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Characterization of L1-norm Statistic for
Anomaly Detection in Erdős Rényi Graphs

Arun Kadavankandy, Laura Cottatellucci, and Konstantin Avrachenkov

Abstract

We devise statistical tests to detect the presence of an embedded Erdős-
Rényi (ER) subgraph inside a random graph, which is also an ER graph.
We make use of properties of the asymptotic distribution of eigenvectors of
random graphs to detect the subgraph. This problem is related to the planted
clique problem that is of considerable interest.
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1 Introduction and Notation

We study the problem of deciding whether a given realization of a random
graph contains an extraneous denser subgraph embedded within it. This falls in the
general framework of graph anomaly detection (see the works [1,2] and references
therein). Specifically, we consider a special case of the above problem where the
random graph is an Erdős Rényi (ER) graph and the embedded subgraph is also an
ER graph with a larger density of edges. We note here that this problem is different
from classifying the nodes as is done in the works on subgraph detection [3, 4],
since we address the problem of detecting the presence of an embedded subgraph;
we do not attempt to locate nodes of the subgraph in the given graph. We also
mention here the related problem of community detection where the community
sizes usually scale linearly with respect to the graph size, and the density of edges
in each community is larger than the intercommunity edge density [5, 6]. In our
work we consider a graph with a single small community embedded within, whose
size scales much slower than linearly with the size of the graph. A special case
of the subgraph detection problem is the clique detection problem as considered
in [4, 7, 8].

Our work is based on the fact that when there is no embedded subgraph, the
modularity matrix of the random graph is a symmetric matrix with independent
upper triangular entries with zero mean. The eigenvectors of such a matrix have
been shown to be approximately Haar distributed [9, 10], under certain conditions
on the moments of the entries. This means that a typical eigenvector of the modu-
larity matrix is delocalized, meaning its L1-norm is large. Note that the L1-norm
of a unit vector v satisfies 1 ≤ ‖v‖1 ≤

√
n, where the upper bound corresponds to

the case of complete delocalization, i.e., all the entries of the vector are of the same
order of magnitude, and the lower bound corresponds to the completely localized
case, i.e., only one entry is non-zero. On the other hand, when there is a subgraph
embedded onto the random graph, we hypothesize that there will exist an eigenvec-
tor that is “localized”, i.e., a fraction of components possess most of the mass of the
eigenvector. This idea has been used in the literature to do community detection
based on k-means clustering of the dominant eigenvectors [11], [12]. Delocaliza-
tion properties of eigenvectors of random matrices under a variety of distributions
have been studied recently in a series of works [13–15].

Anomaly detection based on norms has been studied empirically in [1, 2].
There the authors look for the presence of an eigenvector whose L1-norm is much
smaller than a fixed threshold that depends on the mean and variance of the L1-
norms of all the eigenvectors of the modulariy matrix estimated empirically, and
declare a subgraph to be present if there exists such an eigenvector. In our work we
provide theoretical validation for anomaly detection based on the L1-norm of only
the dominant eigenvector, and show that it is possible to detect the anomaly in this
way. We find the distributions of the test statistic with and without the embedded
subgraph for a specific setting where both the subgraph and the background graph
are independent ER random graphs.
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Our contribution is threefold. We derive the distribution of the dominant eigen-
vector components of the modularity matrix1 when there is an embedded subgraph.
We use this result to derive the asymptotic distribution of theL1-norm of this eigen-
vector. We also look at the case where there is no subgraph embedded and use the
properties of the eigenvectors of Wigner matrices as explored in [9, 16], to derive
the L1-norm of the eigenvectors when there is no subgraph embedded. Using these
distributions we then devise a statistical test to detect the presence of the extraneous
subgraph.

In the following we present relevant notational conventions followed through-
out the paper.
Notation:
A vector is denoted in bold lower case (x), a matrix in bold upper case (A), and
their components as xi and Aij . Also, ‖x‖ =

√
x2

1 + x2
2 + . . . x2

n, is the L2-norm
of x ∈ Rn, and ‖x‖1 = |x1|+ |x2|+ . . . |xn| is its L1-norm. For a real symmetric
matrix A, ‖A‖ denotes its spectral radius, i.e., the maximum eigenvalue in abso-
lute value. We denote the standard Euclidean basis vectors as ei, a unit vector with
all zero components except the ith component, which is equal to 1, and 1n ∈ Rn
denotes an n× 1 vector whose components are all equal to 1. Also, Jn denotes an
n × n matrix whose entries are all equal to 1, i.e., Jn = 1n1

T
n . We do not distin-

guish between a random variable and its realization and this is usually clear from
the context.

Also note the conventional asymptotic notations: f(n) = O(g(n)), f(n) =

o(g(n)), f(n) = Ω(g(n)) denote respectively that limn→∞
f(n)
g(n) ≤ K,

limn→∞
f(n)
g(n) = 0, limn→∞

g(n)
f(n) ≤ K, for any two functions f(n) and g(n) of

n. Also f(n) = Θ(g(n)), if f(n) = Ω(g(n)), and f(n) = O(g(n)). We also
use the notation op(1) and Op(1), to denote random variables that vanish in prob-
ability and are bounded in probability, respectively. A sequence random variables
xn = op(1), if xn

p−→ 0. Generic constants independent of n may be denoted
K, k,C, c and are arbitrary and may change from line to line. The symbol ∼ de-
notes “has the distribution” for a random variable. The abbreviation w.p. denotes
“ with probability”. Probabilistic operators such as distributions and expectations
are given subscripts to specify the hypothesis under which they hold; for example
EH1 denotes expectation w.r.t the distribution under hypothesis H1. We use the
common notationN (µn,Σn) to denote the multivariate normal distribution in Rn
with mean vector µn, and covariance matrix Σn. We sometimes use the notation
Var for the vairance operator of a random variable, E denotes expectation and P
denotes probability where the space {Ω,F ,P} is implicit.

