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Abstract—We investigate the performance of some sparse
recovery and compressed sensing algorithms when applied to
the Angle-of-Arrival (AoA) estimation problem. In particular, we
review three different approaches in compressed sensing, namely
Pursuit-type, Thresholding-type, and Bayesian-based algorithms.
The compressed sensing algorithms reviewed herein are of vast
interest when applied to AoA estimation problems because of
their ability to resolve sources with a single snapshot and without
prior knowledge of the number of sources. We compare the
performance of these algorithms in terms of Mean-Square Error
(MSE) through simulations.

Index Terms—Angle-of-Arrival Estimation, Compressed sens-
ing, Sparse recovery, Pursuit, Thresholding, Bayesian

I. INTRODUCTION

The estimation of the angles of arrival, or AoAs, of
multiple sources is a well known problem in the context of
array signal processing [1]. In fact, this problem emanates in
many engineering applications such as navigation, tracking
of objects, radar, sonar, and wireless communications (see
[2l, [3]). Therefore, many algorithms were used to solve
this issue, such as the optimal Maximum Likelihood (ML)
technique [4]. Since the ML cost function is highly nonlinear
in signal parameters, its direct optimisation would require
cumbersome optimisation techniques. Techniques that deal
with optimising the ML cost function in a computationally
acceptable way are: Iterative Quadratic ML (IQML) [5],
Alternating Projections [[6], Expectation-Maximisation (EM)
[7], Space-Alternating Generalised EM (SAGE) [8], and
so forth. However, these algorithms also demand multiple
1D searches, or convergence is in some cases slow or not
guaranteed (such as EM). As a result, suboptimal techniques
such as MUSIC [9], Root-MUSIC [10], and ESPRIT [11]]
received more attention. However, all those algorithms
require the knowledge of the number of incoming sources.
Furthermore, the suboptimal algorithms can not operate with
a single snapshot.

Recently, sparse recovery optimisation and compressed
sensing algorithms have become popular and found many
applications in diverse areas, such as signal processing. Com-
pressed sensing was initiated in 2006 by two ground breaking

papers, namely [12] by Donoho and [|13]] by Candes, Romberg,
and Tao. In particular, consider the following linear model,
which will be oriented towards the AoA estimation problem
in the next section:

x=As+n )

where A € CN*K is a known overcomplete dictionary. Each
column of A is referred to as an atom. The vector s € CKX!
is composed of unknown coefficients that we would like to
retrieve using the observed vector x € CN*!. In general, this
problem is underdetermined and therefore ill-posed. However,
a typical remedy for this indeterminacy is to pose a sparse con-
straint on s, which leads to the following sparse optimisation
problem:

§:argminHX—ASHQ‘f’)\HSHP 2
S

where ||s]|,, is the [, norm of s and 0 < p < 2. Note that we
have excluded p = 0 since [j is a pseudo-norm (the triangular
inequality of norms is not satisfied), which counts the number
of non-zero elements. Also note that ||x||2 = ||x]|.

Sparsity is most favored when p = 0. However, the
above optimisation problem will become NP-hard [14].
As a response to this issue, Greedy algorithms have been
implemented to solve the above optimisation problem under
the [y constraint, such as Matching Pursuit (MP) [15] and
Orthogonal MP (OMP) [16]. An alternative to the NP-hard
problem is to relax the constraint so as the problem is convex,
i.e. this happens when p > 1 [17]. Popular algorithms that
are used for the [; optimisation problem are the Iterative
Shrinkage Thresholding Algorithm (ISTA) [[18] and the Basis
Pursuit Denoising (BPDN) [19].

Another category of methods are based on the Bayesian
approach, where the non-zero elements of the sparse signal
s are assumed to have a priori statistical information. For
instance, the method in [20] imposes a Laplacian distribution
on the non-zero elements of the sparse signal s. Whereas,
the methods found in [21]], [41] model the non-zero elements



