
Quantized Team Precoding: A Robust Approach for

Network MIMO under General CSI Uncertainties

Paul de Kerret and David Gesbert

Communication Systems Department, EURECOM, Sophia-Antipolis, France

Abstract—The1 obtaining of accurate channel state information
(CSI) at the transmitter (TX) side is known to be one of the
main limitations for joint precoding across distant multiple-
antennas TXs. Indeed, the knowledge of the multi-user CSI
usually requires an information sharing step between the TXs,
which makes cooperation challenging in many wireless settings.
To alleviate the problem, we study the transmission when the
CSI is imperfectly shared between the TXs, a setting we refer as
Distributed CSIT (D-CSIT). In such a case, the optimization of
the joint precoder distributed across the distant TXs becomes a
very different problem from the precoding usually encountered
when all antennas receive the same channel estimate. Indeed, the
precoder design then falls in the category of Team-Decision (TD)
problems: Each TX does not know the information available
(hence the precoder) at the other TXs. In this paper, we
introduce a novel framework referred to as Quantized Team
Precoding (QTP) which allows for robust distributed precoding
in the presence of such CSI uncertainties. The method relies
on the concept of consistency enforcement, which is obtained
by quantizing the CSI space. The obtained precoders exhibit
superior rate performance compared to precoders that classical
robust designs from the literature.

I. INTRODUCTION

Network (or Multi-cell) MIMO methods, whereby multiple

interfering TXs share user messages and allow for joint pre-

coding, are currently considered for next generation wireless

networks based on Cloud-RAN (C-RAN) [1], [2]. With perfect

message and CSI sharing, the different TXs can be seen as

a unique virtual multiple-antenna array serving all Receivers

(RXs) in a multiple-antenna Broadcast Channel (BC) fashion,

and well known precoding algorithms from the literature can

be used [3], [4]. This joint precoding requires however the

feedback of an accurate multi-user CSI to each TX in order

to achieve the desired high performances [5], [6]. As a conse-

quence, an important number of works have been focused on

the feedback design (See [7] and references therein) and the

design of robust precoders (See for example [8], [9]).

Yet, the large literature dealing with imperfect CSI on the

TX side typically assumes centralized CSIT [2], i.e., that the

precoding is based on the basis of a single imperfect channel

estimate at every TX. In practice, this means assuming that the

precoding is either done in a central node or that the channel

estimates are perfectly shared between all TXs. Although

meaningful in the single TX case with multiple-antennas,

this assumption is likely to be breached in certain networks
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where flexible, heterogeneous and inexpensive backhaul links

(or even flying relays) are to be used. In such cases, it is

expected that the CSI exchange will introduce additional delay

and quantization noise. It is thus practically relevant for joint

precoding across distant TXs to study a model where each TX

receives its own multi-user channel estimate, which we denote

as the Distributed CSI (D-CSI) configuration [10].

We consider here a D-CSI setting where each TX designs

its transmit coefficients solely on the basis of its own CSIT

without any additional communication with the others TXs.

Solving this optimization problem is particularly challenging

(referred to in the literature as a Team Decision problem

[11]) and only partial results are available. In [12], the num-

ber of Degrees-of-freedom (DoF) obtained with conventional

zero-forcing precoding is derived and some Team precoding

schemes improving the DoF are given. In [13], a robust

precoding algorithm is designed for the case of two TXs

having distributed CSIT. In [14], an algorithm is designed in

the particular setting of so-called hierarchical D-CSIT.

In this work, we provide a novel precoding algorithm,

called Quantized Team Precoding (QTP) precoding, which

transmits in a robust manner with respect to the TXs having

unequal channel estimates. This is the first robust precoding

algorithm for Team Decision which is generic in the sense that

it can be used in any antenna, fading, and CSI configurations.

Our algorithm relies on the quantization of the CSI space

which allows to enforce coordination in this Team Decision

configuration.

II. SYSTEM MODEL

A. Received Signal

We study Network MIMO transmission from K TXs to

K RXs where the i-th TX is equipped with Mi antennas and

transmits di streams to the i-th RX equipped with Ni antennas.

