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ABSTRACT

Acoustic scene classification (ASC) has attracted growing re-
search interest in recent years. Whereas the previous work has in-
vestigated closed-set classification scenarios, the predominant ASC
application is open-set in nature. The contributions of the paper are
(i) the first investigation of ASC in an open-set scenario, (ii) the for-
mulation of open-set ASC as a detection problem, (iii) a classifier
tailored to the open-set scenario and (iv) a new assessment protocol
and metric. Experiments show that, despite the challenge of open-set
ASC, reliable performance is achieved with the support vector data
description classifier for varying levels of openness.

Index Terms— Acoustic scene classification, open-set, support
vector data description

1. INTRODUCTION

Acoustic scene classification (ASC) is a research field within the
realms of machine-listening and computational auditory scene anal-
ysis (CASA) [1, 2, 3]. ASC systems exploit machine learning tech-
niques in order to replicate the human cognitive processes involved
in the recognition of ambient sound [4, 5]. Many applications require
or can be enhanced with ASC, e.g. context-aware wearable devices,
smartphones and robotic systems and a wealth of applications within
the so-called Internet of Things (IoT). In these scenarios, intelligent
sensing and processing can be applied to optimise or adjust the pa-
rameters of a device in sympathy with the immediate environment or
use context. An example is the adjustment of a smartphone ring vol-
ume when its owner moves from a quiet acoustic environment into a
noisier one.

Automatic ASC performance compares favourably to that of hu-
man listeners. The work in [6] evaluated a variety of approaches to
ASC using a standard, public dataset of 10 classes; the best perform-
ing systems achieved a classification accuracy of 75%. More recent
work [7], which used similar protocols and metrics and a larger, pub-
lic dataset comprising 15 hours of audio recordings and 19 different
acoustic classes, shows classification accuracies of as high as 91%.
Common to all of the past work, is the evaluation of ASC systems
in a closed-set scenario for which training data is available for each
and every acoustic class which may be encountered during testing.

This evaluation strategy does not reflect practical applications
in which out-of-set data may be readily encountered. Without any
facility to reject out-of-class acoustic data, its assignment to a target
class will result in degraded classification performance. As such, the
current closed-set approaches to the evaluation of ASC systems do
not reflect the level of performance which could be expected in most
practical applications. Surprisingly, to the best of our knowledge, no
previous work has investigated ASC in an open-set scenario.

This paper thus reports our attempts to evaluate ASC in an open-
set scenario in which the acoustic classes defined for training are a

subset of those encountered during testing. We illustrate the limita-
tions of closed-set evaluation, propose a new classifier, protocol and
metric for open-set evaluation as a detection problems.

The remainder of the paper is organized as follows: Section 2
describes the difference between closed and open-set scenarios; Sec-
tion 3 describes different approaches to classification; Section 4 re-
ports experimental work, whereas Section 5 presents our conclusions
and some directions for further work.

2. CLOSED VERSUS OPEN-SET

This section describes the difference between closed and open-set
scenarios. This necessitates the definition of some notation which is
used to describe a measure of openness.

2.1. Closed set

ASC systems are usually developed using large collections of hetero-
geneous data. The data is aligned to a taxonomy in order to organise
the collection into a number of groups or sub-groups which together
span the data domain [8]. The groups are referred to as ‘classes’ or
‘contexts’ which gather together subsets of data which share similar
characteristics. Examples are the classes car, office and park, all of
which exhibit their own distinguishable characteristics.

The ASC task then involves the development of a statistical pat-
tern recognition system whose aim is to predict the class to which
an unlabelled sample should be assigned. A general approach to
ASC thus involves the comparison of data samples to models of each
acoustic class. When the universe of classes is exclusively prede-
fined, and thus each sample must necessarily be assigned to one of
the classes within, then the task is referred to as being closed-set.
All existing ACR datasets and evaluations follow such a closed-set
paradigm [6].

The notion of a closed universe of classes is perhaps not rep-
resentative of many practical applications in which the variation in
acoustic scene is uncontrolled; a closed-set ASC system developed
to recognise car, office and park contexts may fail if it were to en-
counter street noise. It is argued here that most practical applications
are indeed uncontrolled and thus ASC solutions must necessarily be
able to handle out-of-class data.

2.2. Open set

The ability to reject acoustic data which does not belong, or is not
sufficiently close to one of the pre-defined classes is necessary in
most practical scenarios. A means of detecting out-of-class data has
potential to avoid misclassification and thus to improve system per-
formance beyond what would otherwise be achievable with a closed-
set system. Such an open-set system is easily realised with the addi-



Fig. 1: The universe of acoustic classes. Representative data from
target and known negative classes t ∪ k are used for training. Rep-
resentative data from unknown classes is used only in an open-set
evaluation. By definition in ASC t ⊆ k ⊆ u.

tion of a garbage class to which should be assigned all acoustic data
deemed insufficiently close to any of the other defined classes.