In section 2 we formulate the detection problem, first in general terms; and
then in the more specific case studied in this paper. In section 3, we present our
anomaly detection algorithm, which is a hypothesis test problem with the proba-
bility of false alarm fixed. In section 3.1, we describe the spectral properties of the

1By Modularity matrix we mean the adjacency matrix of the graph from which we subtract the
edge probability of the background graph.
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modularity matrix A underH0, and characterize the distribution of the L1-norm of
its eigenvectors. Proposition 1 gives the main result on the asymptotic distribution
of χ under H0. In section 3.2 we analyze the spectral properties under H1, and in
Theorem 2, derive a Central Limit Theorem (CLT) for the individual components
of the dominant eigenvector of A. Using this distribution we compute the approx-
imate asymptotic distribution of the L1-norm statistic under H1 in section 3.2.2.
Finally in section 5 we describe our conclusions and directions for future research.

2 The subgraph detection problem and Problem State-
ment

In this section we formulate the general problem of subgraph detection and
later describe the specific problem we want to analyze. Let G = (V,E) denote
the observed graph, where V is the set of vertices, with cardinality |V | = n, and
E ⊂ V × V is the set of edges. When there is no embedded subgraph, G = Gb,
whereGb = (V,Eb) is the background graph withEb used to denote the edge set of
the background graph. Let us denote the subgraph by Gs = (Vs, Es) with Vs ⊂ V,
and |Vs| = m. When there is an embedded subgraph we have E = Eb ∪ Es. We
desire to perform the following detection problem based on an observation of the
graph G,

H0 : E = Eb (1)

H1 : E = Eb ∪ Es. (2)

In other words, the null hypothesis H0 corresponds to the case when there is no
embedded subgraph, and all the edges of the observed graph belong to the back-
ground graph, and the hypothesis H1 corresponds to the case where the edges of
the observed graph belong to either the background graph or the subgraph.

In this work we focus on a specific case of the above problem where both
the background graph and the embedded subgraph are independently drawn from
an ER graph ensemble. For simplicity of mathematics we allow self-loops, but
in general this does not impact the results to a large extent. We assume Gb =
G(n, pb), andGs = G(m, ps),where G(l, q) denotes the class of ER random graphs
of size l and edge probability q. Under H1, the probability of two nodes within Vs
being connected in G is therefore p1 = 1− (1− pb)(1− ps) = pb + ps− pbps and
elsewhere the edge probability is pb. Under H0, the edge probability is uniformly
pb. Without loss of generality we assume that Vs = {1, 2, . . .m}.

It can be observed under H1 the graph is probabilistically equivalent to a
Stochastic Block Model (SBM) with two communities of sizem and n−m,within
community link probabilities p1 = pb + ps− pbps and p2 = pb; and outlink proba-
bility p0 = pb. Properties of SBM have been studied extensively in several works in
the literature under assumption of linearly increasing block sizes; see e.g. [17, 18].

The adjacency matrix A of G is given as below
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Aij = Aji ∼

{
B(pa) if i, j ≤ m
B(pb) otherwise

(3)

where B(p) denotes the Bernoulli distribution that is 1 with probability p; pa = p1

under H1 and pb under H0. Notice that pb, ps and m in general scale with the
graph size n; the constraints on the actual scaling with respect to n will be made
explicit when the results are given. We also define A = A − pbJn. Since we are
considering undirected graphs, A is symmetric with independent upper diagonal
entries and the same holds for A. Being a symmetric matrix it admits a spectral
decomposition such that A = UΛUT, where U =

[
u1 u2 . . . un

]
, is an

orthonormal matrix whose columns are made of the normalized eigenvectors with
respective eigenvalues Λii = λi, in decreasing order without loss of generality
(wlog), λ1 ≥ λ2 ≥ . . . ≥ λn.

3 Algorithm and Analysis

In what follows we focus on the following algorithm. It is similar to the al-
gorithm introduced in [2] based on finding the eigenvector of A with the least L1

norm.
Algorithm: Subgraph Detection

• Input: Adjacency matrix A, background probability pb, µ(0), the mean of
χ under H0 and σ2

(0), its variance under H0. Fix probability of false alarm
pFA.

• Construct the matrix A = A− pbJ

• Compute the eigenvector u1 corresponding to eigenvalue λ1, and find χ =
‖u1‖1.

• Find τ, such that (s.t.) PH0{χ < τ} = pFA, i.e., τ = µ(0) + σ(0)Φ
−1(pFA)

• If χ < τ, declareH1, otherwiseH0,

where Φ is the Cumulative Density Function (CDF) of N (0, 1).

3.1 Spectral statistics underH0

UnderH0,A is a symmetric matrix with independent centered upper triangular
entries as given below

Aij = Aji =

{
1− pb w.p. pb
−pb w.p. 1− pb
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i.e., the components of A are independent on and above the diagonal, with zero
mean, and variance pb(1− pb). Thus the matrix A under H0 is a standard Wigner
matrix. Its spectral properties such as the empirical spectral distribution and the
spectral radius are well-studied in the literature under different scaling laws on pb,
see e.g., [18, 19]. The eigenvectors of Wigner matrices are approximately Haar-
distributed on the space of unitary matrices on Rn×n as suggested by partial results
on universality of eigenvector statistics [9, 10]. Therefore, a typical eigenvector ui
is approximately uniformly distributed on the hypersphere, Sn−1 = {s : ‖s‖ = 1},
in the L2− (euclidean) space. A unit vector on the hypersphere can be modelled as
a Gaussian eigenvector normalized to have unit L2− norm, i.e., x

‖x‖ , with x being
a Rn Gaussian vector with covariance matrix I, i.e., x ∼ N (0, I). We assume the
following fact, which is a widely held conjecture about the asymptotic distribution
of the eigenvectors of a Wigner matrix. This holds exacly for Wigner matrices
with gaussian entries such as the Gaussian Unitary ensemble and the Gaussian
Orthogonal Ensemble []anderson2009zeitouni.