of s as Gaussian. The method in [41] is the Fast Bayesian
Matching Pursuit (or FBMP), which was shown to outperform
the follwing methods: Stagewise OMP (StOMP) [42], Sparse-
Bayes [43]], Gradient Projection for Sparse Reconstruction
(GPSR) [44], and OMP [16]. More recently, the method in
[40], which is called Sparse reconstruction using distribution
Agnostic Bayesian Matching Pursuit (or SABMP for short),
was shown to outperform the methods in [20], [21]], [41]. As
argued in [40], the assumption that the non-zero elements of s
follow a certain distribution (whether Gaussian or Laplacian)
is not realistic, because, in most real-world scenarios, it
is not Gaussian, or it is unknown. Moreover, the SABMP
approach is very interesting, since it is naturally agnostic
to the distribution of the non-zero elements of the sparse
signal. Even more recently, we have introduced an iterative
Variational Bayes (VB) algorithm in [45] with the help of
latent variables. Indeed, the paper was inspired by the work in
[46]-[48]]. The papers [46]-[48] focus on introducing latent
variableq'| and imposing prior distributions on these variables
that favor sparsity. The performance of this VB algorithm
demonstrated its potential especially in the case of closely
spaced sources.

The rest of this paper is organised as follows: Section II
presents the system model used throughout the paper. An
overview of different sparse recovery algorithms is given
in Section III. In Section IV, we present some simulation
results to demonstrate the potential of the algorithms revised
in Section III when applied to the Angle-of-Arrival (AoA)
estimation problem. We conclude the paper in Section V.

Notations: Upper-case and lower-case boldface letters de-
note matrices and vectors, respectively. (.)T and (.)! represent
the transpose and the transpose-conjugate operators. © repre-
sents the pointwise Hadamard product. The k*" entry of a
vector x is denoted as xj. For any z € C, the magnitude of z
is represented as |z|. For any vector x, the representation x (™)
denotes the estimated value of x at an iteration n. Also, for
any vector x € CNV*1, tlhe I, norm (p > 0) of x is denoted

N
as [|x[|, = (kz |xk|p) ". For convenience, the /> norm of a

vector x will be1 expressed as ||x||. For any two real numbers
21 and xo, the operator max(x1, x2) returns the maximum of
the two values. Finally, the indicator function 1, is equal to
1 if the statement 2 is true, otherwise it returns O.

II. SYSTEM MODEL

Assume a planar arbitrary array of N antennas. Further-
more, consider ¢ < N narrowband sources attacking the array
from different angles, i.e. 0; ... 0,. A single observed snapshot
could be written as [22]

x=At+n 3)

where x € CN*! is a single observed snapshot. The vector
t € C9%! is the transmitted signal from ¢ sources. The steering

ILatent variables are often referred to as hyperparameters.

matrix A € CN*9 is composed of ¢ steering vectors, i.e. A =
[a(61)...a(b,)]. Each vector a(6;) is the response of the array
to a source impinging the array from direction 6;. The form
of a(6;) depends on the array geometry. In general, the vector
a(0) has the following functional form

e—J =< (Z1sin(6)+71cos(0))

a(f) = —— : &)

e—j%(i’Nsin(H)—&-'chos(G))

where (Zp, 7)) is the position of the k' antenna. The term
w, = 2w f. is the angular frequency, and c is the speed of
light in vacuum. The vector n € CN*! is modelled as a
white circular complex Gaussian process of zero mean and
covariance o?Iy and independent from s.

Now, we recast the problem statement in @]) to the model
in equation (T)), where matrix A € CN*K is an overcomplete
dictionary given as

A=[a(0")...a(0%)] (5)

and s € CX*! is a g—sparse (only ¢ elements of s are not set
to zero) vector. Note that the non-zero elements of s are equal
to the corresponding elements of t.

III. COMPRESSIVE SENSING AND SPARSE RECOVERY AOA
ESTIMATION

Consider the optimisation problem in penalized form given
in equation (2). This problem is referred to as l,-optimisation.
When p = 0, note that ||s||o counts the number of non-zero
elements of s. Also note that ||s||p is a quasinorm, since the
triangular inequality of norms is not satisfied in this case.
Solving the problem in (2)), when p = 0, is known to favor
sparse solutions the most. However, this comes with a price
of having an NP-hard problem in hand to solve. In this paper,
we aim to study the performance of three broad categories of
compressed sensing algorithms, namely:

 Pursuit-type algorithms.

o Thresholding-type algorithms.

e Bayesian-based algorithms.

