
Access-time aware cache algorithms

Giovanni Neglia∗, Damiano Carra†, Mingdong Feng‡,
Vaishnav Janardhan‡, Pietro Michiardi§ and Dimitra Tsigkari∗

∗Inria, {giovanni.neglia, dimitra.tsigkari}@inria.fr
†University of Verona, damiano.carra@univr.it

‡Akamai Technologies, {mfeng, vjanardh}@akamai.com
§Eurecom, pietro.michiardi@eurecom.fr

Abstract—Most of the caching algorithms are oblivious to
requests’ timescale, but caching systems are capacity constrained
and, in practical cases, the hit rate may be limited by the
cache’s impossibility to serve requests fast enough. In particular,
the hard-disk access time can be the key factor capping cache
performances. In this paper, we present a new cache replacement
policy that takes advantage of a hierarchical caching architecture,
and in particular of access-time difference between memory and
disk. Our policy is optimal when requests follow the independent
reference model, and significantly reduces the hard-disk load, as
shown also by our realistic, trace-driven evaluation.

I. INTRODUCTION

The hit probability is a well-known key metric for caching

systems: this is the probability that a generic request for a

given content will be served by the cache. Most of the existing

literature implicitly assumes that a hit occurs if the content is

stored in the cache at the moment of the request. In practice,

however, in real caching systems the actual hit rate is often

limited by the speed at which the cache can serve requests.

In particular, Hard-Disk Drive (HDD) access times can be the

key factor capping cache performance.

As an illustrative example, Fig. 1 shows the percentage

of CPU and HDD utilization, as reported by the operating

system, over two days in the life of a generic caching server.

As the amount of requests varies during the day, the resource

utilization of the caching server varies as well: during peak

hours, HDD utilization can exceed 95%. Such loads may

cause the inability to serve a request even if the content is

actually cached in the HDD. In case of a pool of cache servers,

a solution based on dynamic load balancing may alleviate

this problem by offloading the requests to another server.

Nevertheless, this solution has its own drawbacks, because the

rerouted queries are likely to generate misses at the new cache.

In this paper, we study if and how the RAM can be used to

alleviate the HDD load, so that the cache can serve a higher

rate of requests before query-rerouting becomes necessary.

The idea to take advantage of the RAM is not groundbreak-

ing. Modern cache servers usually operate as a hierarchical

cache, where the most recently requested contents are stored

also in the RAM: upon arrival of a new request, content is first

looked up in the RAM; if not found, the lookup mechanism

targets the HDD. Hence, the RAM “shields” the HDD from

most of the requests.

The question we ask in this paper is: what is the optimal

way to use the RAM? Which content should be duplicated in

Fig. 1. Graph showing the CPU and HDD utilization percentage of a generic
caching server.

the RAM to minimize the load on the HDD? We show that, if

content popularities are known, the problem can be formulated

as a knapsack problem. More importantly, we design a new

dynamic replacement policy that, without requiring popularity

information to be known, can implicitly solve our minimiza-

tion problem. Our policy is a variant of q-LRU. In q-LRU, after

a cache miss, the content is stored in the cache with probability

q and, if space is needed, the least recently used contents are

evicted. We call our policy qi-LRU, because we use a different

probability qi for each content i. The value qi depends on the

content size and takes into account the time needed to retrieve

contents from the HDD. Simulation results on real content

request traces from the Akamai’s Content Delivery Network

(CDN) [1] show that our policy achieves more than 80% load

reduction on the HDD with an improvement between 10% and

20% in comparison to the standard LRU.

The paper is organized as follows. In Sec. II we formalize

the problem and illustrate the underlying assumptions. In

Sec. III we present the policy qi-LRU and prove its asymp-

totic optimality. We evaluate its performance under real-world

traces in Sec. IV. Related works are discussed in Sec. V. Some

proofs are in the companion report [2].

II. MODEL

In this section, we illustrate our main assumptions about

HDD operation and content request process and then formalize

our optimization problem.

2016 28th International Teletraffic Congress

978-0-9883045-1-2/16 $31.00 © 2016 ITC 148

2016 28th International Teletraffic Congress

978-0-9883045-1-2/16 $31.00 © 2016 ITC 148

2016 28th International Teletraffic Congress

978-0-9883045-1-2/16 $31.00 © 2016 ITC 148

A. Hard Disk Service Time

Our study relies on some assumptions about the load im-

posed on the HDD by a set of requests. Consider a single file-

read request for content i with size si. We call service time the

time the HDD works just to provide content i to the operating

system. Our first assumption is that the service time is only

a function of content size si. We denote it as T (si).
1 The

second assumption is that service times are additive, i.e. let A
be a set of contents, the total time the HDD works to provide

the contents in A is equal to
∑

i∈A T (si), independently of

the specific time instants at which the requests are issued.

Note that we are not assuming any specific service discipline

for this set of requests: they could be served sequentially

(e.g. in a FIFO or LIFO way) or in parallel (e.g. according to

a generalized processor sharing).2 But we are requiring that

concurrent object requests do not interfere by increasing (or

reducing) the total HDD service time.

The analytical results we provide in Sect. III, which is the

main contribution of our work, do not depend on a particular

structure of the function T (si). Nevertheless, we describe

here a specific form based on past research on HDD I/O

throughput [3][4], and based on our performance study of

disk access time observed in caching servers. We will refer

to this specific form later to clarify some properties of the

optimal policy. Furthermore, we will use it in our experiments

in Sec. IV.

