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ABSTRACT

The weighted sum rate (WSR) maximizing linear precoder al-

gorithm is studied in large correlated multiple-input single-

output (MISO) interference broadcast channels (IBC). We con-

sider an iterative WSR design which exploits the connection

with Weighted sum Minimum Mean Squared Error (WMMSE)

designs as in [1], [2] and [3], focusing on the version in

[1]. We propose an asymptotic approximation of the signal-to-

interference plus noise ratio (SINR) at every iteration. We also

propose asymptotic approximations for Matched Filter (MF)

precoders. Simulations show that the approximations are ac-

curate, especially when the channels are correlated.

Index Terms— random matrix theory, beamforming,

weighted sum rate maximization

1. INTRODUCTION

We consider the MISO IBC with linear precoding at the

transmitter. In this case, we have C base stations (BS), each

one of them is endowed with M antennas, whereas the K users

of each cell c ∈ 1, 2, ...C have single-antenna receivers. The

precoding matrix that maximizes (local optimum) the WSR for

IBC is obtained from an iterative algorithm proposed by Luo et

al. and Slock et al. in [1] and [2] respectively which is called

the IBC WMMSE algorithm.

In this contribution, we carry out a large system analysis of this

latter. Herein, we extend the work based on [3] and presented in

[4], that presents the deterministic equivalent expressions of the

SINR of the WMMSE iterative algorithm for broadcast chan-

nels (BC) in [3], and we inspire from the works in [5] and [6]

which present Massive MISO deterministic equivalents of the

SINR corresponding to the sub-optimal zero-forcing (ZF) and

regularized zero-forcing (RZF) precoders and , all for large M

and K. Although our work will inspire from the works in [5]

and [6] and will be an extension of the work in [4], however it

is not straightforward and needs careful attention as concern-

ing the impact of inter-cell interference. Other works on large

systems exist, e.g. [7], [8], [9], [10] and [11], where a multi

cell RZF denoted iaRZF is presented in [8], this latter maxi-

mizes the sum rate as our precoder does but is not optimal for

all existing scenarios, e.g. the scenario where many users are

located on the cell edges, in fact, it corresponds to an optimal

beamforming only in the case of identical intra-cell channel at-

tenuation and identical inter-cell channel attenuation. Now a

footnote in Roman∗ Algorithms that minimize the total trans-

mit power for large systems are presented in [9], [10] and [11],

however, they are different than the WMMSE approach that

∗This work has been performed in the framework of the WP4 of the EU

project Fantastic 5G.

maximizes the total sum rate instead of minimizing the total

power. Furthermore, the deterministic limits of the SINRs cor-

responding to the iterative IBC WMMSE process leading to the

optimal WSR are presented, which makes it possible to eval-

uate its performance more easily and compare with other al-

gorithms and precoders. Simulations show that the proposed

SINR approximation is close to the real performance, i.e. the

performance of the IBC WMMSE algorithm. Notation: The

operators ()H , tr(.) and E[.] denote conjugate transpose, trace

and expectation, respectively. The M × M identity matrix is

denoted IM and log(.) is the natural logarithm.

2. SYSTEM MODEL

In the following, we analyze a cellular downlink IBC MISO

scenario where C cells are presented, c=1...C, each of the

C cells consists of one BS associated with a number K of

single-antenna receivers. We assume transmission on a single

narrow-band carrier. the received signal yc,k at the kth user in

cell c reads

yc,k =

C∑

m=1

K∑

l=1

hH
m,c,kgm,lsm,l + nc,k (1)

where the user symbols are chosen from a Gaussian codebook,

i.e, sm,l ∼ NC(0, 1), are linearly precoded and form the trans-

mit signal; gm,l ∈ C
M is the precoding vector of user l of cell

m, hH
m,c,k ∈ C

1×M is the channel vector from the mth trans-

mitter to the kth user of cell c, and the nc,k are independent

complex Gaussian noise terms with zero mean and variance

σ2. Moreover, the precoders are subject to an average power

constraint and the channel hH
i,c,k is correlated as

E [hi,c,kh
H
i,c,k] = Θi,c,k thus

hi,c,k =
√
MΘ

1/2
i,c,kzi,c,k (2)

trGcG
H
c � Pc for c ∈ C (3)

where C is the set of all BSs, zi,c,k has i.i.d. complex entries

of zero mean and variance 1
M

and the Θ
1/2
i,c,k is the Hermitian

square-root of Θi,c,k. The correlation matrix Θi,c,k is non-

negative Hermitian and of uniformly bounded spectral norm

w.r.t. to M. For notational convenience, we denote Θc, c, k as

Θc, k.