A. Pursuit-type algorithms

Pursuit-type algorithms are popular algorithms in the field
of compressed sensing. More specifically, matching pursuit
algorithms deal with an approximate solution of the I[-
optimisation problem. For uniqueness of the [y problem, we
refer the reader to [23]. However, basis pursuit relax the
lp-optimisation problem to an [i-optimisation one. The ;-
optimisation problem is also known as LASSO [25]. For
uniqueness of the [; problem, we refer the reader to [24].
An advantage of this relaxation is that the problem is now
convex. It remains to see when the unique solution provided
by the [;-optimisation problem coincides with that of the [
one. The papers in [23]], [26] give sufficient conditions for §
to be a unique solution of the [y and [;-optimisation problems.
Moreover, the necessary conditions for that to happen are
found in [27], [28].
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Fig. 1: Two sources impinging the array from directions 6, = 0°

and 0> = 5°. The number of antennas is 10.
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Fig. 3: Two sources impinging the array from directions 6; = 0°
and 0> = 5°. The SNR is 20dB.

The pursuit algorithms that are evaluated in the context of
AOA estimation in this paper are the following:

o Matching Pursuit (MP) [15]]

o Orthogonal MP (OMP) [16]

o Gradient, or directional, Pursuit (GP) [29]
o Basis Pursuit De-Noising (BPDN) [19]

The first three algorithms: MP, OMP, and GP are also
referred to as Greedy algorithms. These algorithms start by
initialising § to a zero vector, then estimate a set of non-zero
components of § by adding new components to those non-
zero terms, in an iterative manner [17]. A brief summary of
Greedy algorithms is given in Table 1. Indeed, the algorithms:
MP, OMP, and GP differ in how the “Element Selection” and
”Coefficient Updates” are done. For example, MP updates
one element at each iteration (this entry corresponds to the
maximum magnitude of g™). However, OMP updates mul-
tiple entries at the same iteration using Least-Square fit. For
more information regarding Greedy methods, we encourage
the reader to refer to [[17] and [30]. Furthermore, many work
has been done on figuring out a good ”Stopping Criterion”
for Greedy algorithms. For example, in [31]], [32]], a necessary
condition was given in order to recover s with error threshold
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Fig. 2: Two sources impinging the array from directions 6; = 0°
and 0> = 30°. The number of antennas is 10.

Table 1: General framework of Greedy algorithms

INPUT:
Given the data x and the dictionary A.

INITIALISATION:
r® =x 80 =0, and n = 0.
MAIN LOOP:

while Stopping Criterion is not met do
« Element Selection: Select the columns of 4 based on
the largest magnitude of entries of g™ = AHr(m)
o Coefficient Update: Obtain a new estimate §™ that
minimises ||x — As||? then increment n.

§ =0, i.e. when |8 <5 =0.
On the other hand, BPDN aims at an /;-optimisation prob-
lem, or equivalently the following

§ = argmin||s||; subjectto |x—As|[?<e (6)
S

The regularization parameter € has to be chosen appropriately

depending on the noise, which is a major disadvantage of this

algorithm.

B. Thresholding-type algorithms

The Greedy algorithms are easy and computationally effi-
cient. However, they do not promise recovery of s as strong
as the [i-optimisation problem. In this sub-section, we are
interested in the following:

o Iterative Hard Thresholding (IHT) [33]], [34]

e Normalised IHT (NIHT) [35]]

o Iterative Shrinkage-Thresholding Algorithm (ISTA) [[18]]

It was shown in [36] that solutions of (2)) are given as follows

s = prox | (s — v AR (As — x)) (7)
where v > 0 and the proximity function is given by
. 1
prox) , (z) = arg min (IISIIp +5lls - ZIIS) ®)



which has a unique solution s for every z € CX*! [37]. Now,
equation could be solved using fixed-point in an iterative
fashion, viz.

st — prox; | (s(”) — 7 A (As™ — x)) )

When p = 0, the proximity in (9) gives the hard threshold,
and therefore the IHT algorithm

(10)

prOX)\,.Y”_HO(Z) = [ ey Ziﬂ‘zi‘>\/m’ .. .}T

However, when p = 1, the proximity in (9) gives the soft
threshold. Hence, we obtain the ISTA algorithm

= [...,Z—Z:maX(\ZA—/\%0)7-~-]T (11

|24
Convergence and recovery properties of IHT are found in
1331, 138, [39]]. To further enhance IHT, the normalised
IHT (NIHT) was obtained by a simple modification [35].
This modification yields a faster algorithm, whilst keeping
theoretical performance similar to IHT, in some scenarios.

