
Towards a Cloud-Native Radio Access Network

Navid Nikaein, Eryk Schiller, Romain Favraud, Raymond Knopp, Islam Alyafawi
and Torsten Braun

Abstract Commoditization and virtualization of wireless networks are changing the
economics of mobile networks to help network providers, e.g. Mobile Network Op-
erator (MNO), Mobile Virtual Network Operator (MVNO), move from proprietary
and bespoke hardware and software platforms towards an open, cost-effective, and
flexible cellular ecosystem. In addition, rich and innovative local services can be
efficiently materialized through cloudification by leveraging the existing infrastruc-
ture. In this work, we present a Radio Access Network as a Service (RANaaS), in
which a Cloudified Centralized Radio Access Network (C-RAN) is delivered as a
service. RANaaS describes the service life-cycle of an on-demand, elastic, and pay
as you go RAN instantiated on top of the cloud infrastructure. Due to short deadlines
in many examples of RAN, the fluctuations of processing time, introduced by the
virtualization framework, have a deep impact on the C-RAN performance. While in
typical cloud environments, the deadlines of processing time cannot be guaranteed,
the cloudification of C-RAN, in which signal processing runs on general purpose
processors inside Virtual Machines (VMs), is a challenging subject. We describe an
example of real-time cloudifed LTE network deployment using the OpenAirInter-
face (OAI) LTE implementation and OpenStack running on commodity hardware.
We also show the flexibility and performance of the platform developed. Finally,
we draw general conclusions on the RANaaS provisioning problem in future 5G
networks.
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1 Introduction

Every day, we encounter an increasing demand for wireless data use due to a grow-
ing number of broadband-capable devices, such as 3G and 4G mobile telephones.
To satisfy a higher demand for data rates, service providers and mobile operators
expect upgrades and expansion of the existing network, but the required Capital Ex-
penditure (CAPEX) and Operational Expenditure (OPEX) are superior to the rev-
enue growth [9]. The high upgrade and maintenance costs are mainly caused by
the current architecture of mobile broadband networks, in which the Radio Access
Network (RAN) is built upon the integrated Base Transceiver Station (BTS) archi-
tecture. Since mobile broadband providers operate on a large scale, the installation
and maintenance of a large number of expensive BTSs over vast geographical areas
increase the cost dramatically. Moreover, the new trend of smaller cells will more
severely affect both the cost and maintenance problem in the future.

A cost-effective RAN solution, which meets the ever-increasing amounts of
mobile data traffic, has to fulfill a set of requirements. First, the new RAN
has to quickly and automatically scale with the variable amount of mobile
traffic. Second, it has to consume less power providing higher capacity and
network coverage at the same time. Finally, it should allow mobile operators
to frequently upgrade and operate the service over multiple/heterogeneous air-
interfaces.

Only about 15–20% of BTSs operating in the current RAN architecture are
loaded more than 50% (with respect to the maximum capacity), which makes the
current RAN architecture energy inefficient [8]. An emerging solution to reduce up-
grading costs and power consumption is the Centralized-RAN (C-RAN) [13, 17]
with resource sharing and exploitation of load patterns at a given geographical area.
The C-RAN solution is more adaptable to variations in user data traffic and unpre-
dictable mobility patterns than the current RAN. Moreover, it allows coordinated
and joint signal processing to increase the spectral efficiency. Finally, the C-RAN
represents a good match between the spatial-temporal traffic variations and available
computational resources and hence power consumption.

Since C-RAN signal processing is centralized, it allows us to apply more
sophisticated joint spatio-temporal processing of radio signals, which can increase
the overall spectral efficiency. The joint signal processing approach is considered
by European projects such as Sail [24], iJoin [14], and Mobile Cloud Networking
(MCN) [15]. This work has been carried out as part of the MCN vision towards
shifting radio communication networks to the cloud computing paradigm. Cloud
computing technologies based on virtualization allow us to lower the operational
costs even more by running the RAN through a) adoption of general purpose IT
platforms instead of expensive specific hardware, b) load balancing, and c) fast
deployment and resource provisioning. Running the RAN in the cloud environment
is not new. The benefit of such an approach has demonstrated 71% of power savings
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when compared to the existing system [7]. However, this approach comes at the
cost of higher software complexity.

