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Abstract— Demand-Response (DR) programs, whereby users
of an electricity network are encouraged by economic incentives
to re-arrange their consumption in order to reduce production
costs, are envisioned to be a key feature of the smart grid
paradigm. Several recent works proposed DR mechanisms and
used analytical models to derive optimal incentives. Most of
these works, however, rely on a macroscopic description of the
population that does not model individual choices of users.

In this paper, we conduct a detailed analysis of those
models and we argue that the macroscopic descriptions hide
important assumptions that can jeopardize the mechanisms’
implementation (such as the ability to make personalized offers
and to perfectly estimate the demand that is moved from
a timeslot to another). Then, we start from a microscopic
description that explicitly models each user’s decision. We
introduce four DR mechanisms with various assumptions on the
provider’s capabilities. Contrarily to previous studies, we find
that the optimization problems that result from our mechanisms
are complex and can be solved numerically only through a
heuristic. We present numerical simulations that compare the
different mechanisms and their sensitivity to forecast errors.
At a high level, our results show that the performance of DR
mechanisms under reasonable assumptions on the provider’s
capabilities are significantly lower than those suggested by
previous studies, but that the gap reduces when the population’s
flexibility increases.

I. INTRODUCTION

Demand Response (DR hereinafter) programs are envi-
sioned to be a key feature of the Smart Grid paradigm [1].
By means of economic incentives (discounts or penalties),
DR schemes encourage users to rearrange their consumption
in response to the network state, thus mitigating the grid
overload and driving wholesale prices down.

Several analytical models are available in the literature,
which describe and quantify the effects of DR mechanisms.
Whatever their specifics are, these schemes need to model
how users react to the incentives. Ideally the models should
capture the most realistic features of a practical DR mecha-
nism while maintaining tractability.

Among these contributions, the authors of [2] study how
an energy provider should select time-dependent discounts to
minimize its production costs. They assume that the percent-
age of users who shift their consumption from slot i to slot
j is a decreasing function of the temporal distance between
slots i and j and a concave and increasing function of the
discount offered in slot j (Rj), independent from discounts
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in other slots. The same user’s model as in [2] is adopted also
in [3], where the optimization problem is extended in order
to account for battery storages and distributed renewable
sources available into a specific microgrid. Authors of [4]
propose a day ahead pricing scheme which maximizes the
provider’s profitability and capacity utilization. Users are
assumed to reschedule their consumption by comparing the
utility vi they get by scheduling a task in each timeslot i;
therefore they allocate their consumption proportionally to
these utilities, i.e., they consume a fraction vi∑T

j=1 vj
of their

total energy demand in timeslot i. The resulting optimization
problem is non convex but some relaxation techniques are
introduced, which allow one to calculate a solution within a
reasonable amount of time. In [5], a more realistic model
is proposed where each user first calculates the welfare
(defined as utility minus time-dependent cost) she gets from
consuming electricity in each of the possible timeslots, and
then allocates all the consumption to the slot returning the
largest welfare. As we show below (see Sec. IV-D) this model
can lead to a much more complex optimization problem than
the one presented in [5]. Finally, the authors of [6] propose
a full-fledged game theoretical model, but their results hold
only if users experience a large number of interactions
without any change in the system.

We claim that these studies rely on too strong assump-
tions, which jeopardize their usability for practical purposes.
Interestingly, we observe that the assumptions are sometimes
hidden in the macroscopic models the papers start from.
In particular in this paper we focus on [2] and show that
its model requires personalized offers and a very precise
forecast of the baseline consumption of each user. The
implementation of these features may require potentially
significant costs in terms of communication, measurement
and computation infrastructure. Besides highlighting these
implicit requirements in the analytical framework in [2] (and
then also in [3]), we explore their potentials considering four
DR mechanisms with different levels of complexity:

1) the base mechanism corresponds to an optimization
problem similar to the one considered in [2], it re-
quires personalized offers and individual consumption
forecasts; the energy production cost is optimized over
the discount values, each of which is offered to a given
fraction of the population,

2) the optimized mechanism takes full advantage of per-
sonalized offers and consumption forecasts by mini-
mizing the cost over both the discount values and the
population fractions to which the discounts are offered,



3) the robust mechanism relies on personalized offers, but
does not need individual consumption forecasts,

4) finally the broadcast mechanism (analogous to that
in [5]) needs neither of the two features.