Considering the mechanical structure of the HDD, every

time a new read is done, we need to wait for the reading arm

to move across the cylinders, and for the platter to rotate on

its axis. We call these two contributions the average seek time
and average rotation time, and we denote them by σ and ρ
respectively. Each file is divided into blocks, whose size b is a

configuration parameter. If we read a file whose size is bigger

than a block, then we need to wait for the average seek time

and the average rotation time for each block.

Once the reading head has reached the beginning of a block,

the time it takes to read the data depends on the transfer speed
μ. As a last contribution, we have a constant delay due to the

controller overhead, φ.

Overall, the function that estimates the cost of reading a

file from the hard disk is given by the following equation (see

Table I for a summary of the variables used):

T (si) = (σ + ρ)

⌈
si
b

⌉
+

si
μ

+ φ. (1)

Based on our experience on real-life production systems,

the last column of Table I shows the values of the different

variables for a 10’000 RPM hard drive.

We have validated Eq. (1) through an extensive measure-

ment campaign for two different hard disk drives (10’000

RPM and 7’200 RPM). The results are shown in Fig. 2. In the

1If the service time is affected by significant random effects, then T (si)
can be interpreted as the expected service time for a content with size si.

2The specific service discipline would clearly have an effect on the time
needed to retrieve a specific content.

TABLE I
SUMMARY OF THE VARIABLES USED FOR T (si).

Variable Meaning Typical Value

si Size of object i -

σ Average seek time 3.7·10−3 s

ρ Average rotation time 3.0·10−3 s
b Block size 2.0 MB
μ Transfer bandwidth 157 MB/s

φ Controller Overhead 0.5·10−3 s

figure, we actually plot the quantity T (si)/si: in Sect. III we

will illustrate the key role played by this ratio. The estimated

value of T (si)/si has discontinuity points at multiples of the

block size b: in fact, as soon as the size of an object exceeds

one of such values, the service time increases by an additional

average seek time and an additional average rotation time. The

points in the figures represent the output of our measurement

campaign for a representative subset of sizes (in particular,

for sizes close to the multiples of block size b, where the

discontinuities occur). Each point is the average value for

a given size over multiple reads. From the experiments, we

conclude that the function T (si) shown in Eq. (1) is able to

accurately estimate the cost of reading a file from the HDD.

 0

 0.01

 0.02

 0.03

 0.04

 0 1 2 3 4 5

10’000 RPM

T
(s

i)/
s i

 (
s/

M
B

)

Size (MB)

Estimated
Measured

 0 1 2 3 4 5

7’200 RPM

Size (MB)

Estimated
Measured

Fig. 2. Graph of the function T (si)/si.

B. Query Request Process

Let N = {1, 2, . . . N} denote the set of contents. For

mathematical tractability, as done in most of the works in

the literature (see Sec. V), we assume that the requests follow

the popular Independent Reference Model (IRM), where con-

tents requests are independently drawn according to constant

probabilities (see for example [5]). In particular, we consider

the time-continuous version of the IRM: requests for content

i ∈ N arrive according to a Poisson process with rate λi and

the Poisson processes for different contents are independent.

While the optimality results for our policy qi-LRU are derived

under such assumption, significant performance improvements

are obtained also considering real request traces (see Sec. IV).

C. Problem Formulation

In general, the optimal operation of a hierarchical cache

system would require to jointly manage the different storage

units, and in particular to avoid to duplicate contents across

149149149149149149

multiple units. On the contrary, in the case of a RAM-

HDD system, the problem is usually decoupled: the HDD

caching policy is selected in order to maximize the main cache

performance metric (e.g. hit ratio/rate), while a subset of the

contents stored in the HDD can be duplicated in the RAM to

optimize some other performance metric (e.g. the response

time). The reason for duplicating contents in the RAM is

twofold. First, contents present only in the RAM would be

lost if the caching server is rebooted. Second, the global cache

hit ratio/rate would not be significantly improved because the

RAM accounts for a small percentage of the total storage

available at the server. A consequence of such decoupling

is that, at any time, the RAM stores a subset (MR) of the

contents stored in the HDD (MH).3 In our work we consider

the same decoupling principle. As a consequence, our policy

is agnostic to the replacement policy implemented at the HDD

(LRU, FIFO, Random, . . .).

We now look at how the RAM reduces the HDD load. An

incoming request can be for a content not present in the HDD

(nor in the RAM because we consider MR ⊂ MH). In this

case, the content will be retrieved by some other server in

the CDN or by the authoritative content provider, and then

stored or not in the HDD depending on the specific HDD cache

policy. Note that the choice of the contents to be duplicated in

the RAM plays no role here. Read/write operations can occur

(e.g. to store the new content in the HDD), but they are not

affected by the RAM replacement policy, that is the focus of

this paper. We ignore then the corresponding costs. On the

contrary, if an incoming request is for a content present in the

HDD, the expected HDD service time depends on the set of

contents MR stored in the RAM. It is indeed equal to∑
i∈MH\MR

λi∑
j∈N λj

T (si) =

∑
i∈MH

λi∑
j∈N λj

T (si)−
∑

i∈MR

λi∑
j∈N λj

T (si), (2)

because, under IRM, λi/
∑

j∈N λj is the probability that the

next request is for content i, and the request will be served

by the HDD only if content i is not duplicated in the RAM,

i.e. only if i /∈MR.