Recent works [27] have shown the feasibility of LTE RAN functions of soft-
ware implementation over General Purpose Processors (GPPs), rather than the
traditional implementation over Application-Specific Integrated Circuits (ASICs),
Digital Signal Processors (DSPs), or Field-Programmable Gate Arrays (FPGAs).
Different software implementations of the LTE base station, which is referred to
as evolved Node B (eNB), already exist: a) Amarisoft LTE solution, which is a
pure-software featuring a fully-functional LTE eNB [2], b) Intel solutions featuring
energy efficiency and high computing performance using a hybrid GPP-accelerator
architecture and load-balance algorithms among a flexible IT platform [25] and
c) OpenAirInterface (OAI) developed by EURECOM, which is an open-source
Software Defined Radio (SDR) implementation of both the LTE RAN and the
Evolved Packet Core (EPC) [12].

This chapter describes recent progress in the C-RAN cloudification (running
software-based RAN in the cloud environment) based on the open source imple-
mentations and has the following organization. In Sect. 2, we introduce the concept,
architecture, and benefits of centralized RAN in the LTE Network setup. Section 3
presents the critical issues of cloudified RAN focusing on fronthaul latencies, pro-
cessing delays, and appropriate timing. Our performance evaluation of GPP-based
RAN is provided in Sect. 4 and Base-Band Unit (BBU) processing time is mod-
eled in Sect. 5. Possible architectures of cloudified RAN are described in Sect. 6.
The description of the cloud datacenter supporting C-RAN resides in Sect. 7. Sec-
tion 8 illustrates an example RANaaS with its life-cycle management. Finally, we
conclude in Sect. 9.

2 Centralized RAN in the LTE Network

C-RAN based networks are characterized by the decomposition of a BTS into two
entities namely Base-Band Unit (BBU) and Remote Radio Head (RRH). In C-RAN,
the RRH stays at the location of the BTS, while the BBU gets relocated into a cen-
tral processing pool, which hosts a significant number of distinct BBUs [27]. In
order to allow for signal processing at a remote BBU, a point-to-point high capacity
interface of short delay is required to transport I/Q samples (i.e., digitized analog
radio signals) between RRH and BBU. There are a few examples of link standards
meeting the required connectivity expectations such as Open Radio Interface (ORI),
Open Base Station Architecture Initiative (OBSAI), or Common Public Radio Inter-
face (CPRI). Even though many recent works have shown the feasibility of C-RAN
implementation and the C-RAN importance for the MNOs, there are still three open
questions that has to be thoroughly investigated upon a C-RAN system design.
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1. Dimensioning of the fronthaul capacity: a BBU pool has to support a
high fronthaul capacity to transport I/Q samples for a typical set of 10–
1000 base-stations working in the BBU–RRH configuration. Due to a low
processing budget of RAN, the upper bound for the maximum one-way
delay has to be estimated. Moreover, a very low jitter has to be maintained
for the clock synchronization among BBUs and RRHs.

2. Processing budget at the BBU: in the LTE FDD setup, the Hybrid auto-
matic repeat request (HARQ) mechanism with an 8 ms acknowledgment
response time provides an upper bound for the total delay of both fronthaul
latency and BBU processing time.

3. The real-time requirements of the Operating-System and
Virtualization-System: to successfully provide frame/subframe tim-
ings, the execution environment of the BBU has to support strict deadlines
of the code execution. Moreover, load variations in the cell (e.g.,
day/night load shifts) impose the requirement on the on-demand resource
provisioning and load balancing of the BBU pool.