ProX,, ., ()

C. Bayesian-based algorithms

In this sub-section, the sparse signal s is no longer treated
as deterministic, but rather as probabilistic, or random. In
other words, a Bayesian approach is adopted. Here, we briefly
discuss the ideas of:

e Sparse reconstruction using distribution
Bayesian Matching Pursuit (SABMP) [40]
o lterative Variational Bayes (VB) with latent variables.

Agnostic

SABMP [40] performs Bayesian estimates of the sparse
signal s even when it is modelled as non-Gaussian, thus the
term “Agnostic”. Even more, this method makes use of a
priori statistics of the noise and the sparsity rate of the signal.
More specifically, the signal s is modelled as s = s4 ©® sp,
where s4 consists of elements that are drawn from some
unknown distribution (Agnostic), whereas sp are drawn i.i.d.
from a Bernoulli distribution with success probability p. Note
that p controls the sparsity of s, and thus it plays a major
role in activating elementsﬂ of s. The SABMP method was
shown, through simulations, to outperform BPDN [19] and
Fast Bayesian Matching Pursuit (FBMP) [41]].

On the other hand, we have recently introduced an iterative
Variational Bayes (VB) algorithm in [45] with the help of
latent variables. Indeed, the paper was inspired by the work in
[46]-[48]]. The papers [46]]-[48] focus on introducing latent,
or hidden, variables and imposing prior distributions on these
variables that favor sparsity. In [45], we also introduce the
latent variables discussed in [46[-[48|], which leads to a
novel iterative Variational Bayes [49] algorithm that allows
recovering s from a single observation x with the help of the
latent variables that were introduced.

2By activating elements of s, we mean to set these elements to non-zero.
Actually, this term was taken from [40].

IV. SIMULATIONS

This section presents some simulation results regarding
Mean-Square Error (MSE) of the compressed sensing algo-
rithms revised in the previous section. We have simulated
three different scenarios. Furthermore, we fix the following
simulation parameters: Consider a Uniform Linear Antenna
array composed of /N antennas spaced at half a wavelength.
Furthermore, assume ¢ = 2 sources attacking the array from
directions #; = 0° and 6. The dictionary A is composed of
K = 91 atoms discretized from —45° till +45° with a grid
step of 1°. All our experiments are done using M = 100
Monte Carlo trials.

In Scenario 1 (Figure [T), we fix N = 10 antennas and
f; = 5°. Moreover, we plot the MSE vs. SNR and we
notice that all algorithms except for CELO, SABMP, and
VB were not able to resolve the closely spaced sources.
This phenomenon is explained in [50] and is known as the
Restricted Isometry Property (RIP). In short, the RIP condition
(in the context of AoA estimation) relates the number of
resolvable sources®] with the number of antennas N that should
be used to resolve these sources. Furthermore, we observe
that the MSE of SABMP and VB are close to the Cramer-
Rao Bound (CRB), whereas CELO has inferior performance
when compared to VB or SABMP. In order to validate the
RIP condition, we have simulated Scenarios 2 and 3.

In Scenario 2 (Figure @ we fix N = 10 antennas and
02 = 30°. One could verify that the RIP condition is now
validated for 2 sources when seperated at 30°. As one can
now see, all the algorithms now recover the sparse signal,
and thus properly estimate the AoAs at a sufficiently high
SNR. For example, IHT presents no error when SNR > 25
dB. Furthermore, MP, OMP, GP, and BPDN present no error
when SNR > 30 dB.

In Scenario 3 (Figure E]), we fix the SNR to be 20 dB and
0> = 5°. Furthermore, we plot the MSE vs. the number of
antennas (V). We notice that all pursuit and thresholding al-
gorithms promise exact recovery of the closely spaced sources
when the number of antennas N exceeds a certain level. For
instance, ISTA and IHT promise exact recovery at 20 dB of
two sources spaced at 5° when N > 25. As for MP, OMP, GP,
and BPDN, the required number of antennas should exceed 30
to guarantee exact recovery.

V. CONCLUSION

In short, we have revised some methods that fall under three
types of compressed sensing algorithms, namely Pursuit-type,
Thresholding-type, and Bayesian-based algorithms. Further-
more, we have provided some simulation results demonstrating
the performance of these algorithms in the context of angle-
of-arrival estimation. Indeed, the algorithms that were revised
here, amongst others as well, are appealing due to their ability
of resolving sources with a single snapshot and without the
knowledge of the number of sources.

3By number of resolvable sources, we mean the number of sources that
could be resolved, given that the angular seperation between these sources
exceed a certain threshold.
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