Observation 1 (Haar distribution of Eigenvectors of a Wigner matrix) A typical
eigenvector ui of A under hypothesis H0 is distributed uniformly on the hyper-
sphere on S(n−1). The distribution of a typical eigenvector ui is identical to the
distribution of x/‖x‖, where x ∼ N (0, In).

Let us define g(x) = ‖x‖1
‖x‖ . Below we derive a central limit theorem for g(x),

when x ∼ N (µ,Σ), where Σ is a diagonal matrix in Rn×n such that Σii = Ex2
i =

σ2
i i.e., the components xi have mean µi and variance σ2

i . We derive this general
result that will be useful later in the paper. For now we derive the specific case
where µ = 0, and Σ = I.

Lemma 1 (Central Limit Theorem for ‖x‖1/‖x‖) Let x be a Gaussian random
vector with independent and identically distributed (i.i.d.) components, then g(x)
satisfies a central limit theorem with the limit distribution being Gaussian with
mean µ0 =

√
n
α2
α1 and variance σ2

0 = 1
α2

(
C11 + ( α1

2α2
)2C22 − α1

α2
C12

)
, where

α1 = E(|x1|), α2 = E(|x1|2), C11 = Var(|x1|), C22 = Var(|x1|2), C12 =

E((|x1| − E(|x1|))(|x1|2 − E(|x1|2))), i.e., g(x)
D−→ N (µ0, σ

2
0)).

Proof: Consider the two dimensional vector zi =

(
|xi|
|xi|2

)
, and z(n) =

∑n
i=1 zi.

Note that zi are i.i.d. random vectors in R2, with mean m = Ezi =

(
α1

α2

)
, and

covariance matrix

C =

[
E|xi|2 − (E|xi|)2 E|xi|3 − E|xi|2E|xi|

E|xi|3 − E|xi|2E|xi| E|xi|4 − (E|xi|2)2

]
.

Hence, by applying the multidimensional CLT , see [23], we conclude that the
distribution of r(n) = 1√

n

(
z(n) − nm

)
converges to N (0,C). Now the function
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g(x) can be represented as a function of the vector z(n), which we denote as g for
brevity. By the Skorohod representation theorem see [23] there exists a probabil-
ity space (Ω

′
,F ′

,P′
) where we can construct a sequence of random vectors r(n)

that converges in the almost sure sense to the random vector r with distribution
N (0,C). Therefore,

g =
z

(n)
1√
z

(n)
2

= (
√
nr1 + nα1)(

√
nr2 + nα2)−1/2

=
1

α
1/2
2

(r1 +
√
nα1)(1− 1

2

r2

α2
√
n

+ op(n−1/2))

=
1

α
1/2
2

(
√
nα1 −

r2

2α2
α1 + r1 − Op(n

−1/2) + op(n−1/2))

=
√
n
α1√
α2

+
1
√
α2

(r1 −
r2

2

α1

α2
) + op(1),

Therefore we obtain

g −
√
n
α1√
α2

=
1
√
α2

(r1 −
α1

2α2
r2) + op(1). (4)

Since the vector r(n) almost surely converges to the vector r, by the Continuous
Mapping Theorem, any continuous function f(r(n)) converges to f(r)) almost
surely, where in our case f(r) = 1√

α2
(r1− α1

2α2
r2). But this is a linear combination

of two jointly Gaussian random variables, and hence is also a Gaussian Random
Variable (r.v) with mean 0, and variance β1 + β2

α2
1

4 −α1β12. Also, by the fact that
if xn, yn are two random variable sequences such that xn → x a.s. and yn → y
in probability, then xn + yn → x+ y in probability, the right hand side of (4) is a
random variable that converges in probability to a Gaussian random variable with
mean 0, and variance σ2

(0) = 1
α2

(
C11 + ( α1

2α2
)2C22 − α1

α2
C12

)
= 1 − 3/π, and

hence g converges to a Gaussian random variable with mean µ(0) =
√
n α1√

α2
=√

2n
π and variance σ2

(0). Now g(x) has the same distribution as g. Therefore g(x)

converges in distribution to N (µ(0), σ
2
(0)). �

Proposition 1 UnderH0, χ ∼ N (µ(0), σ
2
(0)), asymptotically in distribution, where

µ(0) =
√

2n
π , and σ2

(0) = 1− 3
π .

Proof: The proof uses Approximation ?? and follows from Lemma 1, where

α1 = E(|x1|) =
√

2
π , α2 = E(|x1|2) = 1, C11 = Var(|x1|) = 1 − 2/π,C22 =

Var(|x1|2) = 2, C12 = E((|x1| − E(|x1|))(|x1|2 − E(|x1|2))) =
√

2
π . �
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3.2 Eigenvalue and eigenvector properties underH1

Under hypothesisH1 the matrix A is given as below

Aij =



{
1− pb w.p. p1

−pb w.p. 1− p1

, if 1 ≤ i, j ≤ m,{
1− pb w.p. pb
−pb w.p. 1− pb

if i > m or j > m,

Thus underH1, the matrix A has a non-zero mean A = EH1A given by

A =

[
(p1 − pb)Jm 0m×n−m

0n−m×m 0n−m×n−m

]
. (5)

Also note that for the components Aij , such that 1 ≤ i, j ≤ m, the upper diagonal
components have the variance of p1(1 − p1), and the other components have a
variance of pbδp, where δp := p1 − pb.

This matrix has rank 1, and with a single non-zero eigenvaluemδp, with eigen-

vector 1√
m

[
1m

0n−m×1

]
.