There are also many other challenges in this field [6], such as front-haul mul-
tiplexing, optimal clustering of BBUs and RRHs, BBU interconnection, coopera-
tive radio resource management, energy optimization, and channel estimation tech-
niques. The following subsections focus on the critical issues, and present C-RAN
feasible architectures.

3 Critical Issues of C-RAN

In the following subsections, we evaluate the most important critical issues of the
C-RAN. We concentrate on the fronthaul capacity problem, BBU signal processing,
and real-time cloud infrastructure for signal processing [18].

3.1 Fronthaul Capacity

We start with the description of fronthaul requirements. A very fast link of low delay
is necessary as the BBU processes the computationally most heavy physical (PHY)
layer of the LTE standards. Many factors contribute to the data rate of the fronthaul,
which depends on the cell and fronthaul configurations. Eq. 1 calculates the required
data rate based on such configurations:
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C f ronthaul = 2×N ×M×F ×W ×C︸ ︷︷ ︸
cell configuration

× O×K︸ ︷︷ ︸
fronthaul configuration

, (1)

where N is the number of receiving/transmitting (Tx/Rx) antenna ports, M is the
number of sectors, F represents the sampling rate, W is the bit width of an I/Q
symbol, C number of carrier components, O is the ratio of transport protocol and
coding overheads, and K is the compression factor. The following table shows the
required fronthaul capacity for a simple set of configurations. An overall overhead
is assumed to be 1.33, which is the result of the the protocol overhead ratio of 16/15
and the line coding of 10/8 (CPRI case). One can observe that the fronthaul capac-
ity heavily depends on the cell configuration and rapidly grows with the increased
sampling rate, number of antennas/sectors and carrier components.

Table 1 Fronthaul capacity for different configurations

BW (MHz) N M F W (bits) O C K C f ronthaul (Mb/s)

1.4 1×1 1 1.92 16 1.33 1 1 81
5 1×1 1 7.68 16 1.33 1 1 326
5 2×2 1 7.68 16 1.33 1 1 653
10 4×4 1 15.36 16 1.33 1 1/2 1300
20 1×1 1 30.72 16 1.33 1 1 1300
20 2×2 3 30.72 16 1.33 1 1 7850
20 4×4 3 30.72 16 1.33 1 1 15600

Fig. 1 compares the fronthaul capacity between the RRH and the BBU pool for
20 MHz BW, SISO (max. 75 Mb/s on the radio interface). In the case without com-
pression, the fronthaul has to provide at least 1.3 Gb/s; when the 1/3 compression
ratio is used, the required fronthaul capacity drops to 0.45 Gb/s.

BBURRHUser

75Mbps 1.3-0.45Gbps

Fig. 1 Fronthaul capacity between the RRH and the BBU pool for 20 MHz BW, Single Input
Single Output (SISO). Minimum required fronthaul capacity without compression is estimated at
1.3 Gb/s, the deployment of 1/3 compression ratio decreases the required capacity to 0.45 Gb/s

Further data rate reduction can be obtained by an RRH offloading the BBU func-
tions. As shown in Fig. 2, the functional split can be provided by decoupling the
L3/L2 from the L1 (labelled 4), or part of the user processing from the L1 (la-
belled 3), or all user-specific from the cell processing (labelled 2), or antenna-
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specific from non-antenna processing (labelled 1), which is different for the Rx and
Tx chain.

