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ABSTRACT
The weighted sum rate (WSR) maximizing linear precoding
algorithm is studied in large correlated multiple-input single-
output (MISO) interference broadcast channels (IBC). We
consider an iterative WSR design via difference of convex
functions (DC) programming as in [1], [2] and [3], focusing
on the version in [3]. We propose an asymptotic approxima-
tion of the signal-to-interference plus noise ratio (SINR) at
every iteration.

Index Terms—random matrix theory, beamforming,
weighted sum rate maximization

I. INTRODUCTION

In this paper, Tx may denote transmit/transmitter/
transmission and Rx may denote receive/receiver/reception.
We consider the MISO IBC with linear precoding at the
transmitter. In this case, we have C base stations (BS), each
one of them is endowed with M antennas, whereas the K
users of each cell c ∈ 1, 2, ...C have single-antenna receivers.
The precoding matrix that maximizes (local optimum) the
WSR for IBC via DC programming for perfect channel state
information (CSIT) is obtained from an iterative algorithm
proposed in [1], [2] and [3].
In this contribution, we carry out a large system analysis
of this latter optimal beamformer which we will denote by
WSR-DC. Large system analysis which appeared in [4] and
[5] allows to obtain deterministic (instead of fast fading
channel dependent) expressions for various scalar quantities,
facilitating the analysis of wireless systems. E.g. it may allow
to evaluate beamforming performance without computing
explicit beamformers. The analysis in [4] and [5] allowed
e.g. the determination of the optimal regularization factor for
the regularized zero-forcing precoders. A little known exten-
sion appeared in [6], [7] and [8] for optimal beamformers.
However, in [6] and [7] the precoders are designed using
the connection between WSR and the mean squared error
(MSE), and in [8] the precoder aims to minimize the transmit
power instead of maximizing the sum rate. These approaches
are different than ours. Furthermore, the deterministic limits
of the SINRs corresponding to the iterative IBC WSR-
DC process leading to the optimal WSR are presented,
which makes it possible to evaluate its performance more

easily and compare with other algorithms and precoders.
Notation: The operators ()H , tr(.) and E[.] denote conjugate
transpose, trace and expectation, respectively. The M ×M
identity matrix is denoted IM , ln(.) is the natural logarithm
and diag is the diagonal matrix. The contribution of this
paper is: a large system analysis of the WSR-DC iterative
maxizimization problem.

II. STREAMWISE IBC SIGNAL MODEL
In the rest of this paper we shall consider a per stream

approach (which in the perfect CSI case would be equivalent
to per user). In an IBC formulation, one stream per user can
be expected to be the usual scenario. In the development
below, in the case of more than one stream per user, one
can treat each stream as an individual user. So, consider an
IBC with C cells with a total of K users. In this section we
consider a system-wide numbering of the users. User k is
served by BS bk. The N ×1 received signal at user k in cell
bk is

yk=Hk,bk gk xk︸ ︷︷ ︸
signal

+
∑
i6=k

bi=bk

Hk,bk gi xi

︸ ︷︷ ︸
intracell interf.

+
∑
j 6=bk

∑
i:bi=j

Hk,j gi xi︸ ︷︷ ︸
intercell interf.

+vk

(1)
where xk is the intended (white, unit variance) scalar signal
stream, Hk,bk is the N ×M channel from BS bk to user k.
BS bk serves Kbk =

∑
i:bi=bk

1 users. We are considering
a noise whitened signal representation so that we get for
the noise vk ∼ CN (0, IN ). The M × 1 spatial Tx filter or
beamformer (BF) is gk. Treating interference as noise, user
k will apply a linear Rx filter fk to maximize the signal
power (diversity) while reducing any residual interference
that would not have been (sufficiently) suppressed by the
BS Tx. The Rx filter output is x̂k = fHk yk

x̂k = fHk Hk,bk gk xk +

K∑
i=1,6=k

fHk Hk,bi gi xi + fHk vk

= fHk hk,k xk +
∑
i6=k

fHk hk,i xi + fHk vk

(2)

where hk,i = Hk,bi gi is the channel-Tx cascade vector.



