in (15). MSE1 must also be limited by the single-user
bound in (7) since this corresponds to the case where U2 is
known to the receiver and where x2(U2) can be removed from
y. By symmetry the same lower bound could be given for
MSE2 by reversing the roles of both sources.

Figure 1. Numerical evaluation of (15) for SNR = 9dB with all possible
values of θ.

In Figure 1, we present numerical evaluation of (15) for
different values of θ. Note that signal-to-noise ratio (SNR)
is defined by Ej/σ2 for j = 1, 2. The wall and floor, the
vertical and horizontal parts of the black curve to the axes,
correspond to MSEs,j . The red and blue curves represent all
possible bounds for θ ∈ [0, 1). The convex hull is depicted in
solid black curve.

C. Lower Bounds on the MSE exponents

This subsection deals with modifying the form of the lower
bound presented in Theorem 1 in order to derive an outer
bound of the achievable region of the MSE exponents defined
by (3) in Section II.

Theorem 2. For arbitrary N -dimensional parameter-
modulators xj(Uj), j = 1, 2 transmitting over a two-user
Gaussian MAC defined by (1) and for R ≥ 0 and α ≥ 0, the
MSE exponent εj for j = 1, 2 is bounded below as

εj ≥ − inf
α: F (α)+2α≤−ε3−j

F (α) (18)

where F (α)
4
= minR[Eu(R,R + α) + 2R]} and Eu(R1, R2)

is any upper bound on the error exponent of the two-user
Gaussian MAC with codebooks of rate R1 and R2.

Proof. Substituting ∆ = e−RN and θ = e−αN into (17) and
changing the integration variable on the r.h.s. of (17) to R, we
obtain

MSE1+e2αNMSE2 ≥
N

2

∫ ∞
0

dR·e−2RN ·LB(e−RN , e−(R+α)N ).

(19)
From the Laplace approximation the right-hand side (r.h.s.)
is on the order of exp{−N minR[Eu(R,R + α) + 2R]} =



exp{−NF (α)}. Similarly, the l.h.s. is on the order of
exp{max{ε1, ε2 + 2α}}. Thus, we obtain

max{ε1, ε2 + 2α} ≥ −F (α) ∀α ≥ 0. (20)

In other words, for every α ≥ 0, there exists λ ∈ [0, 1] such
that λε1 + (1− λ)(ε2 + 2α) ≥ −F (α) or equivalently:

ε1 ≥ − inf
α≥0

sup
0≤λ≤1

F (α) + (1− λ)(ε2 + 2α)

λ

= − inf
α: F (α)+2α≤−ε2

F (α). (21)

For j = 2, the roles of ε1 and ε2 are switched and F (α) is
redefined as minR[Eu(R+ α,R) + 2R].

For the purpose of numerical evaluation, we will study three
different bounds on the error exponent in (18) to be used for
Eu(R1, R2).

1) Divergence bound: Eu(R1, R2) is chosen as the sphere-
packing bound of [12], taking the auxiliary channel W to be a
Gaussian MAC with noise variance σ2

w. For inputs of powers
as defined by (2), the rate region of the auxiliary Gaussian
MAC W is given by

Rj ≤ 1

2
log

(
1 +
Sj
σ2
w

)
j = 1, 2 (22)

R1 +R2 ≤ 1

2
log

(
1 +
S1 + S2

σ2
w

)
, (23)

which implies that for W to exclude (R1, R2) from the
achievable region,

σ2
w ≥ min

{
S1

e2R1 − 1
,
S2

e2R2 − 1
,
S1 + S2

e2(R1+R2) − 1

}
4
= σ2

0(R1, R2), (24)

and it is assumed that σ2
0(R1, R2) > σ2. Thus,

Esp(R1, R2) =
1

2

[
σ2

0(R1, R2)

σ2
− ln

(
σ2

0(R1, R2)

σ2

)
− 1

]
= min{D(R1,S1), D(R2,S2), D(R1 +R2,S1 + S2)},

(25)

where the divergence function is defined using [12, eq. (5.27)]
as

D(R,S)
4
=

1

2

[
S

σ2(e2R − 1)
− ln

(
S

σ2(e2R − 1)

)
− 1

]
.

(26)
We first need to calculate

F (α) = inf
R>0
{2R+ Esp(R,R+ α)}

= inf
R>0

{
2R+

1

2

[
σ2

0(R,R+ α)

σ2
− ln

(
σ2

0(R,R+ α)

σ2

)
− 1

]}
= min{F1, F2(α), F12(α)}, (27)

with

F1 = inf
R≥0

[2R+D(R,S1)] (28)

F2(α) = inf
R≥0

[2R+D(R+ α,S2)] (29)

F12(α) = inf
R≥0

[2R+D(2R+ α,S1 + S2)]. (30)

The channel rates that minimize the three exponents F1, F2(α)
and F12(α) given by (28)-(30) are denoted respectively by R∗1,
R∗2 and R∗12. Using these rate functions we can reformulate the
minimum functions F ∗1 , F ∗2 (α) and F ∗12(α) as functions of R∗1,

R∗2 and R∗12, respectively. Considering the constraint in (18),
we choose the largest α satisfying

− ε2 ≥ min{F ∗1 , F ∗2 (α), F ∗12(α)}+ 2α. (31)

The constraint −ε2 ≥ F ∗1 + 2α yields

α ≤ −ε2 + F ∗1
2

4
= α1(ε2). (32)

The constraint −ε2 ≥ F ∗2 (α) + 2α gives no requirement
concerning α, it is simply the single-user bound for the second
user. For the two-user component −ε2 ≥ F ∗12(α)+2α we have

α ≤ −1

2
(F ∗12(α)− ε2)

4
= α2(ε2). (33)

Thus, the constraint becomes

α ≤ α∗(ε2)
4
= max{α1(ε2), α2(ε2)}, (34)

resulting in the overall lower bound

ε1 ≥ −F [α∗(ε2)] = −min{F1, F2[α∗(ε2)], F12[α∗(ε2)]}.
(35)

The roles of the users should be interchanged to obtain the
outer bound for ε2 as a function of ε1. The overall outer
bound on the achievable region of the MSE exponents is the
intersection of the two.