Our purpose is to minimize the HDD service time under the

constraint on the RAM size. This is equivalent to maximize the

second term in Eq. (2). By removing the constant
∑

j∈N λj ,

we obtain then that the optimal possible choice for the subset

MR is the solution of the following maximization problem:

maximize
MR⊂N

∑
i∈MR

λiT (si) (3)

subject to
∑

i∈MR

si ≤ C

3Although it is theoretically possible that a content stored in the RAM and
in the HDD may be evicted by the HDD earlier than by the RAM, these
events can be neglected in practical settings. For example, in the scenario
considered in Sec. IV typical cache eviction times are a few minutes for the
RAM and a few days for the HDD for all the cache policies considered.

where C is the RAM capacity. This is a knapsack problem,

where λiT (si) is the value of content/item i and si its weight.

The knapsack problem is NP-hard. A natural, and historically

the first, relaxation of the knapsack problem is the fractional

knapsack problem (also called continuous knapsack problem).

In this case, we accept fractional amounts of the contents to be

stored in the RAM. Let hi ∈ [0, 1] be the fraction of content

i to be put in the RAM, the fractional problem corresponding

to Problem (3) is:

maximize
h1,...hN

N∑
i=1

λihiT (si) (4)

subject to

N∑
i=1

hisi = C.

From an algorithmic point of view, the following greedy algo-

rithm is optimal for the fractional knapsack problem. Assume

that all the items are sorted in decreasing order with respect to

the profit per unit of size (i.e. λiT (si)/si ≥ λjT (sj)/sj for

i ≤ j). The algorithm finds the biggest index c for which the

sum
∑c

i=1 si does not exceed the memory capacity. Finally, it

stores the first c contents in the knapsack (in the RAM) as well

as a fractional part of the content c+1 so that the RAM is filled

up to its capacity. A simple variant of this greedy algorithm

guarantees a 1
2 -approximation factor for the original knapsack

problem [6, Theorem 2.5.4], but the greedy algorithm itself is

a very good approximation algorithm for common instances of

knapsack problems, as it can be justified by its good expected

performance under random inputs [6, Sec. 14.4].

From a networking point of view, if we interpret hi as the

probability that content i is in the RAM,4 then we recognize

that the constraint in Problem (4) corresponds to the usual

constraint considered under Che’s approximation for cache

networks [7], where the effect of the finite cache size is taken

into account by imposing the expected cache occupancy to be

equal to the cache size C.

The last remark connects our problem to the recent work

in [9], where the authors use Che’s approximation to find

optimal cache policies to solve the following problem:

maximize
h1,...hN

N∑
i=1

Ui(hi) (5)

subject to

N∑
i=1

hisi = C,

where each Ui(hi) quantifies the utility of a cache hit for

content i.5 Results in [9] do not help us solve our Problem (4)

because their approach requires the functions Ui(hi) to be (i)

known and (ii) strictly concave in hi. On the contrary, in our

case, content popularities (λi) are unknown and, even if they

4Since the PASTA property holds under the IRM model, then hi is also
the RAM hit probability.

5The work in [9] actually assumes that all the contents have the same size,
but their analysis can be easily extended to heterogenous sizes, as we do in
Sec. III-B.

150150150150150150

were known, the functions Ui(hi) would be λihiT (si) and

then linear in hi. Besides deriving the cache policy that solves

a given optimization problem, [9] also “reverse-engineers”

existing policies (like LRU) to find which optimization prob-

lem they are implicitly solving. In Sec. III we use a similar

approach to study our policy.

After this general analysis of the problem, we are ready to

introduce in the next section a new caching policy qi-LRU that

aims to solve Problem (4), i.e. to store in the RAM the contents

with the largest values λiT (si)/si without the knowledge of

content popularities λi, for i = 1, . . . N .

III. THE qi-LRU POLICY

We start introducing our policy as a heuristic justified by

an analogy with LRU.

Under IRM and Che’s approximation, if popularities λi

are known, minimizing the miss throughput at a cache with

capacity C corresponds to solving the following problem:

maximize
h1,...hN

N∑
i=1

λihisi (6)

subject to

N∑
i=1

hisi = C

The optimal solution is analogous to what discussed for

Problem (4): set hit probabilities to one for the k most popular

contents, a hit probability smaller than one for the (k + 1)-th
most popular content, and hit probabilities to zero for all the

other contents. The value of k is determined by the RAM size.

Now, it is well known that, from a practical perspective, the

traditional LRU policy behaves extremely well, despite content

popularity dynamics. LRU is a good heuristic for Problem (7):

it implicitly selects and stores in the cache the contents with

the largest values of λi, even when popularities λi are actually

unknown.

Recall that our purpose is to store the contents with the

largest values λiT (si)/si: then, the analogy between the

two problems suggests us to bias LRU in order to store

more often the contents with the largest values of T (si)/si.
Intuitively, upon a cache miss, the newly requested content i
is cached with probability qi, which is an increasing function

in T (si)/si. Specifically, we define qi as follows:

qi = e
−β

si
T (si) , i ∈ N , (7)

where β > 0 is a constant parameter.6 In practical cases, as

discussed in section IV, we set β such that qi ≥ qmin for every

i ∈ N , so that any content is likely to be stored in the cache

after 1/qmin queries on average.

Our policy has then the same behaviour as the q-LRU policy,

but the probability q is not fixed, it is instead chosen depending

on the size of the content as indicated in Eq. (8). For this

reason, we denote our policy by qi-LRU.

6The reader may wonder why we have chosen this particular relation and
not simply qi proportional to T (si)/si. The choice was originally motivated
by the fact that proportionality leads to very small qi values for some contents.
Our analysis below shows that Eq. (8) is a sensible choice.

With reference to Fig. 2, the policy qi-LRU would store with

higher probability the smallest contents as well as the contents

whose size is slightly larger than a multiple of the block size

b. Note that the policy qi-LRU does not depend on the model

described above for the HDD service time, but it requires the

ratio T (s)/s to exhibit some variability (otherwise we would

have the usual q-LRU).

