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ABSTRACT

The weighted sum rate (WSR) maximizing linear precoding
algorithm is studied in large correlated multiple-input single-
output (MISO) interference broadcast channels (IBC). We
consider an iterative WSR design via difference of convex
functions (DC) programming as in [1], [2] and [3], focusing
on the version in [3]. We propose an asymptotic approxima-
tion of the signal-to-interference plus noise ratio (SINR) at

every iteration.
Index Terms—random matrix
weighted sum rate maximization

theory, beamforming,

I. INTRODUCTION

In this paper, Tx may denote transmit/transmitter/
transmission and Rx may denote receive/receiver/reception.
We consider the MISO IBC with linear precoding at the
transmitter. In this case, we have C base stations (BS), each
one of them is endowed with M antennas, whereas the K
users of each cell ¢ € 1,2, ...C have single-antenna receivers.
The precoding matrix that maximizes (local optimum) the
WSR for IBC via DC programming for perfect channel state
information (CSIT) is obtained from an iterative algorithm
proposed in [1], [2] and [3].

In this contribution, we carry out a large system analysis
of this latter optimal beamformer which we will denote by
WSR-DC. Large system analysis which appeared in [4] and
[5] allows to obtain deterministic (instead of fast fading
channel dependent) expressions for various scalar quantities,
facilitating the analysis of wireless systems. E.g. it may allow
to evaluate beamforming performance without computing
explicit beamformers. The analysis in [4] and [5] allowed
e.g. the determination of the optimal regularization factor for
the regularized zero-forcing precoders. A little known exten-
sion appeared in [6], [7] and [8] for optimal beamformers.
However, in [6] and [7] the precoders are designed using
the connection between WSR and the mean squared error
(MSE), and in [8] the precoder aims to minimize the transmit
power instead of maximizing the sum rate. These approaches
are different than ours. Furthermore, the deterministic limits
of the SINRs corresponding to the iterative IBC WSR-
DC process leading to the optimal WSR are presented,
which makes it possible to evaluate its performance more

easily and compare with other algorithms and precoders.
Notation: The operators (), tr(.) and E|.] denote conjugate
transpose, trace and expectation, respectively. The M x M
identity matrix is denoted I/, In(.) is the natural logarithm
and diag is the diagonal matrix. The contribution of this
paper is: a large system analysis of the WSR-DC iterative
maxizimization problem.

II. STREAMWISE IBC SIGNAL MODEL

In the rest of this paper we shall consider a per stream
approach (which in the perfect CSI case would be equivalent
to per user). In an IBC formulation, one stream per user can
be expected to be the usual scenario. In the development
below, in the case of more than one stream per user, one
can treat each stream as an individual user. So, consider an
IBC with C' cells with a total of K users. In this section we
consider a system-wide numbering of the users. User k is
served by BS by,. The N x 1 received signal at user k in cell
bk is
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where x; is the intended (white, unit variance) scalar signal
stream, Hy, ;, is the N x M channel from BS b, to user k.
BS by serves Ky, = >, _;, 1 users. We are considering
a noise whitened signal representation so that we get for
the noise v ~ CA(0,Iy). The M x 1 spatial Tx filter or
beamformer (BF) is g;. Treating interference as noise, user
k will apply a linear Rx filter f;, to maximize the signal
power (diversity) while reducing any residual interference
that would not have been (sufficiently) suppressed by the
BS Tx. The Rx filter output is 7, = fy,

K
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where hy, ; = Hj p, g; is the channel-Tx cascade vector.