The total number of RX antennas, the total number of TX

antennas and the total number of streams are respectively given

by

Ntot ,

K
∑

i=1

Ni, Mtot ,

K
∑

i=1

Mi, dtot ,

K
∑

i=1

di. (1)

We further assume that the RXs have perfect CSI as there is

a common agreement that the information at the TXs is often

a bottleneck. We consider that linear filtering is used at both

the TXs and the RXs. The channel from the K TXs to the

K RXs is represented by the multi-user channel matrix H ∈



C
Ntot×Mtot whereHi,k ∈ C

Ni×Mk denotes the channel matrix

from TX k to RX i.

The transmission is then described as

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
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where yi ∈ C
Ni×1 is the signal received at the i-th RX, Hi ∈

C
Ni×Mtot the channel from all TXs to the i-th RX, and η ,

[η1, . . . ,ηK ]T ∈ C
Ntot×1 the normalized Gaussian noise with

its elements i.i.d. as CN (0, 1).
The multi-user transmitted signal x∈C

Mtot×1 is obtained

from the symbol vector s, [sT1, . . . , s
T
K ]T ∈C

dtot×1 with its

elements i.i.d. NC(0, 1) as

x = Ts =
[

T1, . . . ,TK

]







s1
...

sK






=

K
∑

k=1

Tksk (3)

with Tj ∈ C
Mtot×dj being the joint precoder serving user j

and T ∈ C
Mtot×dtot being the multi-user precoder. We also

introduce the matrix Wj ∈ C
Mj×dtot to denote the precoding

coefficients at TX j such that the signal transmitted by TX j,

denoted by xj ∈C
Mj×1, is given by

xj = Wjs. (4)

The multi-user precoder T can then alternatively be written

as

T =







W1

...

WK






. (5)

Finally, the received signal at RX k is filtered through by

G
H
k ∈ C

dk×Nk . The Mean Square Error (MSE) matrix at RX k

for given precoders and RX filters, denoted by Mk∈C
dk×dk ,

is then

Mk

, Edk
[(dk −G

H
k yk)(dk −G

H
k yk)

H]

=INk
+GH

k Gk+G
H
k HkTT

H
H

H
k Gk−G

H
k HkTk−T

H
k H

H
k Gk.

(6)

Under classical Gaussian signaling, the rate of user k can be

written as

Rk , log2
∣

∣M
−1
k

∣

∣ , ∀k ∈ {1, . . . ,K}. (7)

Finally, we define the average sum rate E [R] as

E [R] ,

K
∑

k=1

E [Rk] . (8)

B. Distributed CSIT

In the D-CSIT setting, each TX receives its own copy

of noisy CSI based on which it designs its transmission

parameters without any additional communication to the other

TXs.

Specifically, TX j receives the channel estimate Ĥ
(j) ∈

C
Ntot×Mtot and designs its transmit coefficient xj ∈ C

Mj×1 as

a function of Ĥ(j), without any form of information exchange

with the other TXs. Note that this model is in fact very general

as it allows for any joint distribution p
H,Ĥ(1),...,Ĥ(K) and thus

any level of correlation between the channel estimates at the

TXs. Interestingly, our model encompasses various scenarios

of interest as particular cases: Partial CSIT, perfect CSIT, and

the classical noisy centralized CSIT.

C. Distributed Precoding

Let us assume a cooperation (team) regime where TX j aims

at maximizing the sum rate for each channel realization2. The

key challenge lies in that TX j does not know the transmit

coefficients used at the other TXs. In the Bayesian approach,

TX j then needs to account for all possible precoder design

decisions at other TXs and average over their distribution.

In principle this problem of finding a good precoding policy

can be carried out off line via a functional optimization. The

precoding function of TX j is denoted by

wj : C
Ntot×Mtot → C

Mj×dtot (9)

such that the transmit signal xj at TX j for a given channel

realization Ĥ
(j) is equal to

xj = wj(Ĥ
(j))s. (10)

Upon concatenation of all TX’s precoding decisions, the

global precoder used for the transmission for a given channel

realization is equal to

T ,











w1(Ĥ
(1))

w2(Ĥ
(2))

...

wK(Ĥ(K))











. (11)

D. Unquantized Team Precoding

With D-CSIT, the TD problem of joint precoding can be

written as the following optimization problem:

(w⋆
1 , . . . ,w

⋆
K) = argmax

(w1,...,wK)∈W

E[R(w1(Ĥ
(1)), . . . ,wK(Ĥ(K)))]

(12)

where W is defined as

W , {(w1, . . . ,wK)|wj : C
Ntot×Mtot → C

Mj×dtot ,

∀X ∈ C
Ntot×Mtot , ‖wj(X)‖2 ≤ Pj , ∀j}. (13)

Finding the solution of a TD problem such as (12) is often

out of reach. Inspired from the game-theoretic literature, it is

however possible to define best-response strategies, which in

our setting are written as follows.