Until now we have provided some intuitive justification for

the policy qi-LRU. This reasoning reflects how we historically

conceived it. The reader may now want more theoretically

grounded support to our claim that qi-LRU is a good heuristic

for Problem (4). In what follows we show that qi-LRU is

asymptotically optimal when β diverges in two different ways.

We first prove in Sec. III-A that qi-LRU asymptotically stores

in a cache the contents with the largest values λiT (si)/si,
as the optimal greedy algorithm for Problem (4) does. This

would be sufficient to our purpose, but we find interesting to

establish a connection between qi-LRU and the cache utility

maximization problem introduced in [9]. For this reason,

in Sec. III-B, we reverse-engineer the policy qi-LRU and

derive the utility function it is implicitly maximizing. We then

let again β diverge and show that the utility maximization

problem converges to a problem whose optimal solution corre-

sponds to store the contents with the largest values λiT (si)/si.

A. Asymptotic qi-LRU hit probabilities

In [10] (and partially in the conference version [13]) it is

proven that under the assumptions of the IRM traffic model,

the usual q-LRU policy tends to the policy that statically stores

in the cache the most popular contents when q converges to 0.

We generalize their approach to study the qi-LRU policy when

β diverges (and then qi converges to 0, for all i). In doing so,

we address some minor technical details that are missing in

the proof in [10].

Let us sort contents in a decreasing order of
λiT (si)

si
assum-

ing, in addition, that
λiT (si)

si
�= λjT (sj)

sj
for every i �= j.

Note that the hit probability hi associated to the content i
for the qi-LRU policy is given by the following formula (see

[10])

hi(β, τc) =
qi(β)(1− e−λiτc)

e−λiτc + qi(β)(1− e−λiτc)
, (8)

where τc is the eviction time that, under Che’s approximation

[7], is assumed to be a constant independent of the selected

content i.
Now, by exploiting the constraint:

C =
∑
i

sihi(β, τc) (9)

it is possible to express τc as an increasing function of β and

prove that limβ→∞ τc(β) =∞. This result follows [10], but,

for the sake of completeness, we present it extensively in [2].

We can now replace qi = e
−β

si
T (si) in Eq. (9) and express

the hit probability as a function of β only as follows:

hi(β) =
1− eλiτc(β)

e
τc(β)

si
T (si)

(
β

τc(β)
−λi

T (si)

si

)
+ 1− e−λiτc(β)

. (10)

151151151151151151

Let us imagine to start filling the cache with contents sorted

as defined above. Let c denote the last content we can put in

the cache before the capacity constraint is violated7 i.e.

c = max

{
k
∣∣∣ k∑
i=1

si ≤ C

}
.

We distinguish two cases: the first c contents fill exactly the

cache (i.e.
∑c

i=1 si = C), or they leave some spare capacity,

but not enough to fit content c+1. Next, we prove that qi-LRU

is asymptotically optimal in the second case. The first case

requires a more complex machinery that we develop in [2].

Consider then that
∑c

i=1 si < C <
∑c+1

i=1 si. As an

intermediate step we are going to prove by contradiction that

lim
β→∞

β

τc(β)
= λc+1

T (sc+1)

sc+1
. (11)

Suppose that this is not the case. Then, there exists a

sequence βn that diverges and a number ε > 0 such that

∀n ∈ N

either
βn

τc(βn)
≤ λc+1T (sc+1)

sc+1
− ε (12)

or
βn

τc(βn)
≥ λc+1T (sc+1)

sc+1
+ ε. (13)

If inequality (13) holds, then ∀i ≤ c+ 1

βn

τc(βn)
− λiT (si)

si
≤ βn

τc(βn)
− λc+1T (sc+1)

sc+1
≤ −ε

From Eq. (11) it follows immediately that

lim
βn→∞

hi(βn) = 1 ∀i ≤ c+ 1,

but then it would be

lim
n→∞

c+1∑
i=1

hi(βn)si =

c+1∑
i=1

si > C

contradicting the constraint (10). In a similar way it is possible

to show that inequality (14) leads also to a contradiction and

then Eq. (12) holds.

Because of the limit in Eq. (12) and of Eq. (11), we can

immediately conclude that, when β diverges, hi(β) converges

to 1, for i ≤ c, and to 0, for i > c + 1. Because of the

constraint (10), it holds that:

lim
β→∞

hc+1(β) =
C − limβ→∞

∑
i�=c+1 hisi

sc+1
=

C −∑
i≤c si

sc+1
.

The same asymptotic behavior for the hit probabilities holds

when
∑c

i=1 si = C, as it is proven in [2].8 We can then

conclude that:

7We consider the practical case when s1 < C <
∑N

i=1 si.
8When

∑c
i=1 si = C, hc+1(β) converges to (C−∑c

i=1 si)/sc+1 = 0.

Proposition III.1. When the parameter β diverges, the hit
probabilities for the qi-LRU policy converge to the solution of
the fractional knapsack problem (4), i.e.

lim
β→∞

hi(β) =

⎧⎪⎨
⎪⎩
1, for i ≤ c,

(C −∑c
i=1 si)/sc+1, for i = c+ 1,

0, for i > c+ 1.

Then the qi-LRU policy asymptotically minimizes the load

on the hard-disk.