III. MAX WSR VIA DC

In this section we consider a system-wide numbering of
the users. Consider as a starting point for the optimization
the weighted sum rate (WSR)

WSR=WSR(g Zuk ln — 3)
where g represents the collection of BFs g, the uy are rate
weights, the e, = e(g) are the Minimum Mean Squared
Errors (MMSEs) for estimating the zy:

1
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Ry, Ry are the total and interference plus noise Rx cova(r%2
ance matrices resp. and ey is the MMSE obtained at the
output 7, = £y}, of the optimal (MMSE) linear Rx fj,

f, = R, 'Hy .80 = Ry, 'hy - )

The WSR cost function needs to be augmented with the
power constraints
Z w{Qx} < P;. (6)
k:br=j
In a classical difference of convex functions (DC pro-
gramming) approach, Kim and Giannakis [2] propose to
keep the concave signal terms and to replace the convex
interference terms by the linear (and hence concave) tangent
approximation. More specifically, consider the dependence
of WSR on Qp alone. Then

WSR = uyIndet(R-'Ry) + WSRy,

K . @)
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where In det(R;Rk) is concave in Qj, and W SRy is con-
vex in Q. Since a linear function is simultaneously convex
and concave, consider the first order Taylor series expansion
in Qj, around Q (ie. all Ql) with e.g. R, =R, (Q) then

WSRL(Qk, Q) ~ WSR(Qy, Q) — tr{(Qx — Qr)AL}
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Note that the linearized (tangent) expression for W.SR;
constitutes a lower bound for it. Now, dropping constant
terms, reparameterizing the Q; = gkng , performing this
linearization for all users, and augmenting the WSR cost
function with the constraints we get the Lagrangian

ZAP+

Zuk In(1 + gy Bkgk) gt (Ax + Ao D)gr
k=1

WSR(g,g,\
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)Hi,bk

where B, = Hﬁbkﬁilﬂk,bk . (10)

The gradient (w.r.t. g ) of this concave WSR lower bound is
actually still the same as that of the original WSR criterion!
And it allows an interpretation as a generalized eigenvector
condition _
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or hence g;c = Vm(w(ﬁk,x&k + My, I) is the (normalized)
“max” generalized eigenvector of the two indicated matrices,
with max elgenvalue o = O’max(Bk,Ak + Ap, ). Let
(1) = ngBkgk, ]g ) = gk Akg,C The advantage of
formulation (9) is that it allows straightforward power adap-
tation: introducing stream powers p, > 0 and substituting

8 = /D g; in (9) yields

WSR= Z/\ P, +Z{uk In(1 4 proM) = pr(et® +2,)}
7 k=1

which leads to the following interference leakage aware

water filling
+
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where the Lagrange multipliers are adjusted to satisfy the
power constraints Zk:bk: ; Pk = Pj. This can be done by
bisection and gets executed per BS. Note that some Lagrange
multipliers could be zero. Note also that as with any al-
ternating optimization procedure, there are many updating
schedules possible, with different impact on convergence
speed. The quantities to be updated are the g;c, the pi and
the \;. Whereas we focused on the case of one stream/user,
the advantage of the DC approach is that it works for any
number of streams/user, by simply taking more eigenvec-
tors. The waterfilling then automatically determines (at each
iteration) how many streams can be sustained.

IV. THE MISO CASE

In the MISO case, we have C,. = 1 and we shall denote
the matrices R, H* as the scalar r and the vector h. We
get g;c = Vinaz(Br, Ar + A, I) and associated generalized
eigenvalue 1/ay, = Aoz (B, Ag + Ay, I). Note that g}c is
proportional to (A + Ay, I) " hy p, and that any scale factor
in g}c gets compensated by the stream power py.

The proposed solution is amenable to large system anal-
ysis as in [7]. From now on, we will no more consider a
system-wide numbering of the users. The WSR-DC precoder
for user k in cell ¢ can be expressed [3] as the following:

12)

g;,k = (Ack + ac[)_lhc,cvk (13)
K
A= S w2 Db, (4
(1,5)#(c.k)
where hc.r is the M x 1 channel between cell c
and the user k of cell ¢, with & € [1,K.. The
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Lagrangian term . can be fixed optimally to o, = .

diag(E( 1,-dex) as in [9] and with
va*(T Jl#zjl) 7T*( Zl]QLJ 7,1,]) _1*0‘12]><ww
4, Lemma 2]; where a;_; “and w; 4 = 1+, ; are the Rx filter
and the precoding weight as in [6]. The large system analysis
treats all the users’ fast fading parameters as identical and
differentiates the users only by their second-order statistics
(channels’ covariance matrices), thus there is no need for
waterfilling and a simple normalization parameter will be
enough as in [4], [5] and [6].

