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Abstract

Almost all current diarization systems are off-line and ill-
suited to the growing need for on-line or real-time diarization.
Our previous work reported the first on-line diarization system
for the most challenging speaker diarization domain involving
meeting data captured with a single distant microphone (SDM).
Even if results were not dissimilar to those reported for on-
line diarization in less challenging domains, error rates were
high and unlikely to support any practical applications. The
first novel contribution in this paper relates to the investigation
of a semi-supervised approach to on-line diarization whereby
speaker models are seeded with a modest amount of manually
labelled data. In practical applications involving meetings, such
data can be obtained readily from brief round-table introduc-
tions. The second novel contribution relates to a incremental
MAP adaptation procedure for efficient, on-line speaker mod-
elling. When combined, these two developments provide an on-
line diarization system which outperforms a baseline, off-line
system by a significant margin. When configured appropriately,
error rates may be low enough to support practical applications.

1. Introduction

Speaker diarization [1] aims to determine who spoke when in
an audio stream. As per [2], the problem is formulated by:

(8,6,4) = argmax P(S,Gl0), )
S,G,A:SET(A)

~ argmax P(O|G,S), )
5,G,A:S€T(A)

where A represents an optimised speaker inventory, S and G
represent an optimised speaker sequence and segmentation re-
spectively, I'(A) is the set of possible speaker sequences and
O is the set of acoustic features. Speaker diarization has been
investigated extensively in the contexts of broadcast news, lec-
tures, phone conversations and meetings.

Historically, the state-of-the-art in speaker diarization has
evolved around the development of off-line systems, i.e. where
an audio stream is processed in its entirety before any seg-
ments are assigned speaker labels. Examples of such systems
include [3-8]. Driven by the popularity of powerful, mobile
smart devices, the need for real-time information extraction in
human interaction, growing interest in the Internet of Things
(IoT) and the proliferation of always listening sensors, on-line
diarization has attracted increasing interest in recent years.

Due to their high computational complexity and latency,
current state-of-the-art diarization techniques are not easily

adapted to on-line processing. New, on-line approaches have
thus been investigated, e.g. [9-11] and the first on-line system
for meeting diarization [12]. Unfortunately, typical error rates
are high — probably too high to support any practical applica-
tions. This has prompted us to re-evaluate the problem and to
investigate alternative strategies.

This paper shows, unsurprisingly, that the bottleneck lies
in the quantity of data used for speaker model initialisation.
Two possible solutions to mitigate this bottleneck involve the re-
laxation of latency/on-line or supervision constraints. The for-
mer is at odds with the pursuit of on-line diarization. Whereas
speaker diarization is traditionally an unsupervised problem, the
work reported here investigates semi-supervised approaches.

While semi-supervised approaches have been reported pre-
viously for off-line diarization, this paper proposes a new, semi-
supervised approach to on-line diarization. Based upon the ap-
proach in [12] and with the number of speakers assumed to be
known a-priori, the new system uses a short duration of labelled
speech for supervised speaker model initialisation. The remain-
der of the process remains entirely unsupervised. While know-
ing the number of speakers and the use of labelled data is also at
odds with the traditional definition of diarization, many meeting
scenarios involve a short round-table phase during which each
speaker introduces themselves, data which may be used readily
for initialisation.

While the manual labelling of such intervals is still an in-
convenience, it is perhaps a price worth paying for the signifi-
cant improvement in diarization performance. The goal of the
work in this paper is thus to determine what duration of man-
ually labelled speech is required in order to deliver satisfactory
performance, here defined as that achievable with state-of-the-
art off-line diarization. The second contribution of this paper
relates to an incremental approach to on-line model adaptation
which proves instrumental in delivering low error rates.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews prior work. Section 3 demonstrates the challenge
faced in on-line diarization and justifies the need for relaxed
supervision constraints. Section 4 describes the incremental
model adaptation procedure and the new semi-supervised, on-
line diarization system. Section 5 describes experimental work
whereas conclusions and scope for future work are presented in
Section 6.

2. Prior work

Although real-time diarization can be performed efficiently
with the aid of multiple microphones and cameras [13, 14], di-
arization with a single microphone remains a challenge. On-
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line diarization performance is then typically far from what can
be achieved with off-line approaches. The past work is re-
viewed here.

