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Abstract

A natural extension of the ”Spatial” smoothing preprocessing technique is presented and analysed. It is well known that subspace methods do not work properly in the
presence of coherent sources. In this paper, a ”Spatio-Frequential” smoothing technique is described when the transmit OFDM symbol is received through multiple coherent
signals using a uniform linear antenna array. After this preprocessing technique, one could efficiently apply any 2-dimensional subspace method to jointly estimate the angles
and times of arrival of the incoming coherent signals. Simulation results demonstrate the potential of the proposed 2D smoothing method over existing separate spatial or
frequential smoothing techniques.

Introduction
• The problem of Joint Angle and Delay of arrival Estimation, also known as JADE, is a well-known and challenging problem in the context of array signal processing.
•We focus on the problem of JADE using subspace methods, such as 2D-MUSIC, 2D-ESPRIT, etc.. Subspace algorithms are based on extraction of signal and noise subspaces. These

algorithms are computationally much more efficient than ML techniques, but their performance is suboptimal compared to ML.
• In the case of coherent sources, i.e. the received signal is a sum of scaled and delayed version of the transmitted signal, all subspace methods fail to estimate angles or times of arrival.

Therefore, pre-processing techniques, such as Spatial smoothing, have been developed to cope with this issue [1] so as to estimate the angles of arrival using subspace techniques.

Contributions
•We propose a Spatio-Frequential smoothing technique to ”decorrelate” the coherent signals so that one could efficiently estimate angles and times of arrival using 2D subspace techniques.

System Model
Consider an OFDM symbol s(t) composed of M subcarriers and centered at a carrier frequency fc, impinging an antenna array of N antennas via q multipath components, each arriving at
different AoAs {θi}qi=1 and ToAs {τi}qi=1. In baseband, we could write the lth received OFDM symbol at the nth antenna as:

x(l) = Aγ(l) + n(l), l = 1 . . . L (1)

where A ∈ CMN×q is given by:
A = [a(θ1)⊗ c(τ1) . . . a(θq)⊗ c(τq)] where a(θ) = [1, zθ . . . z

N−1
θ ]T and c(τ ) = [1, zτ . . . z

M−1
τ ]T (2)

where zθ = e−j2π
d
λsin(θ) and zτ = e−j2πMfτ .

The vector a(θ) is the ULA array response to a signal arriving at angle θ. Similarly, c(τ ) is the response of the subcarriers with respect to a signal arriving with delay τ .
The vector γ(l) ∈ Cq×1 is composed of the multipath coefficients:

γ(l) = [γ
(l)
1 . . . γ(l)q ]T (3)

Assumptions
We assume the following:
• A1: A is full column rank.
• A2: The number of multipath components q is known.
• A3: The vector n(l) is additive Gaussian noise of zero mean and covariance σ2IMN , assumed to be white over space, frequencies, and symbols; we also assume that the noise is independent

from the multipath coefficients.
Condition A1 is valid as long as:
• A1.1: q < MN .
• A1.2: We consider that ∀i 6= j, (θi, τi) 6= (θj, τj), that is all paths have distinct ToAs and AoAs, simultaneously, but it may happen that two, or more, paths arrive with the same ToAs, but

different AoAs.
• A1.3: Let qθ be the number of distinct AoAs, i.e. θ1, . . . , θq

θ
; and let the following integers Q1, . . . , Qqθ denote their corresponding multiplicity.

Note that
∑qθ

i=1Qi = q. This condition states that maxiQi < N . That is the maximum number of paths arriving at the same time, i.e. maxiQi, should be less than N .
• A1.4: Similar to A1.3, let qτ be the number of distinct ToAs, i.e. τ 1, . . . , τ q

τ
; and let the following integers P1, . . . , Pqτ denote their corresponding multiplicity. This condition states that

maxi Pi < M .
Note that we have not made any assumptions regarding the multipath vector γ(l), therefore we allow coherency of γ(l) over l.

Now, we address our problem:

Given {x(l)}Ll=1 and q coherent sources, preprocess the data {x(l)}Ll=1 so as to estimate
the signal parameters {(θi, τi)}qi=1 using a 2D subspace technique.

The Spatio-Frequential Preprocessing Technique
Recall that equation (1) gives the information on all subcarriers at all antennas. We shall use the notation (n,m) to index the mth subcarrier and nth antenna. Let the spatio-frequential array
{(i, j)}j=1...M

i=1...N of size MN be divided into overlapping subarrays of size MpNp (Mp and Np being the number of subcarriers and antennas in the subarrays, respectively). Indeed, one could
check that the total number of overlapping subarrays is equal to KMKN , where KM =M −Mp + 1 and KN = N −Np + 1.