Definition 1. A best-response precoding func-

tion (wBR
1 , . . . ,wBR

K ) for the team decision problem (12)

is a precoding function satisfying

wBR
j = argmax

wj∈Wj

E[R(wj , w̄
BR
j )], ∀j ∈ {1, . . . ,K} (14)

2Hence, there is no conflict between TX. Consequently, we depart from
classical game theoretic approaches to rate maximizing coordination.



where we have used the short-hand notation (wj , w̄
BR
j ) to

replace (wBR
1 , . . . ,wBR

j−1,wj ,w
BR
j+1, . . . ,w

BR
K ) and Wj is the

space of possible values of wj given w̄BR
j .

A best-response precoding function corresponds to a TD

precoding function where each TX transmits optimally given

the precoding functions of the other TXs. Note that solving for

wj in (14) remains difficult for a continuous CSI observation

space as it requires optimizing over an infinite dimensional

space. Consequently, we reduce the dimensionality of the

optimized space by quantizing the CSI space.

III. QUANTIZED TEAM PRECODING

A. Dimensionality Reduction by Discretization

The main difficulty of the optimization problem (14) comes

from the optimization of each TX precoding function being

carried out over a functional space, which is hence of infinite

dimension. This makes it especially difficult to obtain any

iterative solutions. To circumvent this difficulty, we reduce the

dimensionality of the search space by projecting the channel

state space over a finite codebook, thus reducing the search

space from a space of infinite dimension to a space of finite

dimensionality.

For ease of presentation, we will use the same codebook

at every TX but the extension to codebooks of different sizes

presents no difficulty. Specifically, let us denote the codebook

used at each TX by Y , and assume that it contains n instances

of the multi-user channel state H, i.e.,

Y , {Hi|Hi ∈ C
Ntot×Mtot

, i = 1, . . . , n}. (15)

The optimization of the codebook design , although an inter-

esting research topic, is out of the scope of this work. We use

hence a random codebook obtained from n random Monte-

Carlo realizations according to pH as it is known to be an

efficient solution for large codebooks [5], [15]. We then denote

by Q the quantizer which maps an estimate Ĥ
(j) received at

TX j to an index corresponding to an element in Y . We chose

here the Grassmannian quantization [15] such that:

Q(Ĥ) , argmax
i∈{1,...,n}

∣

∣

∣

∣

∣

vect(Hi)
H

‖vect(Hi)‖
.
vect(Ĥ)

‖vect(Ĥ)‖

∣

∣

∣

∣

∣

. (16)

The Grassmannian quantization corresponds to the usual

choice in the MIMO literature and achieves the optimal scaling

in the high precision regime [5], [15].

Following this quantization step at each TX, the TD opti-

mization problem (12) is reduced to

(w⋆
1 , . . . ,w

⋆
K) = argmax

(w1,...,wK)∈Wn

E[R(w1(Q(Ĥ(1))), . . . ,wK(Q(Ĥ(K))))] (17)

where we have defined Wn as

Wn , {(wn
1 , . . . ,w

n
K)|wn

j : wn
j : {1, . . . , n} → C

Mj×dtot

,

∀i ∈ {1, . . . , n}, ‖wj(i)‖
2 ≤ Pj , ∀j}. (18)

B. Best-Response Optimization

Coming back to the best-response optimization problem,

we consider the best-response optimization at TX j with the

precoding functions at the other TXs being fixed equal to w̄BR
j .

The quantized best-response optimization is mathematically

written as, ∀i ∈ {1, . . . , n},

wBR
j (i) = argmax

Wj∈C
Mj×dtot ,‖Wj‖2≤Pj

E

[

R(Wj , w̄
BR
j )|Q(Ĥ(j)) = Hi

]

.