Intuitively, A is the subgraph component, and when the subgraph component is
large enough, we can conceivably detect the subgraph from the observed graph, i.e.,
if the eigenvalue of A is large to be separate enough from the spectrum of A−A,
we expect to be able to detect the embedded subgraph. A bound on ‖A −A‖ is
obtained by use of the following theorem based on the matrix Bernstein’s Lemma
[26].

Theorem 1 Under the condition that pb � log2(n)
n ,

‖A−A‖ <
√

12 log(n) max(σ2
1m+ σ2

0(n−m), σ2
0n) (6)

=
√

12 log(n)σ2 almost surely (a.s.),

where σ2
1 = p1(1 − p1), σ2

0 = p0(1 − p0), and define σ2 := max(σ2
1m + σ2

0(n −
m), σ2

0n).

Proof:
We need the following lemma on Matrix Bernstein inequality [26].

Lemma 2 (Matrix Bernstein). Let S1,S2, . . .St be independent random matrices
with common dimension d1 × d2. Assume that each matrix has bounded deviation
from its mean, i.e.,

‖Sk − ESk‖ ≤ R, for each k = 1, . . . n.

Form the sum Z =
∑t

k=1 Sk and introduce a variance parameter

σ2
Z = max

{
‖E[(Z− EZ)(Z− EZ)H ]‖, ‖E[(Z− EZ)H(Z− EZ)]‖

}
.
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Then

P{‖Z− EZ‖ > t} ≤ (d1 + d2). exp

(
−t2/2

σ2
Z +Rt/3

)
, (7)

for all t ≥ 0.

With Z := A, we can decompose Z as sums of Hermitian matrices Si′j′ ,
Z =

∑
i′j′ Si′j′ such that:

(Si′j′ )ij =


Ai′j′ if i = i

′
, j = j

′

Ai′j′ if i = j
′
, j = i

′

0 otherwise.

(8)

Notice that ‖Si′j′x‖ = |2xi′xj′Amn| ≤ |x
2
i′

+ x2
j′
|. Consequently ‖Si′j′‖ ≤ 1,

giving R = 1. Let Y = E[(Z− EZ)H(Z− EZ)], then

Yij =


v1 if i = j, i ≤ m
v2 if i = j, i > m

0 otherwise,

(9)

where v1 = σ2
1m + σ2

0(n − m), v2 = σ2
0n, with σ2

1 = p1(1 − p1), and σ2
0 =

pb(1− pb). Therefore σ2
Z = max(v1, v2) := σ2. Thus it follows that

P(‖A−A‖ ≥ cσ) ≤ 2n exp(
−c2σ2

2σ2 + cσ/3
)

≤ 2n exp(−c2/3),

if σ2 > cσ or σ > c. The RHS falls faster than n−1 if c >
√

6 log(n), and thus by
an application of Borel-Cantelli Lemma [23] the result follows. �
For the above result to hold we require that ∃N s.t. ∀n > N max(v1, v2) >
(6 log(n))2.
If pb does not scale with n, this condition is immediately satisfied. Let us consider
the case where the embedded subgraph is a clique, i.e., ps = p1 = 1. Then σ2 =
σ2

0n = pb(1− pb)n, and the condition is satisfied when npb � log2(n); similarly
when both p1, pb are decreasing functions of n, the condition is easily verified to
be satisfied when npb � log2(n).

Definition 1 (Spectral gap G) We define the spectral gap ∆ as the difference be-
tween the maximum eigenvalue of the mean matrix and edge of the spectrum

G = mδp − ‖A−A‖

≥ mδp −
√

12 log(n)σ2

= G0.

8



By Lemma 4, it holds that a.s.,

mδp(1−∆) ≤ λ ≤ mδp(1 + ∆), (10)

and by Theorem 1, it also holds that a.s.

|λi| ≤
√

12 log(n)(mδp + npb) ≤ mδp∆, (11)

for i ≥ 2 where,

∆ :=

√
12 log(n)npb
mδp

. (12)

Note that by Condition 3, ∆ = o(1).
Note: By more carefully bounding the spectral radius ‖A − A‖ it must be

possible to remove the
√

log(n) factor from ∆.

3.2.1 Eigenvector distribution underH1

We develop a CLT for the components of the dominant eigenvector of the
“modularity” matrix A. It is similar in vein to the CLT derived in [21], for the com-
ponents of the eigenvector of a single dimensional Random Dot Product Graph(RDPG).
See [21] for further details. Throughout this section the distributions of the random
variables correspond to those under H1, and this fact is not explicitly noted from
here onwards.

We need to characterize the distribution of the dominant eigenvector2 of A,
which we denote u := u1, corresponding to the eigenvalue λ := λ1. Observe that
the mean matrix A can be written as x̄x̄T , where x̄ =

√
δp
[
1Tm 0Tn−m

]T
, with a

single non-zero eigenvalue λ̄ = mδp and its eigenvector as ū = x̄
‖x̄‖ . Let us define

x as x = λ1/2u, and so u = x/‖x‖2. Intuitively when there is a non-diminishing
spectral gapG for large n, a random realization of x would be close to x̄. Therefore
the ith component of x would have a limiting distribution with mean x̄i. We can
then derive the limiting distribution of the L1-norm statistic from the distribution
of x. We derive our results under the following conditions.

Condition 1

pb �
log6(n)

n

Condition 2
mp1 ≤ npb

Condition 3
mδp = Ω((npb log(n))2/3)

2By the dominant eigenvalue of a matrix we mean the largest eigenvalue of the matrix, and the
dominant eigenvector is the corresponding eigenvector.
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Condition 4
mpb = Ω(1)

Notice that Condition 4 also implies that mp1 = Ω(1), because mp1 > mpb.
Discussion of the Conditions:
The condition 2 in essence says that the “signal strength” mδp that we are trying
to detect is not so large that it can be detected trivially, by say, an ordering of
the degrees of the graph vertices. The second condition 3 is required so that the
spectral gap G is large enough to prove the results on the CLT of the eigenvector
components presented in this paper. It must be possible to relax this last condition
by more sophisticated techniques. This we reserve for a future work.