To visualise how the subarrays are formed, we illustrate the figure below, where a setting of N = 3 antennas and M = 4 subcarriers is partitioned into overlapping subarrays of sizes Np = 2
and Mp = 3, and therefore a total of KMKN = 4 subarrays.
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Since the effective number of subcarriers and antennas used now are Mp and Np, respectively, then (5) becomes

xm,n(l) = ĀDm−1
τ Dn−1

θ γ(l) + nm,n(l) where Dτ = diag {zτ1 . . . zτq} and Dθ = diag {zθ1 . . . zθq} (4)

where Ā = [ā(θ1)⊗ c̄(τ1) . . . ā(θq)⊗ c̄(τq)] is an MpNp× q matrix. The vectors a(θ) and c(τ ) are the same as in (2) but with sizes Np and Mp instead of N and M , respectively. Dm−1
τ and Dn−1

θ

are the (m− 1)th and (n− 1)th power of the diagonal q × q matrices Dτ and Dθ. This means that xm,n(l) is an MpNp × 1 received vector on the subarray {(i, j)}i=m...Mp+m−1
j=n...Np+n−1 . The covariance

matrix of xm,n(l) in (4) after averaging over time snapshots is given as

Rm,n = ĀDm−1
τ Dn−1

θ RγγD
H
θ
n−1

DH
τ
m−1

ĀH + σ2IMpNp (5)

The spatio-frequential smoothed covariance matrix is given by

R̄ =
1

KMKN

KM∑
m=1

KN∑
n=1

Rm,n = ĀR̄γγĀ
H + σ2IMpNp where R̄γγ =

1

KMKN

KM∑
m=1

KN∑
n=1

Dm−1
τ Dn−1

θ RγγD
H
θ
n−1

DH
τ
m−1

(6)

In a single carrier case, i.e. M =Mp = 1, it has been proven that the spatial smoothing technique ensures full rank of R̄γγ [1], given that q ≤ KN .
Analogously, in the single antenna but multi-carrier case, i.e. N = Np = 1, the same technique has been applied in [2] and was referred to as frequency smoothing, in order to acheive full rank
of R̄γγ, when q ≤ KM . However, in the general multi-antenna and multi-carrier case, we have the following:

Theorem: If the following hold true:

• The number of subarrays formed jointly over space and frequency is greater than the number of multipath components, i.e. q ≤ KMKN .

• The maximum number of paths arriving at the same time but with different angles is less than KN , i.e. maxiQi ≤ KN .

• The maximum number of paths arriving at the same angles but with different times is less than KM , i.e. maxi Pi ≤ KM .

Then R̄γγ is of rank q.

Proof: See our paper.

Finally, the advantage of spatio-frequential smoothing is that it offers KMKN subarrays to smooth over, in contrast to spatial and frequential smoothing that naturally provide KN and
KM subarrays, respectively. Therefore, one could be able to resolve more coherent sources and provide better ToA/AoA estimates.

Simulations

Figure 1: JADE-MUSIC Spectrum of a scenario where q = 4 multipath components are present. Simulations have been done with N = 3 antennas and M = 4 subcarriers at SNR = 20dB. The
subcarrier spacing is chosen4f = 3.125 MHz. The complex attenuation vector γ is fixed to a constant arbitrary value. Finally, L = 3 snapshots were collected.

Figure 1(a) shows the JADE spectrum after preprocessing only by spatial smoothing, i.e. M =Mp = 4 and Np = 2. Indeed, there is an ambiguity in detecting the 4 peaks corresponding to the
true angles and times of arrival due to insufficient number of subarrays to smooth over, i.e. only KN = 2 < q spatial subarrays are available. The same argument is done when one applies only
frequency smoothing, i.e. N = Np = 3 and Mp = 2. In that case, one will have KM = 3 < q subarrays to smooth over. As a result, false peaks appear in Figure 1(b). To this end, we could see
that we need at least q = 4 subarrays to smooth over. This is done by preprocessing through spatio-frequential smoothing. Choosing Np = 2 and Mp = 3 would lead to KNKM = 4 subarrays
in total. After smoothing over space and frequencies, one could observe 4 clear peaks corresponding to the true angles and times of arrival of the 4 paths in Figure 1(c).

Conclusions
•We have presented a 2D smoothing preprocessing technique, applied to a Spatial-Frequential array, to ”decorrelate” multipath components.

• Then, any 2D subspace algorithm could be applied to estimate the times and angles of arrivals of the different paths.

• The 2D smoothing technique presented here, naturally, offers more subarrays to smooth over and, therefore, one could be able to resolve more coherent paths.
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