

Can Deep Learning Techniques Improve Entity Linking?

<u>Julien Plu</u> julien.plu@eurecom.fr @julienplu

Me, Myself and I

- Master in artificial intelligence from UM2 in 2012
- Research engineer at Orange for 2 years
- PhD Student at EURECOM since July 2014
- Lead the Semantic Web section at Developpez.com
- Co-author of the book: <u>Web de données Méthodes et</u> <u>outils pour les données liées</u>
- Areas of expertise: Semantic Web, Natural Language Processing and Machine Learning

Use Case: Bringing Context to Documents

Invited talk to the LIRMM - Montpellier

Example: Recognize and link entities in Tweets

- 4

Tampa Bay Lightning vs Canadiens in Montreal tonight with @erikmannens #hockey #NHL

S Voir la traduction

17:52 - 10 avr. 2016

https://www.youtube.com/watch?v=Rmug-PUylzl

Example: Recognize and link entities in Tweets

Raphaël Troncy @rtroncy

Tampa Bay Lightning vs Canadiens in Montreal tonight with @erikmannens #hockey #NHL

S Voir la traduction

17:52 - 10 avr. 2016

https://www.youtube.com/watch?v=Rmug-PUylzl

Part-of-Speech Tagging on Tweets

Tampa	NNP	
Bay	NNP	
Lightning	NNP	
VS	CC	
Canadiens	NNP	
in	IN	
Montreal	NNP	(N)EL: V
tonight	NN	are we t
with	IN	
@erikmannens	USR	
#hockey	HT	
#NHL	HT	

(N)ER: What is NHL?

(N)EL: Which Montreal are we talking about?

https://gate.ac.uk/wiki/twitter-postagger.html

What is NHL? Type Ambiguity

ORGANIZATION

PLACE

RAILWAY LINE

- 7

2016/06/21 -

Invited talk to the LIRMM - Montpellier

(Named) Entity Recognition

Tampa	NNP	ORG
Bay	NNP	ORG
Lightning	NNP	ORG
VS	CC	0
Canadiens	NNP	ORG
in	IN	0
Montreal	NNP	LOC
tonight	NN	0
with	IN	0
@erikmannens	USR	PER
#hockey	HT	THG
#NHL	HT	ORG

What is Montreal? Name Ambiguity

Montréal, Ardèche

2016/06/21 -

Montréal, Aude

Montréal, Gers

Montréal, Québec

EURECOM

Popular Knowledge Bases

Invited talk to the LIRMM - Montpellier

(Named) Entity Linking

Tampa	NNP	ORG	<u> http://dbpedia.org/resource/Tampa_Bay_Lightning</u>
Bay	NNP	ORG	<u> http://dbpedia.org/resource/Tampa_Bay_Lightning</u>
Lightning	NNP	ORG	<u> http://dbpedia.org/resource/Tampa_Bay_Lightning</u>
VS	CC	0	
Canadiens	NNP	ORG	http://dbpedia.org/resource/Canadiens
in	IN	0	
Montreal	NNP	LOC	http://dbpedia.org/resource/Montreal
tonight	NN	0	
with	IN	0	
@erikmannens	USR	PER	NIL
#hockey	нт	THG	http://dbpedia.org/resource/Hockey
#NHL	ΗТ	ORG	http://dbpedia.org/resource/National_Hockey_League

Test with Babelfy, TagMe, Spotlight, AIDA and ADEL

http://babelfy.org/

https://tagme.d4science.org/tagme/

https://dbpedia-spotlight.github.io/demo/

https://gate.d5.mpi-inf.mpg.de/webaida/

Different Approaches

E2E approaches:

A dictionary of mentions and links is built from a referent KB. A text is split in n-grams that are used to look up candidate links from the dictionary. A selection function is used to pick up the best match Linguistic-based approaches: A text is parsed by a NER classifier. Entity mentions are used to look up resources in a referent KB. A ranking function is used to select the best match

ADEL is a combination of both to make a hybrid approach

2016/06/21 -

Entity Extraction: Extractors Module

Use a combination of CRF with Gibbs sampling (Monte Carlo as graph inference method) models. A simple CRF model could be:

X set of features for the current word: word capitalized, previous word is "de", next word is a NNP, ... Suppose P(PER | X, PER, O, LOC) = P(PER | X, neighbors(PER)) then X with PER is a CRF

Invited talk to the LIRMM - Montpellier

CRF Models Combination in details

- Apply multiple CRF models over the same piece of text
- Merge the results into one single output

```
Algorithm 1: Combining multiple CRF models
  Result: Annotated tokens
  Input : (Txt, M) with Txt the text to be annotated and M a list of CRF models
  Output: A = List(\{token, label\}) a list of tuples \{token, label\}
1 begin
      finalTuples \leftarrow EmptyList();
2
      foreach model in M do
3
          / \star tmpTuples contains the tuples {token, label} got
              from model
                                                                             */
          tmpTuples \leftarrow apply model over Txt;
4
          foreach {token, label} in tmpTuples do
5
             if token from {token, label} not in finalTuples then
6
                 add {token, label} in finalTuples;
7
             end
8
          end
9
      end
10
11 end
```


Entity Extraction: Overlap Resolution

 Detect overlaps among boundaries of entities coming from the extractors

Different heuristics can be applied:

- Merge: ("United States" and "States of America" => "United States of America") default behavior
- Simple Substring: ("Florence" and "Florence May Harding" => "Florence" and "May Harding")
- Smart Substring: ("Giants of New York" and "New York" => "Giants" and "New York")

Index: Indexing

- Use DBpedia and Wikipedia as knowledge bases
- Integrate external data such as PageRank scores from Hasso Platner Institute
- Backend sytem with
 Elasticsearch and Couchbase
- Turn DBpedia and Wikipedia into a CSV-based generic format

Entity Linking: Linking tasks

Generate candidate links for all extracted mentions:

- > If any, they go to the linking method
- If not, they are linked to NIL via NIL Clustering module

Linking method:

- Filter out candidates that have different types than the one given by NER
- ADEL linear formula:

$$r(l) = (a.L(m,title) + b.\max(L(m,R)) + c.\max(L(m,D))).PR(l)$$

r(l): the score of the candidate l

L: the Levenshtein distance

m: the extracted mention

title: the title of the candidate l

- $R\!\!:\!the\ set\ of\ redirect\ pages\ associated\ to\ the\ candidate\ l$
- $D: \ensuremath{\mathsf{the}}\xspace$ set of disambiguation pages associated to the candidate l

PR: Pagerank associated to the candidate l

a, b and c are weights

following the properties:

a > b > c and a + b + c = 1

EURECOM

ADEL over OKE2015

	Precision	Recall	F-measure
extraction	85.1	89.7	87.3
recognition	75.3	59	66.2
linking	85.4	42.7	57

ADEL over OKE2016

	Precision	Recall	F-measure
extraction	81.5	72.4	76.6
recognition	74.8	66.5	70.4
linking	52.8	45.8	49.1

ADEL over NEEL2016

	Precision	Recall	F-measure
extraction	80.6	91.0	85.5
recognition	57.5	64.9	61.0
linking	49.9	58.3	53.8

Issues with current methods

Supervised methods

- > Efficient but needs a training set for every dataset
- > Not robust enough if the type of text or entities change
- > Mostly associated with an E2E approach
- > Inappropriate to detect NIL entities

Unsupervised methods

- Difficult to compute the relatedness among the candidates of each entity
- > Graph-based of linear formula are sometimes long to compute
- Difficult to manipulate emerging entities in case of graph-based approach

Deep Learning for Textual Content

https://youtu.be/mp6UsuRteNw?t=1h17m50s

http://y2u.be/cJIILew6l28

Invited talk to the LIRMM - Montpellier

From Machine Learning to Deep Learning: Logistic Classifier

Logistic Classifier => Linear Classifier

Multinomial Logistic Classification

From Machine Learning to Deep Learning: Deep Neural Network

Neural Network => Non Linear Classifier

RELU: Rectified Linear Units (Activation Function)

Why Understanding Language is Difficult?

Human language has great variability

Similar concepts are expressed in different ways, (e.g. kitty vs cat)

Human language has great ambiguity

Similar expressions mean different concepts, (e.g. New York vs New York Times)

The meaning of text is usually vague and latent

> No clear supervision signal to learn from

Learning semantic meaning of texts is a key challenge in NLP

Word Embeddings

- Find a way to represent and measure how much two different words have same/similar meaning
- Need a huge amount of labelled data then better using an unsupervised approach

Word Embeddings

Context gives a good idea that words are similar Goal is to predict words context in order to treat cat-like words similarly

Word Embeddings

- Map words to small vectors (embeddings)
- Embeddings are close to each other in the words space when they have similar meaning

- 28

Word2Vec

- Developed by Google in 2013
- Produce word embeddings
- Takes a large corpus of text as input and produce a vector space as output
- Word vectors are positioned in the vector space such that words that share common contexts in the corpus are located in close proximity to one another in the vector space
- The goal is to provide semantically similar words to a given word

Word2Vec: How it works?

- Map every word to an embedding
- Use a window around a selected word
- Use the embedding of the selected word to predict the context of the word

- 30

Word2Vec: How it works?

- Measure the closeness of two word embeddings with cosine similarity is better than with L2 because the length is not relevant for the classification
- Normalize all embeddings to get them in unit norm form

Word2Vec schema

- Compares a target from the context of the input word
- Compute softmax over a huge vocabulary vector can be very inefficient
- To solve this issue, use sampled softmax

- 32

DSSM: Deep Structured Semantic Model

- Developed by Microsoft in 2013
- Compute similarity between vectors
- Generic enough for being applied to many more cases than what Word2Vec can do (Web search, ads, question answering, machine translation, word embeddings...)
- Training made with backpropagation
- The layers can be either: DNN, CNN or RNN

DSSM schema with CNN

DSSM schema with CNN

DSSM schema with CNN

Learning: maximize the similarity between X (source) and Y (target)

Representation: use DNN to extract abstract semantic representations

Convolutional and max pooling layer: identify keywords (concepts) in X and Y

Word hashing: use letter-trigram as raw input to handle very large vocabulary

Conclusion

- Current methods for entity linking do not exploit enough semantics
- Deep Learning technics might be used to better take into account the semantic
- Using Word2Vec to rank the entity candidates from the most semantically similar to the less one
- Using DSSM to measure the relatedness between the candidates of each extracted mention

Thank you for listening!

http://multimediasemantics.github.io/adel

http://jplu.github.io

julien.plu@eurecom.fr

@julienplu

http://www.slideshare.net/julienplu