Gc = [gc,1, gc,2, ..., gc,K ] ∈ C
M×K is the precoding matrix and

Pc is the total available transmit power of cell c.

Under the assumption of optimal single-user decoding and

perfect Channel State Information (CSI) at the transmitters and

receivers, the achievable rate of the kth user of cell c is given by

Rc,k = log(1 + γc,k) (4)



γc,k =
|hH

c,c,kgc,k|2∑

(m,l) 6=(c,k)

hH
m,c,kgm,lg

H
m,lhm,c,k + σ2

(5)

where γc,k is the SINR of the kth of cell c.

The precoders maximize the WSR of all users so we are facing

an optimization problem which is the following

G∗ =argmax
G

C∑

c=1

K∑

k=1

uc,kRc,k

s.t. trGcG
H
c ≤ Pc for c ∈ C

(6)

where G is the short notation for {Gc}c∈C and where uc,k ≥ 0 is

the weight of the kth user of cell c. The optimization problem in

(6) is hard to solve directly, since it is highly non convex in the

precoding matrix G. To solve the problem in (6), we consider

the virtual linear receive filters ac,k ∈ C, the error variance ec,k
after the linear receive filtering, given in (8), and we introduce

additional weighting scalars wc,k, so that the utility function (6)

can be modified and an equivalent optimization problem can be

formulated as in [1] and [2]

{G∗, {a∗
c,k}, {w∗

c,k}} =

arg min
G,{ac,k},{wc,k}

∑

(c,k)

wc,kec,k − uc,k log (u
−1
c,kwc,k) (7)

s.t. trGcGc ≤ Pc for c ∈ C

with

ec,k = E[(ac,kyc,k − sc,k)(ac,kyc,k − sc,k)
H ]. (8)

Denote ρc = Pc

σ2 , the signal-to-noise ratio (SNR) in cell c.

From (7), and after applying alternating optimization tech-

niques, the precoders are obtained as the following

a∗
c,k = gHc,khc,c,k(σ

2 +

C∑

m=1

K∑

l=1

hH
m,c,kgm,lg

H
m,lhm,c,k)

−1
(9)

e∗c,k = (1 + γc,k)
−1

(10)

w∗
c,k = uc,k(e

∗
c,k)

−1
(11)

g̃∗c,k = (HH
c DHc +

trDc

ρc
IM )−1hc,c,ka

H
c,kwc,k (12)

where g∗c,k = ξcg̃
∗
c,k with ξc =

√
Pc

trG̃c
∗

G̃c
∗H . Also we de-

fined Wc = diag(w∗
c,1, ..., w

∗
c,K), Ac = diag(a∗

c,1, ..., a
∗
c,K), Dc =

AH
c WcAc , and

A = diag(A1, A2, ...AC), D = diag(D1, D2, ..., DC),

Hc = [hc,1,1, ..., hc,1,K , hc,2,1, . . . , hc,2,K , . . . , hc,C,K ]H ∈
C

KC×M is the compound channel. For notational convenience,

we drop the superscript* in the sequel. Subsequently ac,k and

wc,k are computed, which then constitute the new precoder gc,k.

This process is repeated until convergence to a local optimum.

3. LARGE SYSTEM ANALYSIS

In this section, performance analysis is conducted for the pro-

posed precoder. The large-system limit is considered, where M

and K go to infinity while keeping the ratio K/M finite such

that limsupMK/M < ∞ and liminfMK/M > 0. The results

should be understood in the way that, for each set of system

dimension parameters M and K we provide an approximate ex-

pression for the SINR and the achieved sum rate, and the ex-

pression is tight as M and K grow large. Before we continue

with our performance analysis of the above precoder, a deter-

ministic equivalent of the SINR of the MF precoder is required.

All vectors and matrices should be understood as sequences of

vectors and matrices of growing dimensions.

3.1. Deterministic Equivalent of the SINR for the MF

Our precoder must me initialized in some way, so we have

chosen the MF precoder to do the job.