Trade-offs have to be performed among the available fronthaul capacity, com-
plexity, and the resulted spectral efficiency. Regardless various possibilities in the
BBU functional split, the fronthaul should still maintain the latency requirement to
meet the HARQ deadlines. According to Chanclou et al. [5], the RTT between RRH
and BBU equipped with a CPRI link cannot exceed 700µs for LTE and 400µs for
LTE-Advanced. Jitter required by advanced CoMP schemes in the MIMO case is be-
low 65 ns as specified in 3GPP 36.104. Next Generation Mobile Networks (NGMN)
adopts the maximum fronthaul round-trip-time latency of 500µs [16]1. The propa-
gation delay, corresponding to timing advance, between RRH and UE, affects only
the UE processing time. The timing advance value can be up to 0.67 ms (equiva-
lent to maximum cell radius of 100 km). Consequently, this leaves the BBU PHY
layer only with around 2.3–2.6 ms for signal processing at a centralized processing
pool. The next subsection elaborates on the BBU processing budget in the LTE FDD
access method.

3.2 Processing budget in LTE FDD

This subsection describes the processing budget problem of the Frequency-Division
Long-Term Evolution (LTE-FDD). We concentrate on the Physical Layer (PHY)
and Medium Access Control (MAC). PHY is responsible for symbol level pro-
cessing, while MAC provides user scheduling and HARQ. The LTE FDD PHY is
implemented in the asymmetric way using Orthogonal Frequency-Division Multi-
ple Access (OFDMA) and Single-Carrier Frequency-Division Multiple Access (SC-
FDMA) on the downlink and uplink respectively. To control the goodput of the air
interface, the PHY uses various Modulation and Coding Schemes (MCSs). 3GPP
defines 28 MCSs with indexes between 0 and 27. A distinct MCS is characterized
by a specific modulation (i.e., QPSK, 16-QAM, 64-QAM having a varying number
of data bits per modulation symbol carried) and the so called code rate, which mea-
sures the information redundancy in a symbol for error correction purposes [3, 9].
The smallest chunk of data transmitted by an eNB through the LTE FDD PHY is
referred to as Physical Resource Block (PRB) and spans 12 sub-carriers (180 kHz)
and 7 modulation symbols (0.5 ms), which gives 84 modulation symbols in total.
In LTE FDD, we are provided with channels of 1.4 MHz, 3 MHz, 5 MHz, 10 MHz,
15 MHz, and 20 MHz bandwidth, which can simultaneously carry 6, 15, 25, 50, 75,
and 100 PRBs respectively. Therefore, the workload of signal processing in soft-
ware is heavily influenced by the MCS index, number of allocated PRBs, and the
channel width. Moreover, Hybrid Automatic Repeat Request protocol (HARQ) on

1 Different protocols have been standardized for the fronthaul, namely CPRI representing 4/5 of the
market, OBSAI representing 1/5 of the market, and more recently the Open Radio Interface (ORI)
initiated by NGMN and now by the European Telecommunications Standards Institute (ETSI)
Industry Specification Group (ISG).
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the MAC layer introduces short deadline for signal processing on the PHY. Due to
HARQ, every transmitted chunk of information has to be acknowledged back at the
transmitter to allow for retransmissions. In LTE-FDD, the retransmission time is
equal to THARQ of 8 ms. Let us briefly explain the retransmission mechanism. Every
LTE FDD subframe (subframe is later referred to as SF) lasts for 1 ms and con-
tains information chunks carried within PRBs. The HARQ protocol states that the
Acknowledgment (ACK) or Negative Acknowledgment (NACK) for a data chunk
received at subframe N has to be issued upon a subframe N+4 and decoded at the
transmitter before subframe N+8, which either sends new data or again negatively
acknowledged chunks. In the following subsection, we briefly summarize the BBU
functions.

3.3 BBU Functions

Fig. 2 illustrates the main RAN functions in both TX and RX spanning all the lay-
ers, which has to be evaluated to characterize the BBU processing time and assess
the feasibility of a full GPP RAN. Since the main processing bottleneck resides in
the physical layer, the scope of the analysis in this chapter is limited to the BBU
functions. From the figure, it can be observed that the overall processing is the sum
of cell- and user-specific processing. The former only depends on the channel band-
width and thus imposes a constant base processing load on the system, whereas the
latter depends on the MCS and resource blocks allocated to users as well as the
Signal-to-Noise Ratio (SNR) and channel conditions. The figure also shows the in-
terfaces where the functional split could happen to offload the processing either to
an accelerator or to an RRH.