Liu et al. [15] present an approach in the context of broad-
cast news diarization. Speech activity detection (SAD) is ap-
plied to identify speech segments which are clustered via one
of two different algorithms in order to perform on-line diariza-
tion. The performance of the algorithms, involving leader-
follower (LFC), dispersion-based (DSC) and combined clus-
tering (hybrid speaker clustering, HSC), was evaluated on the
NIST Hub4 1998 broadcast news database. Performance was
assessed against a baseline off-line hierarchical clustering sys-
tem. Average misclassification errors of 29.5% and 28.5% for
the LFC and HSC algorithms and 35.5% for the DSC algorithm
compared favourably to a baseline error of 31.5%.

Markov et al. [10, 11] investigated a more traditional ap-
proach using Gaussian mixture models (GMMs). Non-speech
segments are discarded using a suitably trained GMM whereas
diarization is performed upon the comparison of speech seg-
ments to a set of speaker models. New speaker models are in-
troduced using an incremental expectation-maximisation (EM)
algorithm. The system was assessed on a database of Euro-
pean Parliament plenary speeches, characterized by homoge-
neous and long speaker turns. A diarization error rate (DER) of
8% was reported.

A similar approach was reported by Geiger et al. [9] for
broadcast news. Here, speaker models were learned through the
maximum-a-posteriori adaptation (MAP) of a universal back-
ground model (UBM). The same UBM is used to control the
attribution of speech segments to existing speakers and the ad-
dition of new speaker models. A DER of 39% was reported.

Vaquero et al. [16] present a hybrid system composed of
off-line diarization [6] and on-line speaker identification. An
initial off-line diarization stage is used to learn speaker models.
An on-line speaker identification system is then used for sub-
sequent diarization. Speaker models adaptation is performed in
parallel. Performance is dependent on the latency and accuracy
of the off-line process. A DER of 38% is reported for a set of
26 meetings from the NIST Rich Transcription (RT) evaluation
corpora.

Oku et al. [17] report a low-latency, on-line speaker diariza-
tion system that makes use of phonetic information to estimate
more discriminative speaker models. Phonetic boundaries are
used as potential speaker turns. Acoustic features are clustered
off-line into predefined acoustic classes. GMM speaker models
have the same number of components as the number of acoustic
classes. A traditional delta-BIC-like criterion is then used for
speaker clustering and segmentation. Performance is assessed
using Japanese TV talk shows where conversations are charac-
terized by short speaker turns and only few silence intervals. A
DER of 4% was reported.

The work in [12] proposed the first adaptive on-line speaker
diarization system for NIST RT meeting data. Inspired by [9],
speech segments of a fixed maximum duration obtained after
speech activity detection (SAD) are classified against a set of
speaker models learned by the MAP adaptation of a UBM.
Despite the comparatively more difficult task, diarization error
rates are similar to those reported in previous work, even if they
are still high.

None of the above referenced work used any a priori in-
formation, information that may be readily harnessed in many
practical applications in order to improve performance without
significant impacts on convenience. This idea was investigated
by Moraru et al. [18], albeit in the context of off-line diariza-

tion. Their work showed that even modest quantities of speaker
training data bring significant performance improvements.

To the best of our knowledge, this paper presents the first
work to assess what level of performance can be delivered in the
context of on-line speaker diarization using similarly modest
quantities of speaker training data. Fundamental to this is the
second significant contribution which relates to an incremental
MAP adaptation algorithm for the updating of speaker models
during on-line processing.

3. Speaker modelling

Speaker diarization necessarily requires the learning of speaker
models. In an on-line scenario, these are typically initialised
using short speech segments. Diarization involves the com-
parison of similarly short, subsequent segments to the current
inventory of speaker models A and possibly their consequent
re-adaptation using steadily amassed data. While necessary to
meet the requirements for on-line processing, the use of short
segments for both operations also ensures inter-segment speaker
homogeneity.

These two operations form the essential elements of
speaker verification, namely speaker enrolment and testing. It is
well known that the reliability of both depends fundamentally
on data duration. The work presented in this section aims to
examine the dependence of speaker diarization on segment du-
ration and hence to illustrate the potential to improve on-line di-
arization performance. This examination is performed through
strictly controlled speaker verification experiments which avoid
complications associated with overlapping speakers [19] and
compounding diarization nuances.