B. Reverse-Engineering qi-LRU
In [9], the authors show that existing policies can be thought

as implicitly solving the utility maximization problem (6) for

a particular choice of the utility functions Ui(hi). In particular

they show which utility functions correspond to traditional

policies like LRU and FIFO. In what follows, we “reverse-

engineer” the qi-LRU policy and we show in a different way

that it solves the fractional knapsack problem. We proceed

similarly to what done in [9], extending their approach to the

case where content sizes are heterogeneous (see [2]). We show

that the utility function for content i is

Ui(hi) = −λisi

∫ 1−hi

0

dx

ln
(
1 + 1−x

qix

) , (14)

that is defined for hi ∈ (0, 1] and qi �= 0. Each function

Ui(.) is increasing and concave. Moreover, Ui(hi) < 0 for

hi ∈ (0, 1), Ui(1) = 0 and limhi→0 Ui(hi) = −∞.
We are interested now in studying the asymptotic behavior

of the utility functions Ui(hi) when β diverges, and then qi
converges to zero. First, we note that the following inequalities

are true for every δ > 0 such that qδi < 1− hi:∫ 1−hi

0

dx

ln
(
1 + 1−x

qix

) ≥
∫ 1−hi

qδi

dx

ln
(
1 + 1−x

qix

)
≥ 1− hi − qδi

ln
(
1 +

1−qδi
qδ+1
i

) , (15)

where the last inequality follows from the fact that the inte-

grand is an increasing function of x.
Similarly, it holds∫ 1−hi

0

dx

ln
(
1 + 1−x

qix

) ≤ 1− hi

ln
(
1 + hi

qi(1−hi)

) ≤ 1− hi

ln
(
1 + 1

qi

) .
(16)

Asymptotically, when qi converges to zero, the lower bound

in Eq. (16) is equivalent to 1−hi

(1+δ) ln(1/qi)
, and the upper bound

in (17) is equivalent to 1−hi

ln(1/qi)
.9 For every δ > 0, we obtain

the following (asymptotic) inequalities when qi converges to

0 (and then qδi < 1− hi asymptotically):

1− hi

(1 + δ) ln(1/qi)
≤

∫ 1−hi

0

dx

ln
(
1 + 1−x

qix

) ≤ 1− hi

ln(1/qi)
. (17)

9We say that f(x) is equivalent to g(x) when x converges to 0 if
limx→0 f(x)/g(x) = 1, and we write f(x) ∼ g(x).

152152152152152152

Thus, when qi converges to 0, we get∫ 1−hi

0

dx

ln
(
1 + 1−x

qix

) ∼ 1− hi

ln(1/qi)
,

since, otherwise, we could find an ε > 0 and a sequence qi,n
converging to 0 such that for large n∫ 1−hi

0

dx

ln
(
1 + 1−x

qi,nx

) ≤ (1− ε)
1− hi

ln(1/qi,n)
.

But, this would contradict the left-hand inequality in (18),

which is valid for every δ > 0. We conclude that, when qi
converges to 0,

Ui(hi) = −λisi

∫ 1−hi

0

dx

ln
(
1 + 1−x

qix

) ∼ −λisi(1− hi)

ln(1/qi)
.

Next, we consider qi = e
−β

si
T (si) and we can write

Ui(hi) ∼ −λiT (si)(1− hi)

β
, when β →∞.

Maximizing the sum of the utilities
∑

i Ui(hi) over the

hit probabilities is equivalent to maximizing β
∑

i Ui(hi) +∑
i λiT (si). We conclude that, when β diverges, the problem

(6) can be formulated as follows

maximize
h

N∑
i=1

λihiT (si) (18)

subject to

N∑
i=1

hisi = C,

which is exactly the formulation of the fractional knapsack

problem.

IV. EXPERIMENTS

In this section, we evaluate the performance of our qi-
LRU policy. Here we take a numerical perspective, and design

a trace-driven simulator that can reproduce the behavior of

several caching policies, which we compare against qi-LRU.

We have used both synthetic traces generated according to the

IRM and real traces collected at two vantage points of the

Akamai network [1]. We proved that qi-LRU is optimal under

the IRM and indeed our experiments confirm it and show

significant improvement in comparison to other replacement

policies. For this reason, in this section we focus mainly on the

results obtained with real traces. In the following, we describe

our experimental methodology, show the characteristics of the

real traces we use, and present the results of our evaluation.

A. Methodology and Performance indexes

The comparative analysis of different caching policies re-

quires an environment where it is possible to reproduce exactly

the same conditions for all the different policies. To do so,

we adopt a trace-driven simulation approach,10 which allows

10As a future work, we plan to deploy our policy in a real production
system. In this case, the methodology to perform a comparative analysis is
substantially different.

us to control the initial conditions of the system, explore the

parameter space and perform a sensitivity analysis, for all

eviction policies.

Our simulator reproduces two memory types: the main

memory (RAM) and the hard disk (HDD). Each object is

stored in the HDD according to the LRU policy. For the RAM

we consider 3 different policies: LRU, SIZE and qi-LRU. They

all evict the least recently requested content, if space is needed,

but they adopt different criteria to decide if storing a new

content after a miss:

• LRU always stores it;

• SIZE stores it if 1) its size is below a given threshold T ,

or 2) it has been requested at least N times, including

once during the previous M hours;

• qi-LRU stores it with probability qi, as explained in the

previous sections.

So, in addition to comparing qi-LRU to the traditional LRU

policy, we also consider the SIZE policy since small objects

are the ones that have a bigger impact on the HDD, in terms

of their service time T (si) (see also Fig. 2). We therefore

prioritize small objects, and we store objects bigger than

the threshold T only after they have been requested for at

least N times. The SIZE policy can thus be seen as a first

attempt to decrease the impact of small objects on the HDD,

and ultimately reduce the strain on HDD resources. With the

qi-LRU policy, we aim at the same goal, but modulate the

probability to store an object in RAM as a function of its

size, and thus of its service time.