To RF

To RRH
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IFFT 

CPin

Subcarrier 

mapping 

To RF

To RRH

S/P
CPout

FFT
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Cell processing

DL OFDMA (TX)
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Fig. 2 Functional block diagram of downlink and uplink for LTE eNB

To meet the timing and protocol requirements, the BBU must finish processing
before the deadline previously discussed at the beginning of Sect. 3.2. Each MAC
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Fig. 3 FDD LTE timing

PDU sent at subframe N is acquired in subframe N+1, and must be processed in
both RX and TX chains before subframe N+3 allowing ACK/NACK to be transmit-
ted in subframe N+4. On the receiver side, the transmitted ACK or NACK will be
acquired in subframe N+5, and must be processed before subframe N+7, allowing
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the transmitter to retransmit or clear the MAC PDU sent in subframe N. Fig. 3(a)
and 3(b) show an example of timing deadlines required to process each subframe on
the downlink and uplink respectively. Fig. 3(c) graphically represents the communi-
cation between the UE, RRH, and BBU. It can be observed that the total processing
time is 3 ms. The available processing time for a BBU to perform the reception and
transmission is upper-bounded by HARQ round trip time (THARQ), propagation time
(TProp.), acquisition time (TAcq.), and fronthaul transport time (TTrans.) as follows:

Trx +Ttx ≤ THARQ/2− (TProp.+TAcq.+TTrans.+TO f f set) , (2)

where THARQ = 8 ms, TProp. is compensated by the timing advance of the UE:
TProp. = 0, TAcq. is equal to the duration of the subframe: TAcq. = 1 ms, and there
is no BBU offset on the downlink: TO f f set = 0. Depending on the implementation,
the maximum tolerated transport latency depends on the BBU processing time and
HARQ period. The LTE FDD access method puts a particular focus on perfect tim-
ing of (sub-) frame processing. To accomplish this goal, the processing system has
to fulfill real-time requirements. The next subsection focuses on the real-time cloud
system design capable of C-RAN provisioning.

3.4 Real-time Operating System and Virtualization Environment

A typical general purpose operating systems (GPOS) is not designed to support
real-time applications with hard deadline. Hard real-time applications have strict
timing requirements to meet deadlines. Otherwise unexpected behaviors can occur
compromising performance. For instance, Linux is not a hard real-time operating
system as the kernel can suspend any task when a desired runtime has expired. As
a result, the task can remain suspended for an arbitrarily long period of time. The
kernel uses a scheduling policy that decides on the allocation of processing time to
tasks. A scheduler that always guarantees the worst case performance (or better if
possible) and also provides a deterministic behavior (with short interrupt-response
delay of 100µs) for the real-time applications is required. Recently, a new sched-
uler, named SCHED DEADLINE, is introduced in the Linux mainstream kernel
that allows each application to set a triple of (runtime[ns],deadline[ns], period[ns]),
where runtime ≤ deadline ≤ period.2 The scheduler is able to preempts the kernel
code to meet the deadline and allocates the required runtime (i.e., CPU time) to each
task period.

A good deadline scheduler can simplify C-RAN deployment, because Software-
based Radio providing RAN in software is a real-time application that requires hard
deadlines to maintain frame and subframe timing. In the C-RAN setting, the soft-
ware radio application runs on a virtualized environment, where the hardware is ei-
ther fully, partially, or not virtualized. Two main approaches exist to virtualization:

2 http://www.kernel.org/doc/Documentation/scheduler/
sched-deadline.txt
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virtual machines (e.g., Linux KVM3 and Xen4) or containers (e.g., LinuX Container
LXC5 and Docker6) as shown in Fig. 4. In a virtual machine (VM), a complete op-
erating system (guest OS) is used with the associated overhead due to emulating
virtual hardware, whereas containers use and share the OS and device drivers of the
host. While VMs rely on the hypervisor to requests for CPU, memory, hard disk,
network and other hardware resources, containers exploit the OS-level capabilities.
Similar to VMs, containers preserve the advantage of virtualization in terms of flex-
ibility (containerize a system or an application), resource provisioning, decoupling,
management and scaling. Thus, containers are lightweight as they do not emulate
a hardware layer (share the same kernel and thus application is native with respect
to the host) and therefore have a smaller footprint than VMs, start up much faster,
and offer near bare metal runtime performance. This comes at the expense of less
isolation and greater dependency on the host kernel.
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Hypervisor (Type 1)

Applications

Virtual MachineContainer
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Host OS

GLIBC / FS / Libs / Bins
Virtual Hardware

Kernel
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Hardware
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Fig. 4 Comparison of a virtual machine and container virtualized environment

Two other important aspects when targeting RAN virtualization are:

• I/O Virtualization: I/O access is a key for a fast access to the fronthaul interface
and to the hardware accelerators that might be shared among BBUs. In hyper-
visor approach to virtualization (i.e., VM), IO virtualization is done through the
hardware emulation layer under the control of hypervisor, where as in a container
this is materialized through device mapping. Thus, direct access to hardware is
easier in containers than in VMs as they operate at the host OS level. In a VM,
additional techniques might be needed (e.g., para-virtualization or CPU-assisted

3 http://www.linux-kvm.org
4 http://www.xenserver.org
5 http://linuxcontainers.org
6 http://www.docker.com
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virtualization) to provide a direct or fast access to the hardware. When it comes
to sharing I/O resources among multiple physical/virtual servers, and in particu-
lar that of radio front-end hardware, new techniques such as single/multi root I/O
virtualization (SR/MR-IOV) are required.

• Service composition of the software radio application: A radio application
can be defined as a composition of three types of service [15], atomic service
that executes a single business or technical function and is not subject to further
decomposition, composed service that aggregates and combines atomic services
together with orchestration logic, and support service that provides specific (often
common) functions available to all types of service. An atomic service in RAN
can be defined on per carrier, per layer, per function basis. For instance, a radio
application could be defined as a composition of layer 1 and layer 2/3 services
supported by a monitoring as a service.

4 OpenAirInterface based Evaluation of the Cloud Execution
Environment

Sect. 1 gives a brief insight into various software-based implementations of BBU.
This section, provides an overview of the OpenAirInterface (OAI), which is a key
software component in our studies. The main advantage of OAI is that it an open-
source project that implements the LTE 3GPP Release-10 standard. It includes a
fully functional wireless stack with PHY, MAC, Radio Link Control (RLC), Packet
Data Convergence Protocol (PDCP) and Radio Resource Control (RRC) layers
as well as Non-Access-Stratum (NAS) drivers for IPv4/IPv6 interconnection with
other network services [20]. Regarding the LTE FDD, OAI provides both the uplink
and downlink processing chains with SC-FDMA and OFDMA respectively (c.f.,
Sect. 3.2). For efficient numerical computing on the PHY, OAI uses specially opti-
mized SIMD Intel instruction sets (i.e., MMX/SSE3/SSE4). Fig. 5 presents the OAI
multi-threaded signal processing at the subframe level. As an example, the mobile
air-interface of a client terminal started transmitting subframe N-1 at time (a). The
decoder thread of the OAI lte-softmodem starts processing the subframe N-1 at (1)
after the subframe is entirely received at time instance (b). Due to the fact that the

 

Fig. 5 Processing orders in OAI
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encoding thread starting at (2) has to get input from the decoding thread to comply
with HARQ retransmission scheme, the decoding thread gets at most 2 ms to fin-
ish signal processing. Again, HARQ requires data to be acknowledged at subframe
N+3, therefore the encoding thread has to finish before (c) and receives at most 1 ms
for processing. This description, however, does not include RRH-BBU propagation
delays, which shorten the computing budget (both decoding and encoding) by a few
hundred microseconds. Summing up, the OAI decoder gets twice as much time as
the encoder; roughly 2 ms are allocated for decoding and 1 ms for encoding7.