Interestingly, contrarily to prior studies, we find that the cost-
minimization problems resulting from our DR mechanisms
are not convex (even for the base mechanism). Neverthe-
less, simple heuristics can identify (potential) minima in a
reasonable amount of time in realistic scenarios. Then, our
numerical results show that the simpler robust and broadcast
mechanisms achieve significantly lower cost reductions than
the optimized mechanism, which is difficult to implement,
but that the gap reduces when the population’s flexibility
increases.

The paper is organized as follows. In Sec. II we discuss
how the macroscopic models considered in [2], [3], [4]
hide some implicit assumptions about the user rationality
or about the interactions between the provider and the user.
We define our microscopic model in Sec. III and then
describe different DR mechanisms and their corresponding
optimization problems in Sec. IV. Finally, we evaluate their
performance numerically in a realistic scenario in Sec. V.

Due to space constraints proofs, examples and some
additional numerical results are in the companion technical
report [9].

II. PITFALLS WHEN STARTING FROM MACROSCOPIC
MODELS

In this section, we describe in more detail the macroscopic
models proposed in the literature for day-ahead price opti-
mization. Consider a finite time horizon discretized in a set
T of N timeslots and a large population S of users. The
baseline aggregate energy consumption in slot j is denoted
by E0

j .
The energy provider charges a flat rate B, but it can offer

discount rates to incentivize the users to move some of their
consumption so as to reduce the energy production cost. Due
to consumption shifts, the actual aggregate consumption in
time slot j is E1

j . Observe that a usual assumption in the
literature (including the papers mentioned above) is that the
introduction of a DR scheme neither reduces nor increases
users’ demand; it merely rearranges users’ consumption in a
more cost effective way, so that

N∑
j=1

E0
j =

N∑
j=1

E1
j . (1)

We denote the amount of consumption shifted from slot j
to slot i 6= j as Ej→i, and the amount of consumption the
users refuse to shift away from j as Ej→j . Then we have

E1
i = E0

i +

N∑
z=1

Ez→i −
N∑

k=1

Ei→k.

We now start to further detail the model considering
some specific assumptions made in previous works. In [2]
and [3], the electricity provider offers an energy price dis-
count Ri ≥ 0 in each slot i. The users are assumed to react

to these incentives by shifting a fraction of their baseline
consumption from slot j to slot i (|j−i| slots away) according
to the following formula:

Ej→i = E0
jSj(Ri, |j − i|). (2)

Sj(Ri, |j − i|) is called the aggregate sensitivity function
and is increasing in the discount Ri and decreasing in the
temporal shift |j − i|, in order to take into account the user
discomfort.

The provider selects the vector of discounts R in order
to minimize its total cost, equal to the sum of the electricity
generation costs and the loss of revenues due to the discounts.
In particular the optimization problem considered in [2] is
the following:

min
R

∑
i

∑
j 6=iRiEj→i +

∑
i ci
(
E1

i

)
(3)

s.t. 0 ≤ Ri ≤ B ∀i = 1, . . . N, (4)

where ci(·) is the cost of electricity production in slot i.
Eq. (4) guarantees that discounts R are non negative and
smaller than the flat rate B, so that the money stream goes
toward the provider.