3.1. Databases and feature extraction

Automatic speaker verification (ASV) experiments are per-
formed using four different datasets compiled from NIST Rich
Transcription (RT) data. They are:

1. UBM training (RTubm): a set of 16 meeting shows
from the NIST RT’04 evaluation;

2. Development (RTdev): a set of 15 meeting shows from
the RT’05 and RT’06 evaluations, and

3. Evaluation (RTeval): a set of 8 meeting shows from the
RT’07 and a set of 7 meetings from RT’09 evaluations.

where all data corresponds to the most challenging single dis-
tant microphone (SDM) condition of each standard evaluation
subset. Acoustic signals are characterized by 19 Mel-frequency
cepstral coefficients (MFCCs) augmented by energy, thereby
obtaining feature vectors with a total of 20 coefficients com-
puted every 10ms using a 20ms window.

3.2. Experiments

ASV is performed using a conventional GMM model with
universal background model (GMM-UBM) system [20]. The
UBM is trained using the meeting data from the RTubm dataset,
with 10 iterations of expectation-maximisation (EM) and with
64 Gaussian components. Speaker models are derived from the
UBM in the usual way using MAP adaptation with a relevance
factor set to 10.

The speech data of all speakers with a floor time greater
than 20 seconds are identified using the ground-truth references.
The data for all other speakers are discarded. The first 10 sec-
onds of speech of each speaker are set apart for model training
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Figure 1: EER as a function of T’s, namely the quantity of data
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Figure 3: Average number of speakers as a function of the
speech segment duration for the RTdev dataset.

while the remaining speech segments are used for testing. All
speech segments are further divided into sub-segments of max-
imum duration T's where T's = 0.25,0.5, ..., 10 seconds.

Training data, of identical duration T’s is randomly selected
from the 10-second training segment, whereas testing is per-
formed separately on every single, same-length sub-segment in
the test data. Exhaustive testing is performed for all speak-
ers; all test segments are compared to all speaker models. This
equates to a large number of short-duration target and impostor
trials from which ASV performance can be gauged in the usual
way.

3.3. Results

ASYV results, combined for RTdev and RTeval, are illustrated
in Figure 1 in terms of the equal error rate (EER) as a func-
tion of T's. Unsurprisingly, performance improves as T’s in-
creases. Critically, with very low quantities of training and test-
ing data less than 1 second in duration, the EER is extremely
high. Lower EERs are observed for data quantities of 10 sec-
onds. The elbow is around 5 seconds, where the EER is in the
order of 20%. Even with a value of T's = 10 seconds, the EER
is perhaps still high for what is essentially same-session ASV.
This is probably due to the fact that most speech segments are

considerably shorter than the value of T’s.

Figure 2 illustrates the segment duration distribution for the
RTdev dataset. The vast majority of segments are seen to be less
than 5 seconds in duration. The use of longer segments in on-
line speaker diarization applications also comes at the increased
risk of speaker model impurities. Figure 3 illustrates the average
number of speakers as a function of segment length. The plot
shows that, beyond segment lengths of 5 seconds, a segment is
more likely to contain 2 speakers than 1 speaker. Added to this,
the use of longer segments would entail greater latency, which
is at odds with the need for on-line diarization.

While admittedly trivial, this analysis shows that, in inde-
pendence from overlapping speech and diarization nuances, the
potential for successful on-line diarization is severely limited by
the potential to acquire sufficient, speaker-homogeneous train-
ing and testing data. In summary, reliable decisions cannot be
made when models are initialised on such short segments of
speech. These observations call for an alternative approach to
on-line diarization.

4. Semi-supervised on-line diarization

The use of larger segments for speaker model initialisation in-
troduces latency and is at odds with the pursuit of on-line di-
arization. An alternative is needed which, in this paper, takes
the form of relaxed supervision constraints. The penalty in-
volves the use of short, manually labelled segments as seeds
for speaker modelling. The target is to reach the same diariza-
tion performance obtained with an off-line system. The open
question is what quantity of seed data is required to meet this
objective?

While an admittedly trivial idea, the authors are not aware
of any work in the open literature which reports such work in the
case of on-line diarization. The novel contributions in the fol-
lowing are thus (i) the investigation of a new semi-supervised
approach to on-line diarization and (ii) an incremental MAP
adaptation procedure which improves significantly on our past
results that used sequential MAP adaptation.

Before the on-line system is introduced, the differences be-
tween sequential and incremental MAP adaptation are first de-
scribed. Even if MAP is a well known, standard algorithm, it
serves here as the starting point. The conventional MAP adap-
tation algorithm is the first illustrated in Figure 4 which aims
to illustrate the difference between the three MAP implementa-
tions described in the following.