Note that the hit ratio of the whole cache depends only on

the size of the HDD and its replacement policy (LRU). The

RAM replacement policy does not affect the global hit ratio. In

what follows, we focus rather on the number of requests served

by the RAM and by the disk. More precisely, we consider the

total disk service time: this is the sum of the T (si) of all

the objects served by the HDD. Smaller disk service times

indicate lower pressure on the disk.

We show the results for a system with 4 GB RAM and 3

TB HDD. We have tried many different values for the RAM

size up to 30 GB, and the qualitative results are similar (not

shown here because of space constraints). For the SIZE policy,

we have extensively explored the parameter space (threshold

T , number of requests N , and number of hours M) finding

similar qualitative results.11 For the qi-LRU policy, the default

value of the constant β is chosen such that min
i∈N

qi = 0.1 (see

Eq. (8)).

B. Trace characteristics

We consider two traces with different durations and col-

lected from two different vantage points. The first trace has

been collected for 30 days in May 2015, while the second

trace for 5 days at the beginning of November 2015. Table II

shows the basic characteristics of the traces.

11As a representative set of results, we show here the case with T = 256
KB, N = 5 and M = 1 hour.

153153153153153153

TABLE II
TRACES: BASIC INFORMATION.

30 days 5 days

Number of requests received 2.22 · 109 4.17 · 108
Number of distinct objects 113.15 M 13.27 M
Cumulative size 59.45 TB 2.53 TB
Cumulative size of objects
requested at least twice 20.36 TB 1.50 TB

Fig. 3 shows the number of requests for each object, sorted

by rank (in terms of popularity), for both traces. For the 30-day

trace, there are 25-30 highly requested objects (almost 25% of

the requests are for those few objects), but the cumulative size

of these objects is less than 8 MB. Since they are extremely

popular objects, any policy we consider stores them in RAM,

so they are not responsible for the different performance we

observe for the different policies.

101

102

103

104

105

106

107

108

100 101 102 103 104 105 106 107

N
um

be
r

of
 r

eq
ue

st
s

Object popularity

30 days
5 days

Fig. 3. Number of requests per object (ordered by rank).

Next, we study the relation between the size and the number

of requests of each object. In Fig. 4, for each object, we plot

a point that corresponds to its size (y-axis) and the number

of requests (x-axis). For the 30-day trace, the plot does not

include the 30 most popular objects. We notice that the 5-day

trace does not contain objects smaller than 1 kB.

100
101
102
103
104
105
106
107
108
109

103 104 105 106 107

30 days

O
bj

ec
t s

iz
e

(b
yt

es
)

Number of requests

103 104 105 106 107

5 days

Number of requests

Fig. 4. Size vs Number of requests. For ease of representation, we consider
the objects with at least 1000 requests (for the 30-day trace, we do not include
the 30 most popular objects).

This is also shown in Fig. 5, where we plot the empirical

Cumulative Distribution Function (CDF) for the size of the

requested objects (without aggregating requests for the same

object). The 30-day trace contains a lot of requests for small

objects, while the 5-day trace contains requests for larger

objects (e.g., see the 90-th percentile). In the 30-day trace

we have then a larger variability of the ratio T (s)/s (see

Fig. 2) and we expect qi-LRU to be able to differentiate more

among the different contents and then achieve more significant

improvement, as it is confirmed by our results below.

 0

 0.2

 0.4

 0.6

 0.8

 1

100101102103104105106107108109

C
D

F
of

 th
e

re
qu

es
ts

Object size (bytes)

30 days
5 days

Fig. 5. Cumulative fraction of the requests for objects up to a given size (for
the 30-day trace, we do not include the 30 most popular objects).

TABLE III
RESULTS FOR THE 30-DAY TRACE WITH 4 GB RAM.

bytes service Δ (%)
% reqs served time w.r.t. LRU

LRU RAM 73.06 509 TB 4907 h -
HDD 26.94 157 TB 1663 h -

SIZE RAM 76.38 512 TB 5055 h + 3.02%
HDD 23.62 154 TB 1515 h -8.90%

qi-LRU RAM 84.27 489 TB 5294 h +7.89%

HDD 15.73 177 TB 1276 h -23.27%

TABLE IV
RESULTS FOR THE 5-DAY TRACE WITH 4 GB RAM.

bytes service Δ (%)
% reqs served time w.r.t. LRU

LRU RAM 79.61 159 TB 1058 h -
HDD 20.39 23 TB 219 h -

SIZE RAM 80.31 160 TB 1064 h + 0.57%
HDD 19.69 22 TB 213 h -2.74%

qi-LRU RAM 84.72 149 TB 1074 h +1.51%

HDD 15.28 33 TB 203 h -7.31%

C. Comparative analysis of the eviction policies

Tables III and IV summarize the aggregate results for the

two traces we consider in our study. For the hit ratio, we see

that the qi-LRU policy can serve more requests from the RAM.

On the other hand, the overall number of bytes served by RAM

is smaller: this means that the RAM is biased towards storing

small, very popular objects, as expected. The last column

shows the gain, in percentage, in disk service time between

each policy and LRU, which we take as a de-facto reference

(e.g., -10% for policy “x” means that its disk service time

is 10% smaller than for LRU). This is the main performance

metric we are interested in. For the 30-day trace, the qi-LRU

policy improves by 23% the disk service time, over the LRU

policy. For the 5-day trace, the improvement of qi-LRU over

154154154154154154

LRU is smaller, topping at a bit more than 7%. The reason

behind this result relates to the object size distribution in the

trace: as shown in Fig. 5, the trace contains objects starting

from 1 kB, while, for the 30-day trace, 20% of the requests

are for objects smaller than 1 kB. The impact of these objects

on the overall T (si) is significant.