Theorem 1: Let γMF
c,k be the SINR of user k under MF precod-

ing, i.e., Gc = ξc
M
HH

ĉ then, γMF
c,k −γMF

c,k
M→∞−−−−→ 0, almost surely,

where Hĉ = [hc,c,1, ..., hc,c,K ]H and

γMF
c,k =

1
1

βcρc
+ 1

M2

∑

(l,i) 6=(c,k)

trΘl,c,kΘl,i

(13)

Proof: The normalization parameter is ξc =
√

Pc
1

M2 trHH
ĉ

Hĉ
,

where and thus we have

ξc =

√
Pc

1
M2

∑K
k=1 trΘc,k

=
√

βcPc (14)

Denote Pc,k = ‖gHc,khc,c,k‖2 the signal power of the kth user

of cell c. Applying [6, Lemma 2.7] we have 1
M
hH
c,c,khc,c,k −

1
M→∞−−−−→ 0 and hence

P c,k = ξ2c = βcPc (15)

The interference is
ξ2c
M

∑C
m=1 z

H
m,c,kΘ

1/2
m,c,kH

H
m̂Hm̂Θ

1/2
m,c,kzm,c,k,

where Hm̂,[k] = [hm,m,1, ..., hm,m,k−1, hm,m,k+1, ...hm,m,K ]H .

Now we apply again [6,Lemma 2.7] since
1
M
Θ

1/2
m,c,kH

H
m̂Hm̂Θ

1/2
m,c,k and 1

M
Θ

1/2
c,k H

H
ĉ,[k]Hĉ,[k]Θ

1/2
c,k have uni-

formly bounded spectral norm w.r.t M almost surely, and obtain

[
1

M

C∑

m=1,m 6=c

zHm,c,kΘ
1/2
m,c,kH

H
m̂Hm̂Θ

1/2
m,c,kzm,c,k

+
1

M
zHc,c,kΘ

1/2
c,k H

H
ĉ,[k]Hĉ,[k]Θ

1/2
c,k zc,c,k]

−[
1

M2

∑

m 6=c

K∑

i=1

trΘm,c,kΘm,i +
1

M2

∑

i 6=k

trΘc,kΘc,i] → 0 (16)

almost surely. Substituting the terms in (5) by their respec-

tive deterministic equivalents yields (13), which completes the

proof.

3.2. Deterministic equivalent of the SINR of proposed precoder
for correlated channels

For the precoder (12), a deterministic equivalent of the SINR is

provided in the following theorem

Theorem 2: Let γc,k be the SINR of the kth user of cell c with

the precoder defined in (12). Then, a deterministic equivalent

γ
(j)
c,k at iteration j > 0 and under MF initialization, is given by

γ
(j)
c,k is given by

γ
(j)
c,k =

w
(j)
c,k(m

(j)
c,k)

2

Υ
(j)
c,k + Υ̂

(j)

c,k + d
(j)
c,k

Ψ
(j)
c

ρc
(1 +m

(j)
c,k)

2

(17)



where

m
(j)
c,k =

1

M
trΘ

(j)
c,kVc (18)

Ψ
(j)
c =

1

M

K∑

i=1

w
(j)
c,i e

′

c,i

(1 + ec,i)2
(19)

Υ
(j)
c,k =

1

M

K∑

l=1,l 6=k

1

(1 +m
(j)
c,l )

2
e′c,c,k,c,l (20)

Υ̂
(j)

c,k =
1

M

C∑

m=1,m 6=c

(1 +m
(j)
c,k)

2

(1 +m
(j)
m,c,k)

2

K∑

l=1

1

(1 +m
(j)
m,l)

2
e′m,c,k,m,l

(21)

with Θm,c,k = dc,kΘm,c,k, m
(j)
m,c,k = 1

M
trΘ

(j)
m,c,kVm and

a
(j)
c,k, w

(j)
c,k and d

(j)
c,k are given by

a
(j)
c,k =

1√
P

(j−1)
c,k

γ
(j−1)
c,k

1 + γ
(j−1)
c,k

(22)

√
P

(j−1)
c,k =

1

a
(j−1)
c,k

√
P

Ψ
(j−1)
c

m
(j−1)
c,k

1 +m
(j−1)
c,k

(23)

w
(j)
c,k = (1 + γ

(j−1)
c,k ) (24)

d
(j)
c,k = w

(j)
c,ka

2,(j)
c,k . (25)

Denoting

Vc = (Fc + αcIM )−1
(26)

with α
(j)
c =

trD
(j)
c

Mρc
, three systems of coupled equations have

to be solved. First, we need to introduce em,c,k∀{m, c, k} ∈
{C, C,Kc}, where Kc is the set of all users of cell c, which form

the unique positive solutions of

em,c,k =
1

M
trΘm,c,kVm, (27)

Fm =
1

M

C∑

j=1

K∑

i=1

Θm,j,i

1 + em,j,i
. (28)

ec,c,k and mc,c,k denote ec,k and mc,k respectively. Secondly,we

give e′1,1, ..., e
′
1,K , ...e′C,1, ..., e

′
C,K which form the unique posi-

tive solutions of

e′c,k =
1

M
trΘc,kVc(F

′
c + IM )Vc, (29)