4.1. Conventional maximum a-posteriori adaptation

The conventional MAP adaptation [20] algorithm is commonly
used to adapt a UBM model, generally trained with an EM algo-
rithm, towards a specific speaker. The algorithm calculates the
posterior probability of each Gaussian component given a set of
training observations, and can be applied to update the mean,
covariance and weight parameters of the Gaussian components
which have the highest posterior probabilities. In the case where
speaker specific training data is scarce, then the MAP adapta-
tion of a well trained UBM generally gives better results than
speaker specific models learned directly by EM.

For a given speaker, let there be a sequence of D
speech segments (D=4 in Figure 4) where each segment ¢ is
parametrised by a set of acoustic features oW = 01,...,0M;.
As illustrated in Figure 4, conventional off-line MAP adapta-
tion is performed using the UBM model Ay gas and the pool
of all D speaker segments. The sufficient statistics for the k-th
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where Pr(k\om, A\UB M) represents the posterior probability of
the k-th Gaussian component given the m-th observation o,,.
The MAP-adapted mean /i, covariance &', and weight Wy, for
the k-th Gaussian component are then given by:

Ni,
W= | 07— + (1 — oe)wk> 5
< ZJK:1 N;

. Fy
Hk:aﬁk‘*‘(l—a)ﬂk

. S .
6, =a~+ (1 —a)(on+ i) — iy, )
Ny,

where + is a normalization parameter such that ) szl W =1
and where « is defined as:

Ng
= 5
T Ne+r ©)
where T is the pre-fixed scalar which regulates the relevance of
the training data with respect to the UBM. The speaker model
is then given by the tuple s = (Wk, fiy,, Ok).

4.2. Sequential MAP

Sequential MAP is the second algorithm illustrated in Figure 4
and the first approach suited to on-line processing used in our
previous work [12]. Here, speaker models must be updated con-
tinuously as and when new speech segments are assigned to any
one of the speaker models in the current speaker inventory.

An initial speaker model s) can be trained by calculat-

ing the sufficient statistics of the first speaker segment using
the same UBM model A\ypar. The sufficient statistics calcu-
lated for the k-th Gaussian components are obtained from the
application of (3) while setting D = 1. The mean, variance
and weights of the updated model s*) are similarly obtained
from (4). As soon as a new speaker segment is available, then
speaker model s can be updated using the sufficient statistics
of the speaker segment ¢ 4 1 and application of (3) with Ay s
replaced by s(:

Mitq
Nit1 = Z Pr (k|om,s(i>)
m=1
Miqq
Fiil= Z Pr (k|om7s(i)) o
m=1
Mitq )
Sit1 = Z Pr (k|om,s(’>) ofn 6)
m=1

where subscripts k have been omitted for simplicity. The mean,
variance and weights of the updated model s+ are then ob-
tained in the usual way using (4).

According to such a sequential procedure, the sufficient
statistics N;y1, F'y4+1 and S;4+1 depend non-linearly on INV;, F;
and S; in terms of Gaussian occupation probabilities. Accord-
ingly, even given the same observations in the same segments,
the speaker models obtained from the conventional, off-line and
sequential MAP adaptation procedures are not the same.

4.3. Incremental MAP

The incremental procedure is the third algorithm illustrated in
Figure 4. Here, the initial speaker model s is obtained in the
same way as with sequential MAP adaptation. In order to up-
date the speaker model s*), sufficient statistics for speaker seg-
ment ¢ + 1 are now always calculated with the original Ay gar
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Figure 5: An illustration of the semi-supervised on-line speaker diarization system.

model and accumulated with sufficient statistics N;, F'; and S;:

Mitq
Nit1 =N, + Z Pr (klom, \uBm)
m=1
M1
Fio.=F; + Z Pr (k|om, A\uBnm) Om
m=1
M1
Siv1=S8i+ > Pr(klom, A\usnm)on, (M

m=1

The mean, variance and weights of the updated model
s are then once more obtained according to (4). This pro-
cedure is linear and thus, given the same data, the incremental
MAP procedure will produce the same models as the off-line
procedure, while still being suited to on-line processing.

4.4. System overview

The on-line diarization system is illustrated in Fig. 5. It is based
on the top-down or divisive hierarchical clustering approach to
off-line diarization reported in [5] and the on-line diarization
approach reported in [12].