We present below our main theorem on the CLT of the components of the
dominant eigenvectors.

Theorem 2 Under Conditions 2 and 3 the following CLT holds true for the entries
of the unnormalized eigenvector x = λ1/2u, where u is the eigenvector corre-
sponding to the eigenvalue λ of A underH1.√

mδp
p1(1− p1)

(
xi −

√
δp

)
D−→ N (0, 1), (13)

for 1 ≤ i ≤ m, and √
mδp

pb(1− pb)
xi
D−→ N (0, 1), (14)

for 1 +m ≤ i ≤ n.

Proof :

Define γi =
√

mδp
p1(1−p1) for 1 ≤ i ≤ m and γi =

√
mδp

pb(1−pb) for m + 1 ≤ i ≤ n.

Notice that xi = 1
λ1/2

[Au]i and x̄i = 1
λ̄1/2

[
Aū
]
i

=
√
δp for 1 ≤ i ≤ m and

x̄i = 0 for m + 1 ≤ i ≤ n. Here [z]i denotes the ith component of vector z. We
can write

γi(xi − x̄i) := T1 + T2 + T3.

We treat each of the above three terms separately as below.

• We show that T1 = γi

(
1

λ1/2
[A(u− ū)]i

)
→ 0 in probability, in Lemma 6.

• We show T2 = γi

(
1

λ1/2
[Aū−Aū]i

)
satisfies a CLT and is asymptotically

distributed as N (0, 1), in Lemma 3.

• Finally we show that T3 = γi

(
( 1
λ1/2
− 1

λ̄1/2
)[Aū]i

)
→ 0, for 1 ≤ i ≤ min

probability in Lemma 4, by showing a concentration result for the dominant
eigenvalue λ. Notice that T3 = 0 for i > m.

10



The result then follows by an application of Slutsky’s thereom [23]. �

Lemma 3 Under Conditions 2 and 3 the following CLT holds for the entries of y.√
mδp

p1(1− p1)

(
yi −

‖x̄‖x̄i
λ1/2

)
D−→ N (0, 1), (15)

for 1 ≤ i ≤ m, and √
mδp

pb(1− pb)
yi
D−→ N (0, 1), (16)

for 1 +m ≤ i ≤ n.

Proof:
We prove (15) and the proof for (16) follows along the same lines. Observe that

yi −
‖x̄‖x̄i
λ1/2

=
1

λ1/2

n∑
j=1

Aij ūj −
‖x̄‖x̄i
λ1/2

=
1

λ1/2

 n∑
j=1

Aij x̄j/‖x̄‖ − x̄i‖x̄‖


=

1

λ1/2‖x̄‖

 m∑
j=1

Aij x̄j − x̄i‖x̄‖2
 (17)

=
1

λ1/2‖x̄‖

 m∑
j=1

(Aij − x̄ix̄j)x̄j

 ,

where in (17) we used the fact that x̄i = 0, for i > m. We need the following
concentration lemma for the eigenvalue λ, based on the Bauer-Fike lemma ( [24]).

Lemma 4 Under Condition 3, λ→ mδp a.s. as n→∞.
Proof: By Bauer-Fike Lemma ( [24]) and Theorem 1,

|λ−mδp| ≤
√

6 log(n)(mp1 + (n−m)pb)

=
√

6 log(n)(mδp + npb).

Therefore,

| λ
mδp

− 1| ≤

√
6 log(n)mδp

(mδp)2
+

6 log(n)npb
(mδp)2

≤

√
12 log(n)npb

(mδp)2
(18)

=

√
12 log(n)npb
mδp

,

11



which implies λ → mδp, a.s., by Condition 3, where in (18) we used the fact that
mδp < npb, which follows from Condition 2. �

Notice ‖x̄‖ =
√
x̄2

1 + x̄2
2 + x̄2

3 + . . . x̄2
n =

√
mδp deterministically. Thus we

obtain

√
mδp

p1(1− p1)
(yi −

‖x̄‖x̄i
λ1/2

) =

√
mδp

λ1/2
√
mδp(p1(1− p1))

 m∑
j=1

(Aij − x̄ix̄j)x̄j


=

√
mδp√

mp1(1− p1)λ1/2

 m∑
j=1

(Aij − δp)

 ,

since x̄i =
√
δp for 1 ≤ i ≤ m. We invoke the Lindeberg Central Limit Theorem

[23] to determine the asymptotic distribution of the above.

Theorem 3 (Lindeberg Central Limit Theorem) Suppose that for each n,

Xn1, Xn2, . . . Xnrn

are independent, with EXnk = 0, σ2
nk = EX2

nk, and define s2
n =

∑rn
k=1 σ

2
nk.

Define Sn =
∑rn

k=1Xnk. Then Sn/sn
D−→ N (0, 1), if

lim
n→∞

rn∑
k=1

1

s2
n

EX2
nkI{|Xnk| ≥ εsn} = 0, (19)

∀ε > 0.

Now take Sn =
∑m

j=1(Aij − δp)
√
δp, then Xnk := (Aij − δp)

√
δp, and

EXnk = 0, and σ2
nk = EX2

nk = δpp1(1− p1), giving sn = mδpp1(1− p1). Then
the left hand side of condition (19) becomes

lim
n→∞

m

mδpp1(1− p1)
EX2

nkI{|Xnk|/
√
mδpp1(1− p1) ≥ ε},

because Xnk are i.i.d. random variables. The above is equivalent to

lim
n→∞

E

(
Xnk√

δpp1(1− p1)

)2

I

{
|Xnk|√

δpp1(1− p1)
≥ ε
√
m

}
:= lim

n→∞
EX̃2

nkI
{
|X̃nk| ≥ ε

√
m
}
, (20)

where X̃nk = Xnk/
√
δpp1(1− p1) is given as

X̃nk =


1−p1√
p1(1−p1)

w.p. p1

−p1√
p1(1−p1)

w.p. 1− p1.