F ′
c =

1

M

C∑

j=1

K∑

i=1

Θc,j,ie
′
j,i

(1 + ec,j,i)2
. (30)

And finally, we provide e′m,c,k,m,l∀{m, c, k, l} ∈ {C, C,Kc,Kc}
which form the unique positive solutions of

e′m,c,k,m,l =
1

M
trΘm,c,kVm(F ′

m,m,l +Θm,l)Vm (31)

F ′
m,m,l =

1

M

C∑

j=1

K∑

i=1

Θm,j,ie
′
m,j,i,m,l

(1 + em,j,i)2
. (32)

For j = 0, γ
(0)
c,k = γMF

c,k , given by Theorem 1 and P
(0)
c,k = βcPc,

cf. (15).

Proof: For j ≥ 1, define Γ
(j)
c = 1

M
HH

c D
(j)

Hc + α
(j)
c IM , the

precoder at the end of iteration j is given by

g
(j)
c,k =

ξ
(j)
c

M
(Γ(j)

c )−1hc,c,ka
H,(j)
c,k w

(j)
c,k (33)

for each user k in the cell c,

where ξ
(j)
c is

ξ(j)c =

√
Pc

1
M2 tr(Γ

(j)
c )−2HH

ĉ A
H,(j)
c W

2,(j)
c A

(j)
c Hĉ

(34)

=

√
Pc

Ψ
(j)
c

. (35)

We derive the deterministic equivalents of the normalization

term ξ
(j)
c , the signal power |gH,(j)

c,k hc,c,k|2 and the interfer-

ence power
∑C

m=1

∑K
l 6=k if m=c h

H
m,c,kg

(j)
m,lg

H,(j)
m,l hm,c,k similarly

to [4], [5] and [6], i.e, using the same logic and mathematical

approach, but for a more complex problem. We will show that

in the following.

a) Power normalization: The term Ψ
(j)
c can be written as

Ψ(j)
c =

1

M2

K∑

k=1

w
(j)
c,kd

(j)
c,kz

H
c,c,kΘ

(1/2)
c,k (Γ(j)

c )−2Θ
(1/2)
c,k zc,c,k (36)

=
1

M2

K∑

k=1

w
(j)
c,kz

H
c,c,kΘ

(1/2)
c,k (Γ(j)

c )−2Θ
(1/2)
c,k zc,c,k. (37)

Similarly to [4], [5] and [6] a deterministic equivalent Ψc such

that Ψc −Ψc
M→∞−−−−→ 0, almost surely, is given by

Ψ
(j)
c =

1

M

K∑

k=1

w
(j)
c,k

1
M
trΘ

(j)
c,k(Γ

(j)
c )−2

(1 + 1
M
trΘ

(j)
c,k(Γ

(j)
c )−1)2

(38)

=
1

M

K∑

k=1

w
(j)
c,k

m
′,(j)
c,k

(1 +m
(j)
c,k)

2
=

1

M

K∑

k=1

w
(j)
c,k

e
′

c,k

(1 + ec,k)2
,

(39)

where we denote m
(j)
c,k = 1

M
trΘ

(j)
c,k(Γ

(j)
c )−1 and m

′,(j)
c,k the

derivative w.r.t z at z = −α
(j)
c .

b) Signal power: The square-root of the signal power P
(j)
c,k =

|gH,(j)
c,k hc,c,k|2 is

√
P

(j)
c,k =ξ(j)c a

(j)
c,kw

(j)
c,kz

H
c,c,kΘ

1
2
c,k(Γ

(j)
c )−1Θ

1
2
c,kzc,c,k (40)

=
ξ
(j)
c

a
(j)
c,k

zHc,c,kΘ
1/2
c,k (Γ

(j)
c )−1Θ

1
2
,(j)

c,k zc,c,k. (41)

Again, following [4],[5],[6] a deterministic equivalent

√
P

(j)
c,k

of (41) is given by

√
P

(j)
c,k =

ξc
(j)

a
(j)
c,k

m
(j)
c,k

1 +m
(j)
c,k

, (42)

where ξc
(j)

=
√

Pc

Ψ
(j)
c

.

c) Interference power: The interference power received by user



k of cell c can be written as

C∑

m=1

K∑

l=1,l 6=k if m=c

hH
m,c,kg

H,(j)
m,l g

H,(j)
m,l hm,c,k (43)

=
ξ
2,(j)
c

M2

C∑

m=1

hH
m,c,k(Γ

(j)
m )−1× (44)