(19)

C. Stochastic Optimization using Monte-Carlo Sampling

Since the precoding functions at the other TXs are fixed

to wBR
j , the expectation in (19) is numerically tractable. It

consists simply in finding the complex matrixWj ∈ C
Mj×dtot

which maximizes the objective in (19). This optimization

problem falls in the category of so-called stochastic opti-

mization problems for which a vast literature is available

(see for example [16] and references therein). For instance,

Monte-Carlo approximations with nMC trials can be used to

approximate the expectation operator. The best-response at

TX j is then approximated as

wBR
j (i) = argmax

Wj∈C
Mj×dtot ,‖Wj‖2≤Pj

1

nMC

nMC
∑

ℓ=1

R(Wj , w̄
BR
j (Q(H̄j(ℓ)))). (20)

with the samples (H, Ĥ(1), . . . , Ĥ(j−1), Ĥ(j+1), . . . , Ĥ(K))
being drawn in an i.i.d. manner from the conditional joint

distribution p
H,Ĥ(1),...,Ĥ(K)|Ĥ(j)=Hi

.

At this step, the initial TD optimization problem has been

replaced by a conventional deterministic optimization problem.

However, depending on the structure of the objective, this

optimization can still be difficult. In particular, the sum rate

objective is non-convex and even its deterministic counterpart

is a challenging optimization problem [4]. Therefore, the last

step of our precoding algorithm consists in using a convex

approximation for the optimization. Indeed, a convex function

has the advantage that the sum of convex function (or the

expectation) of a convex function remains a convex function.

Therefore, if the initial objective is convex, optimization

problem (20) will also be a convex problem. It will then be

possible to use a convex solver to efficiently obtain a solution.

In fact, we will show that it is then even possible to design a

specific algorithm converging to a local optimum.

D. Update of the Precoder using Convex Approximation

Our convex approximation relies on the algorithm given in

[4] and then successfully used in many other settings [14],

[17]–[19]. Following this approach, the instantaneous sum rate

defined in (7) is rewritten as

R = max
Gk,Ωk

K
∑

k=1

log2 |Ωk| − tr (ΩkMk) + dk (21)



with the matrixMk being defined in (6) and Ωk ∈ C
dk×dk be-

ing a weighting matrix left to be optimized. The optimization

problem (21) is convex in each of the optimization variable.

Setting the derivative to zero, it is easily shown that their

optimal values verify [4], [14]

Gk =
(

HkTT
H
H

H
k + INk

)−1
HkTk, ∀k, (22)

and

Ωk = M
−1
k , ∀k. (23)

We also define for ease of use the matrices

G , diag (G1, . . . ,GK) , Ω , diag (Ω1, . . . ,ΩK) . (24)

It can easily be verified that inserting the optimal values

obtained in (22) and in (23) inside (21) gives the sum rate R.

This reformulation of the objective has the advantage that a

local optimal is easily obtained by iteratively updating the

optimization variables.

Indeed, coming back to the optimization of wBR
j (i) in (20),

let us consider the RX filters and the weighting matrices for

each Monte-Carlo realization to be fixed, and let us denote

by G(ℓ) and Ω(ℓ) their values for the ℓ-th Monte-Carlo

realization. The optimization problem can then be seen to be

convex in the precoding coefficients Wj at TX j.

As a preliminary step for writting the optimal update

for wBR
j (i), we need to introduce some notations for the ℓ-

th Monte-Carlo realization: We denote by H(ℓ) the multi-user
channel and by Ĥ

(j)(ℓ) the estimate at TX j, by Hk(ℓ) the
channel from all TXs to RX k, by Kj(ℓ) the channel from

TX j to all the RXs and by K̄j(ℓ) the channel from all the

TXs at the exception of TX j to all the RXs, and finally

by w̄j(iℓ) the precoding decision at all TXs except TX j.

Using these notations, the optimal precoder is given by (25)

at the top of next page, where λj is the Lagrangian multiplier

associated with the power constraint at TX j and is obtained

by bisection. Updating iteratively the RX filtersG(ℓ) with (22)
and the weighting matrices Ω(ℓ) with (23) for each Monte-

Carlo realization, and the precoder at each TX according to

(25), the algorithm converges to a local maximum since the

objective is increased at each step. For clarity, all the steps of

the algorithm are put together in Algorithm 1 in the case of

K = 2 TX/RX pairs.