Next, we take a closer look at our policy, qi-LRU, in

comparison to the reference LRU policy. We now consider

the contribution to the overall hit ratio of each object, to

understand their importance to cache performance. For the 5-

day trace, we sorted the objects according to their rank (in

terms of popularity) and their size, and plot the difference

between LRU hit ratio and qi-LRU hit ratio. Fig. 6 shows

that both policies store the same 1000 most popular objects;

then, the qi-LRU policy gains in hit ratio for medium-popular

objects. Switching now to object size, both policies store the

same set of small objects, while qi-LRU gains hit ratio with

the medium-size objects.

-0.09
-0.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

 0

101 102 103 104 105 106 107

H
it

ra
tio

 (
di

ff
er

en
ce

)

Obj popularity

-0.09
-0.08
-0.07
-0.06
-0.05
-0.04
-0.03
-0.02
-0.01

 0

101102103104105106107108109

H
it

ra
tio

 (
di

ff
er

en
ce

)

Obj size (bytes)

Fig. 6. Difference between LRU hit ratio and qi-LRU hit ratio when objects
are ordered by popularity (left) and by size (right) for the 30-day trace.

Fig. 7 considers the contribution to the disk service time

of each object (ordered by rank or by size) and shows the

difference between the service time reduction under LRU and

under qi-LRU. Clearly, medium popular objects and medium

size objects contribute the most to the savings in the service

time that our policy achieves.

-400

-350

-300

-250

-200

-150

-100

-50

 0

101 102 103 104 105 106 107Se
rv

ic
e

tim
e

di
ff

er
en

ce
 (

ho
ur

s)

Obj popularity

-400

-350

-300

-250

-200

-150

-100

-50

 0

101102103104105106107108109Se
rv

ic
e

tim
e

di
ff

er
en

ce
 (

ho
ur

s)

Obj size (bytes)

Fig. 7. Difference between HDD service time reduction under LRU and under
qi-LRU when objects are ordered by rank (left) and by size (right) for the
30-day trace.

D. Sensitivity analysis

Next, we study the behavior of qi-LRU as a function of

the parameter β, but we plot the results for the parameter

qmin = min
i∈N

qi, that is easier to interpret, being the minimum

probability according to which a content is stored in the RAM.
Figure 8 provides two different views. On the left-hand side,

it shows the percentage of HDD service time offloaded to the

RAM by qi-LRU, both under the 30-day trace and a synthetic

IRM trace generated using the same empirical distributions for

object size and popularity as in the 30-day trace. As expected,

under IRM, the improvement from qi-LRU increases as qmin

decreases, i.e. as β increases. Interestingly, the HDD benefits

even more under the 30-day trace, with more than 80% of the

service offloaded to the RAM. This is due to the temporal

locality effect (see e.g. [11]), i.e. to the fact that requests

typically occur in bursts and then the RAM is more likely to

be able to serve the content for a new request than it would be

under the IRM model. We observe also that the performance of

qi-LRU is not very sensitive to the parameter qmin (and then to

β), a feature very desirable for practical purposes. The right-

hand side of Fig. 8 shows the relative improvement of qi-LRU

in comparison to LRU (calculated as difference of the HDD

service time under LRU and under qi-LRU, divided by the

HDD service time under LRU). While qi-LRU performs better

and better as qmin decreases with the IRM request pattern, the

gain reduces when qmin approaches 0 (β diverges) with the

30-day trace. This is due also to temporal locality: when the

probabilities qi are very small, many contents with limited

lifetime have no chance to be stored in the RAM by qi-
LRU and they need to be served by the HDD. Despite this

effect, qi-LRU policy still outperforms LRU over a large set

of parameter values and obtain improvements larger than 20%
for 0.02 < qmin < 0.4.

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4

% saved from the HDD

pe
rc

en
ta

ge

q min

traces
IRM

 0 0.1 0.2 0.3 0.4

% improvement over LRU

q min

traces
IRM

Fig. 8. Sensitivity analysis to the value of qmin.

V. RELATED WORK

Cache replacement policies have been the subject of many

studies, both theoretical and experimental. We focus here on

the more analytical studies, which are closer to our contribu-

tion in this paper. Moreover, our policy is explicitly designed to

mitigate the burden on the HDD, a goal not considered in most

previous experimental works, despite its practical importance.
Most of the theoretical work in the past has focused on

the characterization of the performance of LRU, RANDOM,

and FIFO [7][12][13][14]. These works do not design caching

policies to solve a specific optimization problem.

155155155155155155

The work in [15], instead, considers a 2-level hierarchy, with

the content stored in the SSD and DRAM. They propose a

new policy which decreases the response time by pre-fetching

the content from SSD to DRAM. To this aim, they focus on a

specific type of content, videos divided into chunks, for which

the requests are strongly correlated, and a request for a chunk

can be used to foresee future requests for other chunks of the

same content. In our work, instead, we provide a model for

the qi-LRU policy which does not assume any correlation on

the requests arrivals, but prioritize the content that imposes a

high burden on the HDD.

A different approach is taken in [16]. The authors consider

that caching policies could be designed with other purposes

than maximizing the local hit probability. For example, they

propose a heuristic that takes into account the cost to retrieve

the contents from expensive inter-domain links. Cost-aware

caches have been the subject of many experimental studies

[17][18][19]. While these studies are similar in spirit, none of

them considers cost functions analogous to the HDD service

time that is the focus of this paper. Moreover, they did not

prove the optimality of the replacement policies proposed.