As it often happens, the devil is hidden in the details, and
in this case in Eqs. (2) and (3). Our first remark is that the
cost of lost revenues

∑
i

∑
j 6=iRiEj→i in Eq. (3) implicitly

assumes the possibility to reward only the consumption
actually shifted from j to i, i.e., Ej→i, but this quantity
cannot be directly measured. The actual consumption E1

i

can be measured, and then Ej→i can be quantified provided
that we have good estimates of the sensitivity function
Sj(Ri, |j − i|) and of the baseline consumption E0

i . Let us
assume for a moment that Sj(Ri, |j − i|) is known from
historical data and that the aggregate baseline consumption
may be predicted with a reasonably high level of accuracy
on a large set of users. Then it seems possible to solve the
macroscopic problem in Eqs. (3) and (4), but we need to
consider also what should happen at the microscopic scale.
While the estimates for the aggregate baseline consumption
can be adequately precise, finally the billing is done at
the user’s granularity and each user expects to receive the
price discount corresponding to the energy consumption
she actually moved. If the energy bill’s reduction does not
correspond to her forecast, the user is likely to opt out of the
program (in particular if she has experienced underpayments)
or to reduce her efforts and milk occasional discounts. It
appears then that Eq. (3) implicitly requires very precise
predictions of individual consumptions.

We now observe that the form of the sensitivity function
Sj(Ri, |j− i|) in Eq. (2) indicates that the amount of energy
shifted from j to i depends on the discount Ri but not
on the other discounts. We can then ask ourselves which
individual decisions may lead to this aggregate behavior,
an issue ignored both in [2] and [3]. As long as a rational
individual is offered two different discounts Ri and Rk, it
seems natural that her decision to move some consumption
from j to i or from j to k or to keep it in j will take
into account both the discounts. To stress the point, consider



a case when both Sj(Ri, |j − i|) and Sj(Rk, |j − k|) are
positive, but moving the consumption from i to k is both
less inconvenient (i.e., |j−k| < |j− i|) and more rewarding
(i.e., Rk > Ri). There is then no reason why the user would
move consumption to i. The conclusion is the same for all
the users and then we should have Ej→i = 0 at the aggregate
level, in contradiction with Eq. (2). We can then conclude
that the expression of the sensitivity function in Eq. (2) is
not suited to model the situation when a user is offered
two or more rewards, but it can capture the case when the
user decides between moving from j to i in exchange of a
discount Ri or staying in j. If every user is offered a single
discount to move to a given slot, but different users can
receive different offers, then Eq. (2) can reasonably describe
the macroscopic effect of such personalized offers. The
details are described in Sec. IV-A, here we only highlight that
Eq. (2) requires then that the electricity provider i) calculates
an offer for each user, ii) communicates individually to the
user, iii) considers the individual offer when billing the user.
This is clearly more demanding than simply advertising to
the whole population the same set of discounts.

We observe that the equivalent sensitivity function consid-
ered in [4] poses similar problems. Using our notation, we
have Ej→i =

vi∑
k∈T vk

E0
j , where vi is the net utility a user

gets by consuming electricity in slot i and can be a function
of the timeslot itself and of the discount Ri. This formula
tries to capture the effect of the whole set of discounts, but
it is not clear again what is the underlying user’s model: if
slot i has a larger utility than slot k (vi > vk), why should
the user consume in k?

III. STARTING FROM A MICROSCOPIC MODEL

In the previous section we made the point that, while ag-
gregate population models may be convenient, it is necessary
to explicitly consider the microscopic level: how the user
takes the decisions and how the provider and the user are
supposed to interact. In this paper we follow the opposite
path in comparison to the existing works mentioned: we
move from the microscopic level to the macroscopic one.
In particular, in this section, we start from a clear model of
rationality for the single user and then move to describe how
aggregate quantities can be derived.

Each user u has a baseline energy consumption
{e0uj }j=1,...N that leads to the aggregate baseline consump-
tion E0

j =
∑

u∈S e
0u
j for j = 1, . . . N . We assume in what

follows that users are homogeneous, i.e.,

∀ u, e0uj = e0j j = 1, . . . N. (5)

In [9] we show how the DR mechanisms perform when this
assumption does not hold.