12



Therefore we can write (20) as

1− p1

p1
I{
√

1− p1

p1m
≥ ε}+

p1

1− p1
I{
√

p1

mp1
≥ ε}.

Clearly, if mp1 = Ω(1), ∃N, s.t. the above is zero ∀n > N, and ε > 0. Hence
Linderberg condition is satisfied, and we obtain that

lim
n→∞

1√
mδpp1(1− p1)

m∑
j=1

(Aij − δp)
√
δp
D−→ N (0, 1),

or equivalently,

lim
n→∞

1√
mp1(1− p1)

m∑
j=1

(Aij − δp)
D−→ N (0, 1). (21)

Thus by applying Slutsky’s theorem with Lemma 4 and (21) we obtain the result
for 1 ≤ i ≤ m.

Similarly, for m+ 1 ≤ i ≤ n,√
mδp

pb(1− pb)
yi =

√
mδp

pb(1− pb)
λ−1/2

m∑
j=1

Aij ūj ,

=

√
mδp
λ

1√
mpb(1− pb)

m∑
j=1

Aij

D−→ N (0, 1),

where the proof follows from another application of Theorem 3, Lemma 4 and
Slutsky’s Theorem, provided that mpb = Ω(1), which follows from Condition 4.

To complete the proof of Theorem 2, we need to first derive an entry-wise er-
ror bound between the eigenvector ū of A and the dominant eigenvector u, of A
which we present in the following lemma.

Armed with the results we have thus far, we are now prepared to prove the
main central limit theorem in the paper, a CLT for each individual component of
the non-normalized dominant eigenvector x of A.

In order to prove Theorem 2, we need an error bound between u and ū. To
derive this we use the traditional Davis-Kahan theorem from [27], which we quote
below.

Theorem 4 (Davis-Kahan Theorem [27]) Let C and D be two Hermitian oper-
ators, and let S1, S2 be any two subsets of R such that the distance between the
two subsets, d(S1, S2) = δ > 0. Let E = PC(S1), the projection matrix on to the

13



space spanned by the eigenvectors of C whose eigenvalues fall in S1, and similarly,
F = PD(S2). Then, for every unitarily invariant matrix norm 3 ||||||,

|||EF||| ≤ c

δ
|||C−D|||

where c is a fixed constant. In fact, c = π/2.

Using the above, we derive the following result.

Lemma 5 Let u, ū and ∆ be as defined above. Then a.s.,

‖u− ū‖2 ≤
c∆

1− 2∆
,

where c is a constant independent of n.

Proof:
In the notation of Theorem 4, choose C := A, and D := A. Let us take S1 =
[−an, an], where an = mδp∆. Then S1 does not contain the non-zero eigenvalue
λ̄ of C, and hence E = PC(S1) is the projection matrix on to the orthogonal
space of ū, and therefore, E = I− ūūT . Let S2 = [mδp(1−∆)−∞) , such that
it only contains the dominant eigenvalue of A, which gives F = PD(S2) = uuT .
Demonstrably, δ in Theorem 4 satisfies δ > mδp(1−∆)−mδp∆ = mδp(1−2∆).
Also, we choose |||||| := ‖‖2, the induced L2-norm on matrices, which can be easily
shown to be unitarily invariant. From Theorem 1 it holds that ‖A−A‖2 ≤ mδp∆.
Also,

‖EF‖2 = ‖(I− ūūT )uuT ‖2
= ‖uuT − ū(ūTu)uT ‖2
= ‖ (u− αū) uT ‖2 (22)

= ‖u− αū‖2 (23)

= (1− α2)1/2,

where in (22) we used the notation α := ūTu. In obtaining (23) we used the fact
that ‖xyT ‖2 = ‖x‖2‖y‖2, for any two vectors x,y ∈ Rn, and in the last line we
used the fact that ‖u‖2 = ‖ū‖2 = 1. Therefore by Theorem 4

(1− α2)1/2 ≤
√

2c∆mδp
mδp(1− 2∆)

= c
∆

1− 2∆
(24)

3A unitarily invariant matrix norm is such that |||UAV||| = |||A|||, for any matrix A, where U,V
are two unitary matrices
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Thus we obtain

‖u− ū‖2 =
√

2(1− α)1/2

<
√

2(1− α2)1/2 (25)

≤ c ∆

1− 2∆
, (26)

where in (25) we used the fact that u is only fixed up to a scale factor of ±1, and
so α can be chosen to be non-negative, and in (26) we used (24). �

We finally need the following lemma and the subsequent observations.

Lemma 6 There exists a constantC s.t. ‖y− 1
λ1/2

Au‖ ≤ C
√
mδp∆

2 = C log(n)npb
(mδp)3/2

,
a.s.

Proof : Observe that can write A =
∑

i≥2 λiuiu
T
i + λuuT = Ã + λuuT , where

‖Ã‖2 = maxi>2 |λi| ≤ mδp∆, a.s. Hence we have

‖y − 1

λ1/2
Au‖ =

1

λ1/2
‖A(u− ū)‖2

=
1

λ1/2
‖
(
Ã + λuuT

)
(u− ū)‖2

≤ ‖Ã(u− ū)‖2
λ1/2

+ λ1/2‖u− ū‖2

≤ c
√
mδp∆

2

(1−∆)1/2(1− 2∆)
+
C
√
mδp∆

2(1 + ∆)1/2

(1− 2∆)2
(27)

≤ C
√
mδp∆

2,

a.s., where in (27), we used the bound in Lemma 5.
Notice that the eigenvector components ui, are exchangeable for 1 ≤ i ≤ m,,

and similarly for ui, 1 + m ≤ i ≤ n. (This is clear since we have Au = λu, and
the distribution of Aij being the same for 1 ≤ i ≤ m, and for i > m.)