III. MAX WSR VIA DC
In this section we consider a system-wide numbering of

the users. Consider as a starting point for the optimization
the weighted sum rate (WSR)

WSR = WSR(g) =

K∑
k=1

uk ln
1

ek
(3)

where g represents the collection of BFs gk, the uk are rate
weights, the ek = ek(g) are the Minimum Mean Squared
Errors (MMSEs) for estimating the xk:
1

ek
=1+gHk HH

k,bk
R−1

k
Hk,bkgk=(1−gHk HH

k,bk
R−1
k Hk,bkgk)−1

Rk = Hk,bkQkH
H
k,bk

+ Rk , Qi = gig
H
i ,

Rk =
∑
i6=k

Hk,biQiH
H
k,bi + INk

.

(4)
Rk, Rk are the total and interference plus noise Rx covari-
ance matrices resp. and ek is the MMSE obtained at the
output x̂k = fHk yk of the optimal (MMSE) linear Rx fk,

fk = R−1
k Hk,bkgk = R−1

k hk,k . (5)

The WSR cost function needs to be augmented with the
power constraints ∑

k:bk=j

tr{Qk} ≤ Pj . (6)

In a classical difference of convex functions (DC pro-
gramming) approach, Kim and Giannakis [2] propose to
keep the concave signal terms and to replace the convex
interference terms by the linear (and hence concave) tangent
approximation. More specifically, consider the dependence
of WSR on Qk alone. Then

WSR = uk ln det(R−1

k
Rk) +WSRk ,

WSRk =
∑K
i=1,6=k ui ln det(R−1

i
Ri)

(7)

where ln det(R−1

k
Rk) is concave in Qk and WSRk is con-

vex in Qk. Since a linear function is simultaneously convex
and concave, consider the first order Taylor series expansion
in Qk around Q̂ (i.e. all Q̂i) with e.g. R̂i = Ri(Q̂), then

WSRk(Qk, Q̂) ≈WSRk(Q̂k, Q̂)− tr{(Qk − Q̂k)Âk}

Âk = −
∂WSRk(Qk,Q̂)

∂Qk

∣∣∣∣∣
Q̂k,Q̂

=

K∑
i6=k

uiH
H
i,bk

(R̂−1

i
−R̂−1

i )Hi,bk

(8)
Note that the linearized (tangent) expression for WSRk
constitutes a lower bound for it. Now, dropping constant
terms, reparameterizing the Qk = gkg

H
k , performing this

linearization for all users, and augmenting the WSR cost
function with the constraints, we get the Lagrangian

WSR(g, ĝ, λ) =

C∑
j=1

λjPj+

K∑
k=1

uk ln(1 + gHk B̂kgk)− gHk (Âk + λbkI)gk

(9)

where B̂k = HH
k,bk

R̂−1

k
Hk,bk . (10)

The gradient (w.r.t. gk) of this concave WSR lower bound is
actually still the same as that of the original WSR criterion!
And it allows an interpretation as a generalized eigenvector
condition

B̂k gk =
1 + gHk B̂kgk

uk
(Âk + λbkI)gk (11)

or hence g
′

k = Vmax(B̂k, Âk + λbkI) is the (normalized)
”max” generalized eigenvector of the two indicated matrices,
with max eigenvalue σk = σmax(B̂k, Âk + λbkI). Let
σ

(1)
k = g

′H
k B̂kg

′

k, σ(2)
k = g

′H
k Âkg

′

k. The advantage of
formulation (9) is that it allows straightforward power adap-
tation: introducing stream powers pk ≥ 0 and substituting
gk =

√
pk g

′

k in (9) yields

WSR=

C∑
j

λjPj +

K∑
k=1

{uk ln(1 +pkσ
(1)
k )−pk(σ

(2)
k +λbk)}

which leads to the following interference leakage aware
water filling

pk =

(
uk

σ
(2)
k + λbk

− 1

σ
(1)
k

)+

(12)

where the Lagrange multipliers are adjusted to satisfy the
power constraints

∑
k:bk=j pk = Pj . This can be done by

bisection and gets executed per BS. Note that some Lagrange
multipliers could be zero. Note also that as with any al-
ternating optimization procedure, there are many updating
schedules possible, with different impact on convergence
speed. The quantities to be updated are the g

′

k, the pk and
the λl. Whereas we focused on the case of one stream/user,
the advantage of the DC approach is that it works for any
number of streams/user, by simply taking more eigenvec-
tors. The waterfilling then automatically determines (at each
iteration) how many streams can be sustained.