User u is characterized by a private type Du =
{duj→i}j,i=1,...N where duj→i indicates the discomfort due to
shifting one unit of consumption from timeslot j to timeslot
i. We assume that discomforts are expressed in monetary
units; and that, ∀u ∈ S,

duj→j = 0 and duj→i > 0, ∀j, i 6= j, (6)

i.e., there is a strictly positive discomfort if and only if con-
sumption is shifted from its original timeslot. The provider
does not know the private type Du of each user u: from its
point of view, each discomfort duj→i is drawn from a known,
continuous distribution Fj→i on [0, αj,i] (where possibly
αj,i = +∞). Discomforts of distinct users are independent
but note that we do not assume that, for a given user, the
discomforts {duj→i}j,i=1,...N are mutually independent.

A. Rational Users

We assume that a user simply chooses the option that
maximizes her utility. In particular let T u

j be a set of
timeslots the user could move the baseline consumption e0uj
to in exchange for different discountsRu

j = {Ru
j→k ≥ 0, k ∈

T u
j }. The set pair (T u

j ,Ru
j ) defines the offer user u receives

for timeslot j. The set of options includes the possibility to
keep the consumption in j, i.e., j ∈ T u

j . A rational user
maximizes her utility by scheduling her consumption e0uj to
a timeslot

i∗ ∈ argmax
k∈T uj

{
Ru

j→k − duj→k

}
. (7)

We assume that if two or more timeslots are equally palat-
able, the whole consumption is shifted to only one of them,
picked at random with equal probability.

B. Aggregation

We observe that the quantities duj→k in Eq. (7) are random
variables, then two different users could take different deci-
sions while confronted with the same offers. The aggregate
consumption E1

i , for i ∈ T , would then be a random
variable. Here we assume (as it is implicit in the other works)
that we always work with large sets of the population so
that the variability can be neglected by approximating actual
random quantities with their expected values. In particular, if
a subset Q containing a fraction q of the population receives
an offer (Tj ,Rj), the corresponding consumption shifted
from j to a time slot i, denoted as EQj→i will be

EQj→i = qE0
j Prob

(
i ∈ argmax

k∈Tj

{
Ru

j→k − duj→k

})
, (8)

if the probability that a user has two or more equally
palatable timeslots is zero. When discomforts are con-
tinuous random variables (as we consider in this pa-
per), this is always the case if each user receives only
one offer (the first three mechanisms introduced below)
or if the discomforts {duj→i}j,i=1,...N are mutually inde-
pendent. In Sec. IV-D, we discuss how Eq. (8) should
be modified if this probability is not zero. We de-
note Prob

(
i ∈ argmaxk∈Tj

{
Rj→k − duj→k

})
simply as

Pj→i(Ru
j , Tj).

IV. DR MECHANISMS

Under different assumptions on the provider’s capabilities,
we introduce different demand response mechanisms based



on the microscopic model above, which are therefore practi-
cally implementable. We introduce and study the correspond-
ing optimization problems.

We start by the base mechanism that leads to the same
aggregate optimization problem considered in [2], [3].

A. Base mechanism

This mechanism requires that the energy provider can
manage personalized offers to its customers and moreover
that it has perfect knowledge (or very precise estimates) of
the baseline consumption of each user.

The population is segmented into N2 disjoint subsets
Qj→i, for j, i ∈ T , respectively including a fixed fraction
qj→i of the population. Each user in Qj→i is simply offered
to move her baseline consumption in slot j (e0j ) to slot i in
exchange for a price discount Ri.

The total consumption that is shifted from j to i is then

Ej→i = qj→iE
0
j Prob

(
Ri − duj→i > 0

)
as it can be obtained from Eq. (8), taking into account that
in this case Tj = {j, i} and Rj − duj→j = 0. We observe
that the probability appearing on the right-hand side only
depends on the reward Ri and on the random variable duj→i.
If the discomfort is only a function of the temporal distance
|j− i|, then the sensitivity function (the ratio of people who
move from j to i) has the same properties than in [2], in
particular:

Sj(Ri, |i− j|) = qj→iPj→i(Ri),

where for Pj→i(·) we have made explicit the only variable
it depends from.