IV. SIMULATIONS RESULTS

In this section, we evaluate through Monte-Carlo simula-

tions the efficiency of the proposed algorithm. We consider the

most simple configuration with K = 2 TXs and all the nodes

having a single-antenna. We use also a simple imperfect CSIT

model where the estimate Ĥ
(j) at TX j is given by

Ĥ
(j) =

√

1− σ2
jH+ σj∆j (26)

with ∆j ∈ R
2×2 having its elements distributed as NC(0, 1)

while H is a Rayleigh fading channel and has its elements

distributed as NC(0, 1). To evaluate the efficiency of our

novel DT precoding scheme, we compare its performance

with the upper bound obtained in the case where both TXs

Algorithm 1 DT Precoding for K = 2 TXs

• Input: Y ,w0
1 ∈ (CM1×d1)n and w0

2 ∈ (CM2×d2)n

• Initialization: Set wBR
1 = w0

1 , and wBR
2 = w0

2

• Until convergence:

– At TX 1 for each i ∈ {1, . . . , n}

∗ ∀ℓ ∈ {1, . . . , nMC}, set

T(ℓ) =

[

wBR
1 (Q(Ĥ(1)(ℓ)))

wBR
2 (Q(Ĥ(2)(ℓ)))

]

∗ ∀ℓ ∈ {1, . . . , nMC}, update G(ℓ) such that ∀k

Gk(ℓ) =
(

Hk(ℓ)T(ℓ)TH(ℓ)HH
k (ℓ) + INk

)−1

·Hk(ℓ)Tk(ℓ),

∗ ∀ℓ ∈ {1, . . . , nMC}, update Ω(ℓ) such that ∀k

Ω
−1
k (ℓ) = INk

+G
H
k (ℓ)Gk(ℓ)

+G
H
k (ℓ)Hk(ℓ)T(ℓ)TH(ℓ)HH

k (ℓ)Gk(ℓ)

−G
H
k (ℓ)Hk(ℓ)Tk(ℓ)−T

H
k (ℓ)H

H
k (ℓ)Gk(ℓ)

∗ Update wBR
1 (i) according to (25).

– Proceed symmetrically at TX 2 to obtain wBR
2

have access to the perfect instantaneous CSI and use the sum-

rate maximization algorithm from [4]. We also compare our

precoding scheme to the conventional distributed precoding

approach where each TX designs its precoder using the robust

sum-rate maximization algorithm from [19], i.e., each TX uses

only the estimate locally available and does not take into

account the distributed aspect of the CSI configuration. We

call hence this scheme conventional robust precoding.

We use Algorithm 1 with a codebook of n = 10000
elements and nMC = 100 Monte-Carlo realizations. We

also use as initialization of the algorithm the precoder using

conventional robust precoding.

In Fig. 1, we show the ergodic rate achieved for the CSIT

qualities σ2
1 = 0.5 and σ2

2 = 0.1. It can be seen that our

approach outperforms the conventional robust precoding at any

SNR value. DT precoding performs well at low to medium

SNR and, in contrast to conventional robust precoding, is able

to achieve a positive DoF by serving only one user at high

SNR. DT precoding suffers at high SNR from a degradation

of the performance due to the quantization noise. Reducing

this quantization noise requires to use larger codebooks or

to modify the algorithm so as to reduce the impact of this

quantization noise.

V. DISCUSSION AND FUTURE WORKS

The proposed Quantized Team Precoding scheme allows for

a versatile robust precoding scheme for distributed CSI which

can be applied in any antenna, fading, and CSI configuration.

The precoder design relies on a functional approximation

where the precoding function is approximated by discretization

of the channel space estimate.



wBR
j (i) =

(

1

nMC

MC
∑

ℓ=1

K
H
j (ℓ)G(ℓ)Ω(ℓ)GH(ℓ)Kj(ℓ) +λjIMj

)−1(

1

nMC

MC
∑

ℓ=1

K
H
j (ℓ)G(ℓ)Ω(ℓ)

(

Idtot
−GH(ℓ)K̄j(ℓ)w̄

BR
j (iℓ)

)

)

(25)
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Fig. 1: Average sum rate as a function of the per-TX power

constraint.

As the complexity of the algorithm increases very quickly

with the dimensionality of the channel estimate space, we

give a preliminary study based on Monte-Carlo sampling.

Optimizing the sampling along the optimization is a very

promising direction of research, also investigated in relation to

other optimization and learning problems. Finally, codebook

design is not considered here and could be investigated in the

future as an interesting parameter to trade-off complexity and

accuracy.
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