The audio stream is parametrised as described in Sec-
tion 2.1, thereby producing a stream of observations O =
o1,...,0r. Critically, for any time 7 € 1,...,T only those
observations for ¢ < 7 are used for diarization. A brief round-
table phase in which each speaker introduces himself is used to
seed speaker models. The first T's px seconds of active speech
for each speaker is set aside as seed training data.

An inventory A of speaker models s;, where j =
1,..., M, with M indicating the number of speakers in any
particular meeting, is then trained using a certain duration of
seed data Tspr for each speaker. Speaker models are MAP
adapted from the UBM using the seed data. For each speaker
model s;, the sufficient statistics N7, F{") and S{” obtained
during the MAP adaptation are stored in order to be used during
the on-line diarization phase to update the speaker models. The
resulting set of seed speaker models are then used to diarize the
remaining speech segments in an unsupervised fashion.

4.5. On-line processing

Model-based speech/non-speech segmentation is adapted
straightforwardly to on-line processing and is applied to remove
non-speech segments. The remaining speech segments are then
divided into smaller sub-segments whose duration is no longer
than an a-priori fixed maximum duration 7’s. On-line diariza-
tion is then applied in sequence to each sub-segment. The opti-
mised speaker sequence S and segmentation GG are obtained by
assigning in sequence each segment % to one of the M speaker
models according to:

K
$j = argmax ZE (ok|si) (8)
1e(L,...M) 11
where oy, is the k-th acoustic feature in the segment ¢, K rep-
resents the number of acoustic features in the ¢-th segment and
where £ (ox|s;) denotes the log-likelihood of the k-th feature
in segment ¢ given the speaker model s;. The segment is then
labelled according to the recognised speaker j as per (8). The
updated speaker model s; is obtained by either sequential or
incremental MAP adaptation as described above.

5. Experiments

This section reports an evaluation of the new, semi-supervised
speaker diarization system described above. The evaluation
aims to determine what quantity of manually labelled seed data
is needed to obtain the same performance as a state-of-the-art,
entirely off-line system, the associated cost in terms of system
latency and the benefit of incremental MAP adaptation.

5.1. Setup

Datasets, features and the UBM are exactly the same as those
used for ASV experiments as reported in Section 3. Once again,
all experiments concern the most challenging, single distant mi-
crophone (SDM) condition.

Since there is no round-table phase in the RT data, this com-
ponent is simulated. Seed data is taken from wherever the first
T's pk seconds of speaker data are found. Since the majority of
speakers speak for more than 2 minutes this has only a negligi-
ble bearing on the subsequent assessment of diarization perfor-
mance. Overlapping speech is considered as non-speech and re-
moved beforehand according to the ground-truth transcriptions.
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Tspkx 3 sec. 5 sec. 7 sec.
Algo. MAP || Seq | Inc Seq | Inc Seq | Inc
RTdev 24.7 | 21.3 21 18.1 || 20.5 | 16.5
RTO07 19.1 | 173 || 17.5 | 146 || 13.6 | 133
RT09 237 | 182 || 17.6 | 162 || 21.2 | 16.2

[ Average [[224 [ 189 [ 187 [16.3 || 185 [ 153 |
Seq = Sequential MAP; Inc = Incremental MAP

Table 1: A comparison of DER using sequential and incremen-
tal MAP algorithms. Results are reported for a segment duration
/ latency T's of 3 seconds, three different datasets RTdev, RT07
and RT09 and for different durations T's px of training data.

—#— Sequential MAP
—&—Incremental MAP

2
Latency Ts (sec)

Figure 6: Speaker training data duration T's px against segment
duration / latency T's for the RT07 evaluation dataset using se-
quential and incremental MAP algorithms. All points corre-
spond to a DER of 18 % (baseline, off-line performance).

Speaker models s; are trained using quantities of labelled
training data T's px of duration 1,...,39 seconds. The maxi-
mum segment duration 7's is set to values of 0.25,0.5,1,...,4
seconds. Larger values of T'spx imply a greater inconve-
nience in manual training/enrolment. Larger values of T's im-
ply greater latency. Experiments were performed using both se-
quential and incremental MAP adaptation algorithms. Results
for the RTdev and RTeval datasets are reported!. The baseline,
off-line diarization system is the LIA-EURECOM top-down di-
arization system [21] with purification [5].