Lemma 7 For 1 ≤ i ≤ m, we have
√

mδp
p1(1−p1) |yi−

(Au)i
λ1/2
| → 0, and for m+ 1 ≤

i ≤ n, we have
√

mδp
pb(1−pb) |yi −

(Au)i
λ1/2
| → 0, in probability.
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Proof:
For 1 ≤ i ≤ m, using Markov inequality,

P{

√
mδp

p1(1− p1)

∣∣∣∣yi − (Au)i

λ1/2

∣∣∣∣ > ε} ≤ C
Em δp

p1
|yi − (Au)i

λ1/2
|2

ε2

= C

∑m
i=1 E|yi −

(Au)i
λ1/2
|2

ε2
(28)

≤ C
E‖y − 1

λ1/2
Au‖2

ε2

≤ C
(

log(n)npb
(mδp)3/2

)2

→ 0, (29)

where (28) follows from δp
p1

= p1−pb
p1
≤ K, for some K,N , n > N, and exchange-

ability, and the last step follows from Lemma 6. Similarly for 1 +m ≤ i ≤ n,

P{

√
mδp

pb(1− pb)
|yi −

(Au)i

λ1/2
| > ε} ≤

Em|yi − (Au)i
λ1/2
|2

ε2
δp

pb(1− pb)

≤ C
E(n−m)|yi − (Au)i

λ1/2
|2

ε2
(30)

= C

∑n
i=1+m E|yi − (Au)i

λ1/2
|2

ε2
(31)

≤ C
E‖y − 1

λ1/2
Au‖2

ε2

≤ C
(

log(n)npb
(mδp)3/2

)2

→ 0,

where in (30), we use Condition 2, and in 31, we used exchangeability of ui,m+
1 ≤ i ≤ n.

Furthermore, we need the following lemma.

Lemma 8 Under Condition 3,
√

mδp
p1(1−p1)

(
‖x̄‖
λ̄1/2
− ‖x̄‖

λ1/2

)
x̄i → 0.

Proof:
It holds that

(1− ‖x̄‖
λ1/2

) =
λ− ‖x̄‖2

(λ1/2 + ‖x̄‖)λ1/2
(32)

Following approach in Athreya,

|λ1/2 − ‖x̄‖2| = |uTAu− ūTAū|
≤ |uTAu− ūTAū|+ |ūTAū− ūTAū|
≤ 2λ‖u− ū‖2,
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asymptotically almost surely (a.a.s).
From (32) we obtain∣∣∣∣1− ‖x̄‖λ1/2

∣∣∣∣ ≤ 2λ‖u− ū‖2

mδp(1 + (1−∆)1/2)(1−∆1/2)
(33)

≤ c∆2(1 +K∆) (34)

≤ c∆2 (35)

a.a.s, and hence δp
√

m
p1(1−p1)(1− ‖x̄‖

λ1/2
) ≤ C

(√
δp

log(n)npb
(mδp)3/2

)
→ 0, using Condi-

tion 3. �

3.2.2 Distribution of χ underH1

We use the CLT derived in Thereom 2 to derive an approximate CLT for our
test statistic χ = ‖u‖1 under H1. The distribution is approximate since we make
the assumption that the components of x are independently distributed and have the
Gaussian distribution derived in thereom 2 for finite n as opposed to the asymptotic
regime in which Theorem 2 holds.

Proposition 2 Under the assumption that the components of x are independent
and Gaussian with the distribution derived in theorem 2,

χ−µ(1)
σ(1)

is asymptotically
distributed as N (0, 1).
To simplify the presentation of the formulae we introduce the following notation.

Let r =
mδ2p

2p1(1−p1) , s =
mδ2p

2pb(1−pb) . Also, β1 =
√

δp
πre
−r +

√
δp
(
1− 2Q(

√
2r)
)
,

and β2 =
√

δp
πs . In addition we also define

E1 =
1√
π

(
δp
r

)3/2

M(−3

2
,
1

2
,−r)

E2 =
3

4

(
δp
r

)2

M(−2, 1/2,−r)

where M(a, b, z) is the confluent hypergeometric gamma function [29]. Then

µ(1) =
Nα1√
Nα2

and

σ2
(1) =

1

Nα2

(
C11 +

(
Nα1

2Nα2

)2

C22 −
Nα1

Nα2

C12

)
,

where Nα1 = mβ1 + (n−m)β2, and Nα2 = m
(
δp(1 + 1

2r )
)

+ (1− 2
π )

δp(n−m)
2s .

Finally,
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C11 = m

(
δp(1 +

1

2r
)− β2

1

)
+ (1− 2

π
)
δp(n−m)

2s

C12 = m

(
E1 − β1δp(1 +

1

2r
)

)
+
n−m√

4π

(
δp
s

)3/2

C22 = m

(
E2 − δ2

p(1 +
1

2r
)2

)
+

3(n−m)

4

(
δp
s

)2

The CLT result stated in Proposition 2 is approximate, since in deriving the result
we assumed that the components of the scaled dominant eigenvector are Gaussian
for finite n, whereas in truth the distribution is only Gaussian in the asymptotic
limit. On the other hand, from simulations we see that the distribution indeed
matches our prediction. We provide approximate expressions of µ(1) and σ2

(1) de-
rived above, using the fact that r = Ω(1), and s = Ω(1). For the parameter values
we choose under the Conditions 1,3 and 4, and using asymptotic approximations
for the Q-function and M(a, b, x), [29] we can show that for large n,