Evaluation must then include out-of-class data. Examples for the
previously described application could include street, train or super-
market noise. Out-of-class data should be as broad as necessary in
order to reflect the practical application. The union of pre-defined
and out-of-class data then makes up the entire acoustic universe.
While the concept of closed and open-set problems can be clearly
defined, the need to evaluate ASC performance in an open-set sce-
nario leads to a relative concept of openness. This first requires the
definition of some notation.

2.3. The concept of openness

An ASC system is designed to classify a number of target classes.
In addition to the target classes there is a number of known nega-
tive classes. Any data sample not in either of these two classes is
designated as unknown. This arrangement is illustrated in the Venn
diagram of Fig. 1. Formally, an open-set evaluation will thus involve
some combination of t target classes, k known negative classes and
u unknown negative classes. Their values are set according to an
evaluation scenario or protocol as follows: a training dataset is com-
posed of data from classes t and k while a testing dataset combines
data from known classes t and k with additional data from unknown
classes u.

The need for evaluation and the particular scenario impose some
constraints on the values of t, k and u. While u is by its very def-
inition unbounded, the evaluation of ASC systems necessitates the
definition of a notionally finite number of unknown classes. The
value of all three bears influence on the difficulty of an evaluation;
tasks involving greater values of u and k are comparatively more
difficult than tasks with smaller values. In particular, unknown neg-
ative classes are comparatively more difficult to handle than known
negative classes. Related work [9] defines a measure, referred to
‘openness’, which reflects the difficulty of such a classification task.
Drawing upon the original work, the measure of openness is here
expressed in terms of t, k and u as:

openness = 1−
√

t+ k

t+ k + u
(1)

An openness of 0 infers a closed-set problem, while an openness
of 1 would infer an entirely open problem. The square root tempers
rapid increases in openness with only moderate u. Given a fixed
number of targets t, the level of openness depends on k and u: when
u� k, the level of openness will tend to 1; when u ≈ 0 the level of
openness will tend to 0. The relationship between the openness and
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Fig. 2: A plot of openness against the ratio of the number of training
classes (t + k) and testing classes (t + k + u) according to Eq. 1.
The openness increases as the number of unknown negative classes
u increases.

Dataset t k u openness
DCASE 2013 [6] 10 0 0 0%
Rouen 2015 [7] 19 0 0 0%
DCASE closed-set 1 9 0 0%
Rouen closed-set 1 18 0 0%
DCASE open-set (4 targets) 4 4 2 10%
DCASE open-set (1 target) 1 4 5 29%
Rouen open-set (4 targets) 4 4 11 35%
Rouen open-set (1 target) 1 4 14 48%
Rouen open-set (1 target.) 1 1 14 67%

Table 1: Examples of openness for two well-known datasets, stan-
dard closed-set (u = 0) and non-standard open-set (u > 0) pro-
tocols. Openness then varies as a function of the number of target
classes t, known negative classes k and unknown negative classes u.

the number of training classes t+ k and testing classes t+ k + u is
illustrated in Fig. 2.

While publicly available datasets for ASC do not preclude an
open-set evaluation, standard evaluation protocols are all closed-set
(u = 0). The second and third rows of Table 1 illustrate the open-
ness of the standard, closed-set evaluation protocols for the DCASE
2013 [6] and Rouen 2015 [7] datasets. Also illustrated in the lowest
five rows of Table 1 are different levels of openness for non-standard
protocol adaptations which are discussed later.

3. CLASSIFIERS

This section describes two different classifiers. The first is the pop-
ular support vector machine (SVM) classifier which is used widely
for closed-set ASC. The second is a new approach in the context of
ASC and one better suited to open-set classification.

3.1. SVM

Binary classifiers provide a natural solution to ASC. They learn a
discrimination function from representative training data from both
target and known negative classes. SVM classifiers are one example
which project data into a higher-dimensional space in which target
and negative data is linearly separable. Separation is obtained with a
hyperplane which maximizes the margin between target and negative
classes, thereby minimizing classification errors. Previous work in
ASC [10, 11] has demonstrated successful results using SVM classi-
fiers in closed-set scenarios. Binary SVM classifiers have also been
applied to open-set problems [12]. Even though good separability



can be achieved, generalisation to unknown negative data is typically
poor [9]. One principle reason for this is the reliance upon specific
negative training data which can never be fully representative of the
true variance of negative data in an open-set scenario.