2) Shannon’s sphere-packing bound : For rates confined
to [0, C) where C is the channel capacity defined by C =
(1/2) log(1 +A) and A represents the SNR defined by S/σ2.
Shannon’s sphere-packing bound in a point-to-point channel
Esp(ψ(R), A) is an upper bound on the Gaussian reliability
function E(R,A) [11]. The sphere-packing bound is given by

Esp(ψ,A) =
A

2
−
√
Ag(ψ,A) cosψ

2
− log (g(ψ,A) sinψ)

(36)
where g(ψ,A) = 1/2(

√
A cosψ +

√
A cos2 ψ + 4) and

ψ(R) = arcsin e−R. The only positive and real root that
satisfies minR(Esp(ψ(R), A) + 2R) is

Rmin = log

{√
6

√
A+

√
A2 − 2A+ 9 + 3/6

}
. (37)

Before defining the exponents using (36), we remind the
reader about the error exponent region of a MAC introduced
in [14, Theorem 4]. The authors show that for a Gaussian
MAC with signal powers S1 and S2 an outer bound on the
error exponent region is dictated by three inequalities. The
first two error exponents Ei, i = 1, 2 are bounded above by
Esu(Ri, Si/σ

2), i = 1, 2 and correspond to the two single-
user error events, and the third exponent Esu(R1 +R2, (S1 +
S2)/σ2) corresponds to the joint error event. In all inequal-
ities, Esu(R) represents any upper bound on the reliability
function of the single-user discrete-time AWGN channel. Let
us denote the three exponents which make use of (36) in
the minimization by F1,Sh, F2,Sh(α) and for the two-user
component by F12,Sh(α). Using the results of [14], the single-
user components are functions of the minimum rate given as
(37).

F ∗1,Sh = 2Rmin + Esp(ψ(Rmin), A) (38)

F ∗2,Sh(α) = F ∗1,Sh − 2α. (39)

F12,Sh(α) has to be optimized numerically since it does not
lend itself to an analytical expression. Using (36) the third
exponent as the two-user component is

F12,Sh(α) = min
R′≥α2

2R′ − α+ Esp(ψ(2R′), A1 +A2) (40)



where R′ = R+ α/2 and Ai = Si/σ2 for i = 1, 2. Similarly,
the two-user component with the minimum rate is denoted by
F ∗12,Sh(α). The derivation of the bounds on the error exponents
follow through in the same way as shown in the previous case
that makes use of the divergence bound by simply replacing
the three exponents in (35) by F ∗1,Sh, F ∗2,Sh and F ∗12,Sh.

3) The lower bound by Ashikhmin et al. [13] : As for the
third alternative to be used for Eu(R1, R2) we have a more
recent result by Ashikhmin et al. [13, Theorem 1] which is a
tighter bound on the discrete-time Gaussian reliability function
E(R,A) with SNR A. We denote it here as EAsh(R,A) and
note that it coincides with (36) above a certain code rate.
It is, in fact, a convex combination of (36) with a tighter
low-rate bound which converges with the zero-rate exponent
unlike (36). It does not seem possible to characterize the MSE
exponents analytically in the case of the Ashikhmin et al. error
exponents. Similarly to the previous case, we denote the three
error exponents by F1,Ash, F2,Ash(α) and F12,Ash(α) which
are evaluated as

F1,Ash = min
R≥0

2R+ EAsh(R,A)

F2,Ash(α) = F1,Ash − 2α (41)
F12,Ash(α) = min

R′≥α2
2R′ − α+ EAsh(2R′, A1 +A2)

where R′ = R+α/2. The optimal values are replaced in (21)
to determine the MSE exponents. It should be mentioned that
the MSE exponent region in this case may coincide for some
choice of SNR with the region based on (36) since the two
error exponents coincide for some rates.

In Figure 2, the three outer-bounds on the MSE exponents
are numerically evaluated for different values of SNR, which
is chosen equal for both transmitters. Clearly, the divergence
bound by Nazari is the loosest for all values of SNR whereas
the outer bound evaluated using the reliability function bound
by Ashikhmin et al. is the tightest. It does seem to coincide
with the bound using (36) for high SNR levels in the portion
not dominated by the single-user error-event. It is worth
mentioning the difference between the performance of the
divergence bound and reliability function is most significant
for low SNR levels.

Figure 2. Numerical evaluation of the lower bounds on the error exponents
for different values of SNR.

IV. CONCLUSIONS

A new lower bound on any linear combination of the MSE’s
is derived for two-user parameter-modulation on a discrete-

time Gaussian MAC without any constraint on the number of
signaling dimensions. Additionally, we improved the single-
user results from [4] for the same problem. We then introduced
lower bounds on the MSE exponents that could make use
of any lower bound on the error exponent of a point-to-
point discrete time AWGN channel. The obtained results are
numerically evaluated for three different lower bounds on the
Gaussian reliability function. It is shown that applying the
bound from [13] to the MAC can provide a significantly tighter
characterization than the sphere-packing bound [11] and the
divergence bound [12].
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