The most related work to ours is the cache optimization

framework in [9], that we have widely discussed through

the paper. We stress again here, that they assume content

popularities to be known (or to be explicitly estimated) and

the utility functions to be strictly concave, and this is not the

case in our problem.

VI. CONCLUSION

Caches represent a crucial component of the Internet archi-

tecture: decreasing the response time is one of the primary

objectives of the providers operating such caches. This ob-

jective can be pursued by exploiting the RAM of the cache

server, while keeping most of the content in the HDD.

In this paper, we presented a new cache replacement policy

that takes advantage of the access-time difference in the RAM

and in the HDD to reduce the load on the HDD, so that to

improve the overall cache efficiency for a capacity constrained

storage systems. Our policy, called qi-LRU, is a variant of

q-LRU, where we assign a different probability qi to each

content based on its size.

We proved that qi-LRU is asymptotically optimal, and we

provided an extensive trace-driven evaluation that showed

between 10% and 20% reduction of the HDD load with respect

to the LRU policy.

ACKNOWLEDGMENT

This work was partially supported by the “Investments

for the Future” Program reference #ANR-11-LABX-0031-01,

funded by the French Government (National Research Agency,

ANR). The authors would like to thank Bodossaki Foundation

for having supported Dimitra Tsigkari’s internship at Inria.

REFERENCES

[1] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai Network: A
Platform for High-performance Internet Applications,” SIGOPS Oper.
Syst. Rev., vol. 44, no. 3, pp. 2–19, Aug. 2010.

[2] G. Neglia, D. Carra, M. Feng, V. Janardhan, P. Michiardi, and
D. Tsigkari, “Access-time aware cache algorithms,” Inria, Research
Report RR-8886, Mar. 2016. [Online]. Available: https://hal.inria.fr/hal-
01292834

[3] R. Barve, E. Shriver, P. B. Gibbons, B. K. Hillyer, Y. Matias, and J. S.
Vitter, “Modeling and Optimizing I/O Throughput of Multiple Disks on
a Bus,” in Proceedings of the 1999 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, ser.
SIGMETRICS ’99. New York, NY, USA: ACM, 1999, pp. 83–92.

[4] S. W. Ng, “Advances in Disk Technology: Performance Issues,” IEEE
Computer, vol. 31, pp. 75–81, 1998.

[5] E. G. Coffman, Jr. and P. J. Denning, Operating Systems Theory.
Prentice Hall Professional Technical Reference, 1973.

[6] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack problems. Springer,
2004.

[7] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web caching systems:
modeling, design and experimental results,” Selected Areas in Commu-
nications, IEEE Journal on, vol. 20, no. 7, pp. 1305–1314, Sep 2002.

[8] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Performance evalu-
ation of hierarchical TTL-based cache networks,” Computer Networks,
vol. 65, pp. 212 – 231, 2014.

[9] M. Dehghan, L. Massoulie, D. Towsley, D. Menasche, and Y. Tay,
“A Utility Optimization Approach to Network Cache Design,” in
Proc. of IEEE INFOCOM 2016, 2016, to appear, arXiv preprint
arXiv:1601.06838.

[10] M. Garetto, E. Leonardi, and V. Martina, “A Unified Approach to
the Performance Analysis of Caching Systems,” ACM Trans. Model.
Perform. Eval. Comput. Syst., vol. 1, no. 3, pp. 12:1–12:28, May 2016.
[Online]. Available: http://doi.acm.org/10.1145/2896380

[11] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and
S. Niccolini, “Temporal Locality in Today’s Content Caching: Why It
Matters and How to Model It,” SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 5, pp. 5–12, Nov. 2013.

[12] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate ap-
proximation for LRU cache performance,” in Proceedings of the 24th
International Teletraffic Congress, 2012, p. 8.

[13] V. Martina, M. Garetto, and E. Leonardi, “A Unified Approach to
the Performance Analysis of Caching Systems,” in Proc. of IEEE
INFOCOM 2014. IEEE, 2014, pp. 2040–2048.

[14] G. Bianchi, A. Detti, A. Caponi, and N. Blefari Melazzi, “Check before
storing: What is the performance price of content integrity verification
in LRU caching?” ACM SIGCOMM Computer Communication Review,
vol. 43, no. 3, pp. 59–67, 2013.

[15] G. Rossini, D. Rossi, M. Garetto, and E. Leonardi, “Multi-Terabyte and
multi-Gbps information centric routers,” in INFOCOM, 2014 Proceed-
ings IEEE, 2014, pp. 181–189.

[16] A. Araldo, D. Rossi, and F. Martignon, “Cost-aware caching: Caching
more (costly items) for less (isps operational expenditures),” Parallel
and Distributed Systems, IEEE Transactions on, vol. PP, no. 99, pp.
1–1, 2015.

[17] O. Bahat and A. Makowski, “Optimal replacement policies for non-
uniform cache objects with optional eviction,” in Proceedings of the
Twenty-Second Annual Joint Conference of the IEEE Computer and
Communications (INFOCOM), 2003.

[18] P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms,” in
Proceedings of the USENIX Annual Technical Conference, 1997.

[19] D. Starobinski and D. Tse, “Probabilistic methods for web caching,”
Performance Evaluation, vol. 46, no. 2-3, pp. 125–137, 2001.

[20] B. S. Thomson, J. B. Bruckner, and A. M. Bruckner, Elementary Real
Analysis. Prentice-Hall, 2001.

156156156156156156