3.2. SVDD

So-called one class SVM approaches have been investigated in
the context of many different open-set problems, including image
anomaly detection [13], machine fault detection [14] and spoofing
detection for speaker verification [15]. One particular approach,
referred to as support vector data description (SVDD), learns a hy-
persphere in which target samples are contained [16]. The goal is to
represent target data within the smallest possible hypersphere vol-
ume. By using target data only for training purposes, SVDD avoids
overfitting to known negatives and thus offers greater generalisation
to unknown negatives in an open-set scenario.

The hypersphere has centre a and radius R which are adjusted
to contain a percentage of training data X . Based upon the intuition
that false positives will be reduced by minimising the volume within
the hypersphere, parameters a and R are learned to minimise the
so-called structural error:

εstruct(R, a) = C

N∑
i

ξi +R2

s.t. ||xi − a||2 ≤ R2 + ξi, ξi ≥ 0, ∀i

(2)

where xi is the ith training data sample, ξi is a slack variable and
where C is a penalty factor. The slack variable reflects the dis-
tance of the data sample from the hypersphere whereasC reflects the
trade-off between hypersphere volume and the percentage of training
data contained within.

Lagrangian procedures to optimise a, R, and ξ are described
in [16]. Well-known algorithms [17] exist to solve quadratic op-
timization problems and to find optimal values for the Lagrangian
multipliers αi. The local maximum of the Lagrange function L is
found by setting partial derivatives of R, ai and ξ in Eq. 2 to zero,
leading to the following optimization problem and constraints:

maxL =

N∑
i

αi(xi · xi)−
N∑
i,j

αiαj(xi · xj)

s.t.

N∑
i

αi = 1, a =

N∑
i

αixi, 0 ≤ αi ≤ C, ∀i

(3)

The solution to Eq. 3 gives the set of αi parameters which char-
acterizes the SVDD model. For values of αi = 0, data sample xi
will be within the hypersphere. For αi > 0, xi will be on the bound-
ary or outside the boundary. Data samples on or outside the bound-
ary are referred to as support vectors (SVs). For C < 1, some data
samples will lie outside the sphere. In this caseαi = C denotes sam-
ples outside the hypersphere which are considered as target outliers.
Samples for which 0 < αi < C identify support vectors which lie
on the boundary. They are referred to as boundary support vectors
(BSVs). The radius of the hypersphere is the distance from its centre
to one of the BSVs:

R2 = (xk · xk)− 2

N∑
i

αi(xi · xk) +
N∑
i,j

αiαj(xi · xj) (4)

A data sample lies within the hypersphere if its distance from
the centre is less than the radius. Denoting a test sample by z, the
distance is thus determined according to:

||z − a||2 = (z · z)− 2

N∑
i

αi(z · xi) +
N∑
i,j

αiαj(xi · xj) (5)

The decision function f(z, α) is given by sign(R2−||z−a||2).
Finally, data inputs x are mapped into a higher dimensional space
where the separability between target and non-target is maximal. As
for the regular SVM, the kernel trick avoids the need to operate ex-
plicitly in the higher space [18]. The most flexible kernel function
in many real-case scenarios, and that used here, is the Gaussian ker-
nel [19, 20].

4. EXPERIMENTAL WORK

This section reports an evaluation of ASC in open and closed-set sce-
narios. The evaluation is performed in a single-class detection mode.
Detection, as opposed to classification, allows for assessment with a
comparatively simple metric [21] and also gives a more reliable in-
dication of performance which is less influenced by the number of
classes in the dataset. It is stressed, however, that this approach does
not preclude multi-class classification which could be implemented
straightforwardly with multiple detectors [22].

4.1. Implementation

Stereo audio recordings are first converted to mono recordings by
channel averaging. Using RASTAMAT tools [23] with default set-
tings, 12 standard Mel frequency cepstral coefficients (MFCCs),
without C0, are extracted from windows of 32ms with a window
overlap of 16ms. Each audio recording is then represented with
the mean and standard deviation of MFCC coefficients thereby
producing feature vectors of dimension 24.

SVM and SVDD classifiers are both implemented using the lib-
SVM library [24] using a radial basis function (RBF) kernel and the
parameters for this kernel are tuned independently for each classi-
fier. For the SVM classifier, parameter tuning is performed using
cross-validation based on the confusion matrix. This approach is not
possible for the SVDD classifier which uses knowledge of only the
target data. Instead, parameters are tuned independently of known
negative data by minimizing the number of SVs while maximizing
the radius, as reported in [25]. Finally, feature vectors are normal-
ized according to the z-score method [26].