As we discussed in Sec. II, because the provider knows
exactly the consumption shifted from each user, it can
formulate the optimization problem (3-4). In [2] it is stated
that the problem is convex if i) the productions costs cj(·)
are continuous piecewise linear and increasing and ii) the
discomfort distributions Fj→i(·) are continuous and concave.
We show in [9] that this is not the case by providing a
counterexample. Stronger hypotheses are required for the
problem to be concave, as for example the linearity of the
discomfort functions.

In particular in [2] the numerical evaluation considers

Sj(Ri, |i− j|) =
1∑N

k=1
1

(|k−j|+1)

Ri

B · (|i− j|+ 1)
,

that leads us to consider

qj→i =

1
|i−j|+1∑N

k=0
1

|k−j|+1

, Pj→i(Ri) =
Ri

B
. (9)

This particular expression for Pj→i can be obtained if duj→i

is a uniform random variable with support in [0, B]. The
numerical results for the base mechanism in Sec. V are
obtained considering the same expression for the fractions
qj→i.

Due to the non-convexity of the optimization problem (3-
4) we cannot use one of the classic algorithms for convex

optimization. For the results shown in section V we have
adopted instead a multi-start approach: we have generated
random starting points uniformly distributed in the problem
domain and we have run per each point a descendent
algorithm which converged on a local minimum; the op-
timal offers are therefore those returning the smallest cost
among these minimizers. This approach does not guarantee
convergence to the global optimum but its reliability can be
improved by increasing the number of starting points.

B. Optimized Mechanism

We have now understood which DR mechanism can lead
to the optimization problem (3), but now that we look at
its implementation at the microscopic level and the need for
personalized offers, some specifics of the base mechanism
look arbitrary and unjustified. For example, given that dis-
counts are not broadcast but each user receives an individual
offer, why should the discounts offered to the two disjoint
sets of users Qj→i and Qk→i be equal to the same value
Ri? It is clear that the energy provider can further reduce
the cost if it can independently choose Rj→i and Rk→i.
Moreover, there is no reason to think that the size of the sets
{Qj→i} should be fixed, the fractions {qj→i} can also be
optimization variables.

We allow the provider to take advantage of these addi-
tional degrees of freedom that—we repeat—do not impose
any additional requirement to the system. We call this
new DR mechanism optimized. The load Ej→i(Rj→i, qj→i)
rescheduled from j to i is now Ej→i(Rj→i, qj→i) =
qj→iPj→i(Rj→i)E

0
j and the cost minimization problem be-

comes:

min
R,q

costopt.(R,q) =
∑

i

∑
z 6=iRz→iEz→i+

∑
i ci
(
E1

i

)
(10)

s.t. 0 ≤ Rz→i ≤ B ∀z, i = 1, . . . N (11)
0 ≤ qz→i ≤ 1, z, i = 1, . . . N (12)∑

i qz→i ≤ 1, ∀z = 1 . . . N. (13)

Eq. (11) guarantees that discounts R are non negative and
smaller than the flat rate B, Eq. (13) is a consequence of the
fact that each user receives at most one offer for its baseline
consumption in a given slot.

The optimization problem (10-13) can be solved with the
same heuristic proposed for problem (3-4).

C. Robust Mechanism

The optimization problems (3-4) and (10-13) assume that
the provider has perfect knowledge of each user’s baseline
consumption, so that it can correctly identify the consump-
tion shifted and reduce accordingly the energy bill. This
assumption is probably unrealistic. If the provider does not
have such capability, then it can offer the user a discount
for all the consumption in a given timeslot i and not just for
the consumption moved to i. The population is then divided
into N subsets Qi, each containing a fraction qi of the users.
All users in Qi receive one and only one offer: they are
encouraged to shift their consumption from any timeslot in
the time horizon to timeslot i and they get the discount Ri for



all the electricity consumed in i, including the one originally
in i.