5.2. Results

Results in Figure 7 illustrate the variation in DER against the
amount of speaker training data T's px . Left plots illustrate per-
formance for sequential MAP adaptation whereas right plots
correspond to incremental MAP adaptation. Results are illus-
trated independently for the RTdev (top), RT07 (middle) and
RT09 (bottom) datasets. In each plot, different profiles illustrate
performance for a range of segment durations / latencies 7’s.
The first observation from Figure 7 indicates that the perfor-
mance of the semi-supervised, on-line diarization system can
surpass that of the baseline, off-line diarization system (illus-
trated with horizontal, dashed lines). In the case of sequential
MAP adaptation this is achieved for the RTdev dataset, for in-
stance, when speaker models are seeded with Tspx = 9 sec-
onds of training data when using a segment size / latency of

Tn order to facilitate the comparison of results with the literature,
results for the RTeval set are presented independently for the two subsets
RTO7 and RT09.

Ts = 4 seconds. With the same segment size, the baseline per-
formance for the RT07 and RT09 datasets is surpassed using as
little as T'spx = 5 and 3 seconds respectively.

In general, lower DERs are achieved with greater quanti-
ties of seed data, for instance a DER of 12.5% is achieved with
Tspr = 9 seconds of training data for the RT07 dataset and
15% with 17 seconds of training data for the RT(09 dataset, both
with latencies of T's = 3 seconds.

Turning next to results for incremental MAP to the right
in Figure 7, it is immediately evident that performance is sig-
nificantly better than for sequential MAP. Here, the baseline,
off-line diarization performance is surpassed with as little as
Tspx = b seconds of seed data for the RTdev dataset and
Tsprx = 3 seconds in the case of both RT07 and RT09, all with
a latency as low as T's = 2 seconds. Once again, lower DERs
are achieved with greater quantities of seed data, as low as 10%
for the RT07 dataset and 12.5% for the RT09 dataset.

Table 1 summaries results across the three different datasets
for Tspr=3, 5, and 7 seconds of speaker training data and a
fixed latency of T's = 3 seconds. Results are illustrated for se-
quential and incremental MAP adaptation algorithms whereas
average performance is illustrated in the bottom row. In all
cases, incremental MAP adaptation delivers a lower DER.

Figure 6 plots the quantity of speaker training data T'spx
as a function of the latency 7’s for the evaluation dataset RT07.
All points correspond to a DER of 18% and thus show different
configurations which achieve the same performance as the base-
line, off-line diarization system. Plots are illustrated for both
sequential and incremental MAP adaptation algorithms. In all
cases, incremental MAP adaptation matches or betters baseline,
off-line diarization performance with a lower amount of seed
data or a lower latency than sequential MAP adaptation.

Finally, results presented in Figure 7 indicate that values
of T's > 1 seconds of latency are required for the best per-
formance, no matter what is the value of T'spx. Performance
degrades universally for lower latencies. Crucially, for all
datasets, DERs are equivalent or better than that of the base-
line, off-line system when T's > 0.5 seconds and when given
sufficient training data T'spx.

6. Conclusions and future work

This paper presents a semi-supervised on-line diarization sys-
tem. The relaxation of supervision constraints overcomes the
difficulty in initialising speaker models in an unsupervised fash-
ion with small quantities of data; the use of longer segments
would require effective speaker overlap detection and would
also come at the expense of increased system latency.

For the RT07 evaluation dataset, the work shows that such
a system can outperform an off-line diarization system with just
3 seconds of speaker seed data and 3 seconds of latency with
incremental MAP adaptation. By using greater quantities of
seed data or by allowing greater latency, then a diarization error
rate in the order of 10% can be achieved.

While these levels of performance may support practical
applications, the need for supervised training remains an incon-
venience. Reduced latency would also be welcome. If the in-
convenience of a short, initial training phase proves acceptable,
then this opens the potential for the application of either super-
vised or semi-supervised speaker discriminant feature transfor-
mations which may offer an opportunity for improved perfor-
mance. This work could reduce the need for seed data, latency,
or both. One avenue through which we are pursuing this objec-
tive involves phone adaptive training [22,23].
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(b) Semi-supervised speaker diarization results for the RT07 evaluation dataset
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(c) Semi-supervised speaker diarization results for the RT09 evaluation dataset
Figure 7: An illustration of DER for the semi-supervised on-line diarization system as a function of the speaker model training duration

Tspk and for different maximum segment durations / latency 7’s. Results shown for the RTdev development, RT07 and RT(09 evalua-

tion datasets using sequential MAP adaptation (left) and incremental MAP adaptation (right). The horizontal, dashed line in each plot
indicates the performance of the baseline, off-line diarization system.
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