µ(1) ≈
√
m

(
1− 1

4r
− ρ

4s

)(
1 +

ρ√
πs

)
,

where ρ := n−m
m . For large n, the fractions in the braces are o(1) implying that

the expected value of χ is close to
√
m � µ(0). This agrees with our intuition

that asymptotically the eigenvector u is localized to the nodes belonging to the
subgraph. Similarly using the asymptotic approximation for M(a, b, x) for large
x [29], one can show that for large n, and m, δp satisfying Condition 3,

σ2
(1) ≈

1

2
(1− 2

π
)
ρ

s
(1− 1

2r
− ρ

2s
)

Thus we see that σ2
(1) ∼

ρ
s = 2(n−m)pb(1−pb)

(mδp)2
∼ (n−m)pb

(mδp)2
. This is interesting

because it says that the variance of χ under H1 is inversely proportional to the
strength of the signal mδp and in addition it is inversely proportional to ∆, the
spectral gap ratio, indicating that smaller the spectral gap, the harder it is to detect
the presence of the subgraph. In addition σ2

(1) is several orders of magnitude less
than µ(1) and so the concentration is quite sharp.

4 Simulations

We present simulations to validate the distributions of the statistic under H0

and H1. We choose values of m,n, δp and pb so that the Conditions 1, 2, 3 and 4
are satisfied. First we generate an ER graph of size n = 1500 and edge probability
pb = 0.15, and calculate the dominant eigenvector of its modularity matrix. We
compute its L1-norm and repeat the experiment 1e4 times and compute the empir-
ical CDF Fχ(χ), which is the solid blue line with “x” marker in figure 1. In the
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Figure 2: CDF of χ underH1.

same figure we plot the CDF of a Gaussian r.v with mean µ(0) and variance σ2
(0)

(red solid line with “o” marker). This verifies that χ indeed has a distribution close
to a Gaussian with the predicted mean and variance. Next we embed a subgraph
in this ER graph with m = 450 and δp = 0.25, and compute the L1-norm of the
dominant eigenvector and repeat the experiment 1e4 times to obtain the empirical
CDF. The results are plotted in figure 2. We indeed can observe that the empiri-
cal CDF (blue solid line with “x” marker), matches quite well with the Gaussian
CDF (red solid line with “o” marker whose mean and variance are µ(1) and σ2

(1)
respectively, thus corroborating our theoretical findings. Notice that because the
distributions are far apart in the parameter regime under consideration, we obtain
practically error free detection.

5 Conclusions and Future Work

In this work we study a test statistic χ which is the L1-norm of the dominant
eigenvector of the modularity matrix of the random graph and analyse its distri-
bution in the presence and absence of the anomalous subgraph. We show that the
distributions are sufficiently far apart so that error free detection is possible. In the
future we would like to improve the scaling of mδp with respect to n. As shown in
a few works, detecting subgraph nodes is not possible if this quantity scales slower
than θ(

√
npb) [3]. We expect that it must be possible to detect the presence of the

anomaly under a much more stringent regime, even though we cannot detect the
subgraph nodes. In addition we note that the results we derive on the distribution of
eigenvector components in this paper may be useful in performing a classification
test on the eigenvector components to detect the subgraph nodes.

References

[1] B. Miller, M. Beard, P. Wolfe, and N. Bliss, “A spectral framework for anoma-
lous subgraph detection,” Signal Processing, IEEE Transactions on, vol. 63,

19



no. 16, pp. 4191–4206, 2015.

[2] B. Miller, N. Bliss, and P. Wolfe, Subgraph detection using eigenvector L1
norms, 2010.

[3] B. Hajek, Y. Wu, and J. Xu, “Recovering a Hidden Community Beyond the
Spectral Limit in O(|E| log∗ |V |) Time,” arXiv preprint arXiv:1510.02786,
2015.

[4] V. Jethava, A. Martinsson, C. Bhattacharyya, and D. Dubhashi, “Lovász ϑ
function, svms and finding dense subgraphs,” The Journal of Machine Learn-
ing Research, vol. 14, no. 1, pp. 3495–3536, 2013.

[5] K. Rohe, S. Chatterjee, and B. Yu, “Spectral clustering and the high-
dimensional stochastic blockmodel,” The Annals of Statistics, pp. 1878–1915,
2011.

[6] D. L. Sussman, M. Tang, D. E. Fishkind, and C. E. Priebe, “A consistent
adjacency spectral embedding for stochastic blockmodel graphs,” Journal of
the American Statistical Association, vol. 107, no. 499, pp. 1119–1128, 2012.

[7] N. Alon, M. Krivelevich, and B. Sudakov, “Finding a large hidden clique
in a random graph,” Random Structures & Algorithms, vol. 13, no. 3-4,
pp. 457–466, 1998. [Online]. Available: http://dx.doi.org/10.1002/(SICI)
1098-2418(199810/12)13:3/4〈457::AID-RSA14〉3.0.CO;2-W

[8] R. R. Nadakuditi, “On hard limits of eigen-analysis based planted clique de-
tection,” in Statistical Signal Processing Workshop (SSP), 2012 IEEE. IEEE,
2012, pp. 129–132.

[9] T. Tao and V. Vu, “Random matrices: Universal properties of eigenvectors,”
Random Matrices: Theory and Applications, vol. 1, no. 01, p. 1150001, 2012.

[10] Z. Bai and G. Pan, “Limiting behavior of eigenvectors of large wigner matri-
ces,” Journal of Statistical Physics, vol. 146, no. 3, pp. 519–549, 2012.

[11] M. E. Newman and M. Girvan, “Finding and evaluating community structure
in networks,” Physical review E, vol. 69, no. 2, p. 026113, 2004.

[12] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing,
vol. 17, no. 4, pp. 395–416, 2007.

[13] C. Bordenave and A. Guionnet, “Localization and delocalization of eigen-
vectors for heavy-tailed random matrices,” Probability Theory and Related
Fields, vol. 157, no. 3-4, pp. 885–953, 2013.
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