We call this scheme robust, because it does not rely on
estimates of individual consumption. It is clearly simpler than
the previous two, because the provider needs only to measure
the amount of consumption in i for the users who got the
offer and to bill them accordingly.

The load Ej→i(Ri, qi) shifted from j to i is
Ej→i(Ri, qi) = qiPj→i(Ri)E

0
j . Note that users in Qi

have no interest to move their baseline consumption away
from i, then Ei→i = qiE

0
i . The robust mechanisms leads to

the following optimization problem:

min
R,q

costrob.(R,q) =
∑

i,z RiEz→i +
∑

i ci
(
E1

i

)
(14)

s.t. 0 ≤ Ri ≤ B i = 1, . . . , N (15)
0 ≤ qi ≤ 1, i = 1, . . . , N (16)∑N

i=1 qi ≤ 1. (17)

Note that in Eq. (14) the first sum includes also Ei→i because
all the final consumption in i from the users in Qi is paid at
a discounted price. The term does not appear in Eq. (3) and
Eq. (10).

The optimization problem (14-17) can be solved with the
same heuristic proposed for problem (3-4).

D. Broadcast Mechanism

In the three mechanisms introduced above, the provider
makes personalized offers to users in selected fractions of
the population. This may not always be possible (due to the
complexity it introduces for instance in billing) or desirable
(for perceived fairness issues). Our last mechanism, which is
the simplest (in its definition), does not assume personalized
offers. The provider selects a single vector R of discounts
for every time slot and broadcasts these discounts to all
users (hence the name broadcast mechanism). Users then re-
arrange their demand and pay the discounted price for their
demand in each slot (hence this mechanism also does not
rely on the need to estimate shifted demand).

As explained in Sec. III-A, each individual user moves
her demand from slot j to a slot (potentially j itself) that
maximizes her net utility (discount minus discomfort). Recall
that if several slots give equal net utility, the user chooses
one of them randomly.

Until now, we have not made any assumption on the
possible correlation of a given user’s discomforts. This
is because, in the previous three mechanisms, each user
was receiving only one offer.In the broadcast mechanism,
each user has several offers to compare to decide on his
new demand schedule, we therefore need to describe the
discomfort correlations.

Let us consider now the particular case when two slots,
say h and k may appear equally attractive to a user, i.e. Rh−
dj→h = Rk − dj→k. If we assumed that, for each user, the
discomforts {dj→i}{i,j=1,··· ,N} were mutually independent,
this event would have probability zero according to our
assumption on Fi→j , and therefore it would not appear at

the aggregate level. As a result, the aggregate demand moved
from j to i would be Ej→i(R) = Pj→i(R)E0

j , where

Pj→i(R) = Pr
(
Ri − dj→i ≥ max

k 6=i
{Rk − dj→k}

)
. (18)

However, rather than making the above independence
assumption, we prefer to assume that the discomforts have
the form dj→i = βj |i − j|tj , where tj is a constant
independent of the user and βj is a random variable with
concave Cumulative Distribution Function (CDF) Fj(·). This
model describes a symmetric delay sensitivity of users (users
are indifferent between moving two hours earlier or two
hours later) while keeping the flexibility of users having a
different flexibility of demand of different times (since β and
t are indexed by the origin timeslot j); but it also introduces
correlations between the discomforts of a user. As a result,
the fraction of demand shifting from j to i is

Pj→i(R)=
Pr (Ri − dj→i ≥ maxk 6=i {Rk − dj→k})

1 + 1R2j−i=Ri

, (19)

rather than (18). The denominator in (19) accounts for cases
when a slot other than i (which has to be 2j− i) gives equal
net utility for all users. The broadcast mechanism then leads
to the following optimization problem:

min
R

costbrd.(R) =
∑

z

∑
iRiEz→i +

∑
i ci
(
E1

i

)
(20)

s.t. 0 ≤ Ri ≤ B ∀i = 1, . . . N. (21)

Unfortunately, due to indicator function in Eq. (19), the
cost function (20) of the broadcast mechanism is not contin-
uous, even in very simple scenarios with continuous produc-
tion costs [9]. Discontinuity arises also in the macroscopic
model in [5], but it seems to have been ignored.