where D, =

V. MASSIVE MISO LIMIT

In this section we will derive the deterministic equivalent
of the SINR for correlated channles. The channel h ok is
correlated as

E [hiﬁ,khz{{c,k] = 61»76};@ thus

1ck =VvM ezl/czkzlck (15)

where z; ., has ii.d. complex entries of zero mean and
variance ﬁ and the 611/ch is the Hermitian square-root
of ©; .. The correlation matrix ©; . is positive semi-
definite and of uniformly bounded spectral norm w.r.t. to
M. For notational convenience, we denote O, . as O .
If the number of Tx antennas M becomes very large, the
WSR (SINR) can be approximated using tools from Random
Matrix Theory. In this section, performance analysis is
conducted for the proposed precoder. The large-system limit
is considered, where M and K go to infinity while keeping
the ratio K /M finite such that limsup,; K/M < oo and
liminf,, K/M > 0. The procedure should be understood in
the way that, for each set of system dimension parameters M
and K we provide an approximate expression for the SINR
Ve, k- Our precoder is initialized using a Matched Filter (MF)

Precoder. Let 74" be the SINR of user k of cell ¢ under MF

_MF M—oo

precoding then, ’yM F_ Yer —— 0[6], almost surely
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where p. is the signal-to-noise ratio and 5. = % For the
WSR-DC precoder, a deterministic equivalent of the SINR
is provided in the following theorem

Theorem 1: Let 7. be the SINR of the kth user of cell
¢ with the precoder defined in (13). Then, a deterministic
equivalent 7& ,1 at iteration j > 0 and under MF initialization,
(J)

is given by 7, is given by
(1) 2 (J)
. m 1+m;
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Denoting
V.= (Fc + aCIM)_I (25)
DY
with & 7(] ) = , three systems of coupled equations have

to be solved. Flrsct, we need to introduce e, . xV{m,c, k} €
{C,C, K.} which form the unique positive solutions of

1 —
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€c,e,k and me . denote e.j and m.y respectively. Sec-
ondly,we give €] 1,...,€] ;.- ec, ;¢ Which form the
unique positive solutions of
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And finally, we provide e;, ., .. ,V{m,c,k} € {C,C,K.}
1
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For j > 1, define IY) = LHAD
HC = [hc,l,lwnahc,i,jw“



D = diag(Dy,...D¢). The precoder at the end of iteration j

is given by
G _ & i
gcj,k = ﬁ(rgj))i heck (32)
for each user k in the cell ¢, where fﬁj ) is
, P,
£ = : TRy = (33)
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where Hy = [heetseo hecx|?. We derive the deter-
ministic equivalents of the normalization term géj ), the

signal power |gf,’€(j )hc,c,k|2 and the interference power

ngl Zf;k if m=c hg,c,kgg?lggigﬂhm,c,k similarly to
[4], [5] and [6], i.e, using the same logic and mathematical
approach, but for a more complex problem. The proof is

omitted due to lack in space.

VI. NUMERICAL RESULTS

We plot the IBC WSR-DC algorithm with MF initializa-
tion and compare it to the large system approximation in
Theorem 1. The channel correlation matrix is modeled as [4].
Figure 1 and Figure 2 show the WSR-DC precoder and its
approximation for C' = 2 for i.i.d. channels (©,, ., = Inm)
and correlated channels respectively. For the simulations of
the IBC WSR-DC algorithm, we have used 200 channel
realizations. It can be observed that for i.i.d channels
the approximation is very accurate which validates our
asymptotic approach. Although the sum rate expression
for the approximation approach (17) seems to be complex,
however we need to calculate it only once per a given SNR,
while we need to run the IBC WSR-DC simulations as
many times (200) as the number of channel realizations.
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Fig. 1. Sum rate comparisons for C=2,K=4,M=20 with i.i.d
channels
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Fig. 2. Sum rate comparisons for C=2,K=4,M=20 with cor-
related channels

VII. CONCLUSION

In this work, we presented the large system approximate
of the performance of the WSR-DC using tools from RMT.
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