K∑

l=1,l 6=k if m=c

a
2,(j)
m,l w

2,(j)
m,l hm,m,lh

H
m,m,l(Γ

(j)
m )−1hm,c,k

=
ξ
2,(j)
c

d
(j)
c,k

C∑

m=1

zHm,c,kΘ
1
2
,(j)

m,c,k(Γ
(j)
m )−1 ×

K∑

l 6=k if m=c

w
(j)
m,lΘ

1
2
,(j)

m,l zm,m,lz
H
m,m,lΘ

1
2
,(j)

m,l (Γ(j)
m )−1Θ

1
2
,(j)

m,c,kzm,c,k (45)

The term in (45) is approximated as the following

C∑

m=1

K∑

l=1,(l,m) 6=(k,c)

hH
m,c,kg

H,(j)
m,l g

H,(j)
m,l hm,c,k

− ξc
2,(j)

[Υ
(j)
c,k + Υ̂

(j)

c,k]

d
(j)
c,k(1 +m

(j)
c,k)

2

M→∞−−−−→ 0, (46)

almost surely, where Υ
(j)
c,k and Υ̂

(j)

c,k are given by the expressions

(20) and (21) which represent the large system limits of the

intra-cell and inter-cell interference respectively, the proof is

omitted due to lack of space.

3.3. Numerical Results

In this section, results of simulations based on realistic set-

tings with a finite number of transmit antennas corroborate

the correctness of the proposed approximation.We use the IBC

WMMSE algorithm with MF initialization and compare it to

the large system approximation in Theorem 2. The channel

correlation matrix is modeled as [10]

[Θm,c,k]ij =

1

Θm,c,k,max −Θm,c,k,min

∫ Θm,c,k,max

Θm,c,k,min

ej 2π
λ

δijcos(Θ)dΘ
(47)

where j =
√
−1, λ denotes the signal wavelength and δij is

the distance between antenna i and j.We choose the range

of azimuth angle Θm,c,k of user k as Θm,c,k,min = −π and

Θm,c,k,max = φm,c,k − π, where φm,c,k = 2π c∗k
KC

. The trans-

mitter is endowed with a uniform linear array (ULA) of an-

tennas. We assume that δij is independent of M so that the

spectral norm of Θm,c,k remains bounded as M grows large, let

δij = λ
2
|j − i|. figures 1 and 2 show the WMMSE precoder and

its approximation for correlated channels (Θm,c,k 6= IM ) and

i.i.d. channels (Θm,c,k = IM ) for C = 2 and C = 3 respec-

tively. For the simulations of the IBC WMMSE algorithm, we

have used 200 channel realizations. It can be observed that for

i.i.d channels the approximation is accurate for low SNR, but

less precise at high SNR. As the figures 1 and 2 suggest, this

effect is diminished when the channel is correlated resulting

in an increased accuracy of the approximation for high SNR.

Or for i.i.d channels the inaccuracy effect at high SNR dimin-

ishes when the system load (C∗K
M

) decreases as shown in the

figure 3 for load = 0.9. The reason of imprecision for full load

C∗K
M

= 1 is that the regularization term in (26) is going to be

imprecise at high SNR. Moreover, we observed that the sum

rate of our system stay unmodified for a same total number of

users (Fig. 1 and Fig. 2) while keeping in mind the fact that we

have more total power budget as the number of transmitters in-

creases. Finally, we demonstrated also that our asymptotic sum

rate follows the simulated one; which validates our asymptotic

approach. Although the sum rate expression for the approxi-

mation approach (17) seems to be complex, however we need

to calculate it only once per a given SNR, while we need to run

the IBC WMMSE simulations as many times as the number of

channel realizations, i.e. 200 times.

Fig. 1. Sum rate comparisons between the IBC WMMSE and

our proposed approximation for C=2,K=15,M=30.

Fig. 2. Sum rate comparisons between the IBC WMMSE and

our proposed approximation for C=3,K=10,M=30.

4. CONCLUSION

In this paper, we presented a consistent framework to study the

optimal WMMSE precoding scheme based on the theory of

large-dimensional random matrices. The tools from Random

Matrix Theory (RMT) allowed us to consider a very realistic

channel model accounting for per-user channel correlation as

well as individual channel gains for each link. The system per-

formance under this general type of channel is extremely dif-

ficult to study for finite dimensions but becomes feasible by

assuming large system dimensions. Applied to practical op-

timization problems, the deterministic approximations lead to



Fig. 3. Sum rate comparisons between the IBC WMMSE and

our proposed approximation for C=3,K=9,M=30.

important insights into the system behavior, which are consis-

tent with previous results, but go further and extend them to

more realistic channel models and other linear precoding tech-

niques.
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