In practice, we solve problem (20-21) using the same
heuristic proposed for the previous problems, but we work on
a continuous and smooth approximation of the cost function.

E. Ranking DR mechanisms

In [9] we prove that the optimized mechanism always
performs better than the base and robust mechanisms, but
the ranking cannot be extended further.

V. NUMERICAL RESULTS

In this section we evaluate the performance of the different
DR mechanisms in the realistic scenario considered in [2]
and based on energy data about the Ontario province in
Canada. In particular, the baseline consumption E0 and
the cost functions are estimated from the IESO energy
portfolio [8], consisting of nuclear plans, hydro gas powered
stations and renewable and from typical costs associated
to these energy sources. In particular we considered the
flat rate B = 110$/MWh and the timeslot-independent
piecewise-linear cost function c(·) with derivative: c′(E) =
$10 for E ≤ C1, c′(E) = $72.46 for E ∈ (C1 , C2)
and c′(E) = $91 for E ≥ C2, where C1 = 16.3 GWh
and C2 = 17.9 GWh represent respectively the base to
intermediate load capacity and intermediate to peak load
capacity. We assume that discomforts take the form dj→i =



Fig. 1. Cost savings normalized to the initial cost, for various flexibility
parameters µ.

βj |i − j|, where βj is an exponential random variable with
cdf Fj(R;µ) = 1 − e

R
µ . µ is a parameter representing the

population’s flexibility. The larger it is, the smaller (in a
stochastic order sense) the discomfort of the users to shift
their consumption.

In Fig. 1, we report the cost savings of the DR schemes,
normalized to the initial cost, for four different values of
the µ parameter: 1

10 , 1
6 , 1

3 , 1. The dashed line represents the
saving which could be achieved if users’ demand could be
rearranged at the provider’s will without providing any dis-
count (we indicate it as the dictatorial solution). Consistently
with the results in Sec. IV-E, the optimized mechanism
returns larger savings than the robust and the base ones.
Interestingly, the robust mechanism performs consistently
better than the base one despite the fact that it does not
require the ability to estimate the demand shifted and it
therefore “wastes” some discount by giving it to demand that
was already scheduled in a given timeslot in the baseline
demand. Moreover, as the population flexibility increases,
the savings gap between the optimized scheme and the
robust mechanism reduces, the latter being effectively close
to exploiting all the population’s flexibility.

In Fig. 2, we focus on the case µ = 1
3 and analyze the

components of the cost for each DR mechanism. Fig. 2
confirms that the optimized scheme provides the largest
savings as it can minimize the production cost while paying
the smallest amount of discounts. We indicate with wasted
discounts the amount of discounts paid to consumption that
would in any case have been scheduled in that timeslot. The
base and optimized mechanisms do not waste any discount,
while the robust mechanism and the broadcast scheme do, as
they provide the discount Ri to all the electricity consumed
in i, including the part of E0

i that remains in i.

VI. CONCLUSIONS

In this paper, we have shown that macroscopic descriptions
of DR mechanisms can hide important assumptions that
can jeopardize the mechanisms’ implementation. For this
reason, our proposal moved from a microscopic description
that explicitly models each user’s decision. We have then

Fig. 2. Analysis of the components of the cost savings. All the quantities
are normalized to the initial cost.

introduced four DR mechanisms with various assumptions
on the provider’s capabilities. Interestingly, contrarily to
previous studies, we find that the optimization problems
that result from our mechanisms are complex and can be
solved numerically only through a heuristic. Moreover, our
results show that the performance of DR mechanisms under
reasonable assumptions on the provider’s capabilities are
significantly lower than those suggested by previous studies,
but that the gap reduces when the population’s flexibility
increases.
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