4.2. Datasets and Protocols

The DCASE 2013 [6] and Rouen 2015 [7] datasets are used for eval-
uation. For DCASE 2013, we used the development set for training
and the evaluation set for testing. For Rouen 2015, testing is per-
formed using a 5-fold cross-validation. In both cases, evaluation
involves a gradual transition from closed-set to progressively more
and more open-set configurations. Reported first are results for a
closed-set evaluation which corresponds to the configurations of the
second and third rows of Table 1.

Acoustic class models are learned independently for each target.
SVM training is performed using data from both t = 1 target class
and k known negative classes. In contrast, the SVDD classifier is
trained using target class data alone. In order to vary the degree
of openness, the number of known negative classes k is varied in
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Fig. 3: Plots of area under the curve (AUC) against openness for
(a) DCASE 2013 and (b) Rouen 2015 datasets for SVM (dashed-
blue profiles) and SVDD (solid-red profiles) classifiers. Variance is
illustrated with vertical bars.

both cases from 1 to N − 1, where N is the total number of classes
involved in the evaluation (N = 10 for DCASE 2013 and N = 19
for Rouen 2015).

Testing is performed using varying quantities of data from the
whole acoustic universe encompassing t, k and u. When k = N −
1, the evaluation is closed-set. The number of unknown acoustic
classes in this case is u = N − t − k = 0. To better illustrate the
closed-set protocol, consider the detection of the bus class using the
Rouen dataset where N = 19. If the number of known negative
classes is set to k = 4, then the number of unknown negative classes
is u = 14. According to Eq. 1, this setup corresponds to an openness
of 48% as illustrated in the penultimate row of Table 1.

In practice, the performance of the SVM classifier which ex-
ploits known negative data will depend on exactly what composes
the k known negative classes. Accordingly, in order to marginalise
this effect on performance, 10 experiments are performed with dif-
ferent random selections of k known negative classes. Only the av-
erage result is reported.

4.3. Metric

Classification accuracy is a popular metric for the evaluation of ASC
systems [6]. However, the intrinsic limitations of classification ac-
curacy [27] mean it is ill-suited to open-set problems. Consequently,
the area under the curve (AUC) metric is used for all work reported
in this paper. The AUC is not influenced by the ratio of target and
negative classes and is threshold independent [28]. Scores are ex-
tracted using the Platt probability for the SVM classifier [29] and
according to the decision function R2 − ||z − a||2 for the SVDD
classifier. The AUC is reported for each classifier and for different
levels of openness, averaged over all t = 1...N classes and 10 dif-
ferent compositions of k known negative classes.
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Fig. 4: Individual class AUC results for the SVM and SVDD classi-
fiers for the Rouen dataset with an openness of 0.67.

4.4. Results

Results are illustrated for the DCASE 2013 and the Rouen 2015
datasets in Figs. 3 (a) and (b) respectively. Results for the SVM clas-
sifier are illustrated by dashed-blue profiles. Those for the SVDD
classifier are illustrated by solid-red profiles. The variance in AUC
is also illustrated for each experiment with vertical bars.

Similar trends are observed for both datasets. As the openness
increases, the performance of the SVM classifier deteriorates, falling
from 95% to 60% for the DCASE 2013 dataset and from 90% to 50%
for the Rouen 2015 dataset. In contrast, results for the SVDD classi-
fier remain relatively stable for both datasets, measuring in the order
of 80% and 85% for the DCASE 2013 and Rouen 2015 datasets re-
spectively.

Fig. 4 illustrates separately the AUC for each class in the Rouen
2015 dataset for a openness of 0.67. Consistent with results illus-
trated in Fig. 3, the SVDD classifier outperforms the SVM classifier.
Of greater interest here, however, is the variation in performance for
different compositions of k known negative classes, again illustrated
in terms of variance with vertical bars. While the performance of the
SVM classifier is impacted by the specific combination of k known
negative classes, that of the SVDD classifier is relatively unaffected.
The significance of the two methods is measured with a McNemar
test[30] which rejects the hypothesis at 95% significance that the two
classifiers have equal predictions.

5. CONCLUSIONS

This paper reports the first attempt to develop an approach to acous-
tic scene classification (ASC) in a practical, open-set scenario. A
traditional ASC classifier is shown to outperform an open-set clas-
sifier in a largely closed scenario. When the level of openness in-
creases, however, performance degrades rapidly, whereas the per-
formance of the newly proposed approach to open-set ASC remains
stable. The support vector data description (SVDD) classifier learns
a hypersphere from target data only. While using target data only
for training, this classifier is less susceptible to over fitting to known
negative data and is thus more reliable in the face of unknown neg-
ative data. The paper also introduces a new approach to assessment
based on a detection formulation, a new protocol and metric. Given
that the predominant ASC use-case scenario is open-set in nature,
it is hoped that the approach to assessment reported in this paper is
adopted by the research community for further work.
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