IV. THE MISO CASE
In the MISO case, we have Cr = 1 and we shall denote

the matrices R, HH as the scalar r and the vector h. We
get g

′

k = Vmax(Bk,Ak + λbkI) and associated generalized
eigenvalue 1/ak = λmax(Bk,Ak + λbkI). Note that g

′

k is
proportional to (Ak+λbkI)−1hk,bk and that any scale factor
in g

′

k gets compensated by the stream power pk.
The proposed solution is amenable to large system anal-

ysis as in [7]. From now on, we will no more consider a
system-wide numbering of the users. The WSR-DC precoder
for user k in cell c can be expressed [3] as the following:

g
′

c,k = (Ac,k + αcI)−1hc,c,k (13)

Ac,k =

K∑
(i,j) 6=(c,k)

uih
H
c,i,j(r

−1

i,j
−r−1

i,j )hc,i,j (14)

where hc,c,k is the M × 1 channel between cell c
and the user k of cell c, with k ∈ [1,Kc]. The



Lagrangian term αc can be fixed optimally to αc = trDc

ρc

where Dc = diag(dc,1, ...dc,K) as in [9] and with
di,j = (r−1

i,j
−r−1
i,j ) = −r−1

i,j
(hi,i,jQi,jh

H
i,i,j)r

−1
i,j = a2

i,j×wi,j
[4, Lemma 2]; where ai,j and wi,j = 1+γi,j are the Rx filter
and the precoding weight as in [6]. The large system analysis
treats all the users’ fast fading parameters as identical and
differentiates the users only by their second-order statistics
(channels’ covariance matrices), thus there is no need for
waterfilling and a simple normalization parameter will be
enough as in [4], [5] and [6].

V. MASSIVE MISO LIMIT

In this section we will derive the deterministic equivalent
of the SINR for correlated channles. The channel hHi,c,k is
correlated as
E [hi,c,kh

H
i,c,k] = ΘΘΘi,c,k thus

hi,c,k =
√
MΘΘΘ

1/2
i,c,kzi,c,k (15)

where zi,c,k has i.i.d. complex entries of zero mean and
variance 1

M and the ΘΘΘ
1/2
i,c,k is the Hermitian square-root

of ΘΘΘi,c,k. The correlation matrix ΘΘΘi,c,k is positive semi-
definite and of uniformly bounded spectral norm w.r.t. to
M. For notational convenience, we denote ΘΘΘc,c,k as ΘΘΘc,k.
If the number of Tx antennas M becomes very large, the
WSR (SINR) can be approximated using tools from Random
Matrix Theory. In this section, performance analysis is
conducted for the proposed precoder. The large-system limit
is considered, where M and K go to infinity while keeping
the ratio K/M finite such that lim supM K/M < ∞ and
lim infM K/M > 0. The procedure should be understood in
the way that, for each set of system dimension parameters M
and K we provide an approximate expression for the SINR
γc,k. Our precoder is initialized using a Matched Filter (MF)
Precoder. Let γMF

c,k be the SINR of user k of cell c under MF

precoding then, γMF
c,k − γMF

c,k
M→∞−−−−→ 0 [6], almost surely

γMF
c,k =

1
1

βcρc
+ 1

M2

∑
(l,i) 6=(c,k)

trΘΘΘl,c,kΘΘΘl,i

(16)

where ρc is the signal-to-noise ratio and βc = K
M . For the

WSR-DC precoder, a deterministic equivalent of the SINR
is provided in the following theorem
Theorem 1: Let γc,k be the SINR of the kth user of cell
c with the precoder defined in (13). Then, a deterministic
equivalent γ(j)

c,k at iteration j > 0 and under MF initialization,
is given by γ(j)

c,k is given by

γ
(j)
c,k =

(m
(j)
c,k)2 × (1 +m

(j)
c,k)2

(Υ
(j)

c,k + Υ̂
(j)

c,k)dc,k + d
(j),2

c,k
Ψ

(j)
c

ρc
(1 +m

(j)
c,k)2

(17)

where

m
(j)
c,k =

1

M
trΘΘΘ

(j)

c,kVc (18)

Ψ
(j)

c =
1

M

K∑
i=1

1

dc,i
e
′

c,i (19)

Υ
(j)

c,k =
1

M

K∑
l=1,l 6=k

1

dc,l
e′c,c,k,c,l (20)

Υ̂
(j)

c,k =
1

M

C∑
m=1,m 6=c

(1 +m
(j)
c,k)2

(1 +m
(j)
m,c,k)2

K∑
l=1

1

dm,l
e′m,c,k,m,l

(21)

with ΘΘΘm,c,k = dc,kΘΘΘm,c,k, m(j)
m,c,k = 1

M trΘΘΘ
(j)

m,c,kVm and

a
(j)
c,k, w

(j)
c,k and d

(j)

c,k are given by

a
(j)
c,k =

1√
P

(j−1)

c,k

γ
(j−1)
c,k

1 + γ
(j−1)
c,k

(22)

√
P

(j−1)

c,k =
1

d
(j−1)

c,k

√
Pc

Ψ
(j−1)

c

m
(j−1)
c,k (23)

w
(j)
c,k = (1 + γ

(j−1)
c,k ); d

(j)

c,k = w
(j)
c,ka

2,(j)
c,k . (24)

Denoting
Vc = (Fc + αcIM )−1 (25)

with α(j)
c =

trD(j)

c

Mρc
, three systems of coupled equations have

to be solved. First, we need to introduce em,c,k∀{m, c, k} ∈
{C, C,Kc} which form the unique positive solutions of

em,c,k =
1

M
trΘΘΘm,c,kVm, (26)

Fm =
1

M

C∑
j=1

K∑
i=1

ΘΘΘm,j,i

1 + em,j,i
. (27)

ec,c,k and mc,c,k denote ec,k and mc,k respectively. Sec-
ondly,we give e′1,1, ..., e

′
1,K , ...e

′
C,1, ..., e

′
C,K which form the

unique positive solutions of

e′c,k =
1

M
trΘΘΘc,kVc(F′c + IM )Vc, (28)

F′c =
1

M

C∑
j=1

K∑
i=1

ΘΘΘc,j,ie
′
j,i

(1 + ec,j,i)2
. (29)

And finally, we provide e′m,c,k,m,l∀{m, c, k} ∈ {C, C,Kc}

e′m,c,k,m,l =
1

M
trΘΘΘm,c,kVm(F′m,m,l + ΘΘΘm,l)Vm (30)

F′m,m,l =
1

M

C∑
j=1

K∑
i=1

ΘΘΘm,j,ie
′
m,j,i,m,l

(1 + em,j,i)2
. (31)

For j ≥ 1, define Γ
(j)
c = 1

MHH
c D(j)

Hc + α
(j)
c IM , with

Hc = [hc,1,1, ...,hc,i,j , ...,hc,C,K ]Hs.t (i, j) 6= (c, k) and



D = diag(D1, ...DC). The precoder at the end of iteration j
is given by

g
(j)
c,k =

ξ
(j)
c

M
(ΓΓΓ(j)
c )−1hc,c,k (32)

for each user k in the cell c, where ξ(j)
c is

ξ(j)
c =

√
Pc

1
M2 tr(ΓΓΓ

(j)
c )−2HH

ĉ AH,(j)c W2,(j)
c A(j)

c Hĉ

(33)

=

√
Pc

Ψ
(j)
c

. (34)

where Hĉ = [hc,c,1, ..., hc,c,K ]H . We derive the deter-
ministic equivalents of the normalization term ξ

(j)
c , the

signal power |gH,(j)c,k hc,c,k|2 and the interference power∑C
m=1

∑K
l 6=k if m=c h

H
m,c,kg

(j)
m,lg

H,(j)
m,l hm,c,k similarly to

[4], [5] and [6], i.e, using the same logic and mathematical
approach, but for a more complex problem. The proof is
omitted due to lack in space.

VI. NUMERICAL RESULTS
We plot the IBC WSR-DC algorithm with MF initializa-

tion and compare it to the large system approximation in
Theorem 1. The channel correlation matrix is modeled as [4].
Figure 1 and Figure 2 show the WSR-DC precoder and its
approximation for C = 2 for i.i.d. channels (ΘΘΘm,c,k = IM )
and correlated channels respectively. For the simulations of
the IBC WSR-DC algorithm, we have used 200 channel
realizations. It can be observed that for i.i.d channels
the approximation is very accurate which validates our
asymptotic approach. Although the sum rate expression
for the approximation approach (17) seems to be complex,
however we need to calculate it only once per a given SNR,
while we need to run the IBC WSR-DC simulations as
many times (200) as the number of channel realizations.

Fig. 1. Sum rate comparisons for C=2,K=4,M=20 with i.i.d
channels

Fig. 2. Sum rate comparisons for C=2,K=4,M=20 with cor-
related channels

VII. CONCLUSION
In this work, we presented the large system approximate

of the performance of the WSR-DC using tools from RMT.
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