In the following subsections, we evaluate the OAI execution performance on
different platforms.

4.1 Experiment Setup

Four set of different experiments are performed. The first experiment (c.f., Sub-
sect. 4.2) analyses the impact of different x86 CPU architecture on BBU processing
time, namely Intel Xeon E5-2690 v2 3 GHz (same architecture as IvyBridge), Intel
SandyBridge i7-3930K at 3.20 GHz, and Intel Haswell i7-4770 3.40 GHz. The sec-
ond experiment (c.f., Subsect. 4.3) shows how the BBU processing time scales with
the CPU frequency. The third experiment (c.f., Subsect. 4.4) benchmarks the BBU
processing time in different virtualization environments including LXC, Docker,
and KVM against a physical machine (GPP). The last experiment (c.f., Subsect. 4.5)
measures the I/O performance of virtual Ethernet interface through the guest-to-host
round-trip time (RTT).

All the experiments are performed using the OAI DLSCH and ULSCH simulators
designed to perform all the baseband functions of an eNB for downlink and uplink
as in a real system. All the machines (hosts or guests) operate Ubuntu 14.04 with
the low latency (LL) Linux kernel version 3.17, x86-64 architecture and GCC 4.7.3.
To have a fair comparison, only one core is used across all the experiments with the
CPU frequency scaling deactivated except for the second experiment.

The benchmarking results are obtained as a function of allocated PRBs, mod-
ulation and coding scheme (MCS), and the minimum SNR for the allocated MCS
for 75% reliability across 4 rounds of HARQ. Note that the processing time of the
turbo decoder depends on the number of iterations, which is channel-dependant.
The choice of minimum SNR for an MCS represents the realistic behavior, and may
increase number of turbo iterations and consequently causing high processing vari-
ation. Additionally, the experiments are performed at full data rate (from 0.6 Mb/s
for MCS 0 to 64 Mb/s for MCS 28 in both directions) using a single user with no
mobility, Single-Input and Single-Output (SISO) mode with Additive White Gaus-
sian Noise (AWGN) channel, and 8-bit log-likelihood ratios turbo decoder. Note
that if multiple users are scheduled within the same subframe on the downlink or

7 This rule was established empirically, because in full load conditions (i.e., all PRBs allocated in
the subframe; the same MCS for all PRBs) the OAI LTE FDD TX requires 2 times less processing
time than the OAI LTE FDD RX.
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uplink, the total processing depends on the allocated PRB and MCS, which is lower
than a single user case with all PRBs and highest MCS. Thus, the single user case
represents the worst case scenario.

The processing time of each signal processing module is calculated using times-
tamps at the beginning and at the end of each BBU function. OAI uses the rdtsc
instruction implemented on all x86 and x64 processors to get very precise times-
tamps, which counts the number of CPU tics since the reset. Therefore the process-
ing time is measured as a number of CPU tics between the beginning and end of a
particular processing function divided by the CPU frequency8.

To allow for a rigorous analysis, the total and per function BBU processing time
are measured. For statistical analysis, a large number of processing time samples
(10000) are collected for each BBU function to calculate the average, median, first
quantile, third quantile, minimum and maximum processing time for all the sub-
frames on the uplink and downlink.

4.2 CPU Architecture Analysis

Fig. 6 depicts the BBU processing budget in both directions for the considered Intel
x86 CPU architecture. It can be observed that the processing load increases with the
increase of PRB and MCS for all CPU architectures, and that it is mainly dominated
by the uplink. Furthermore, the ratio and variation of downlink processing load to
that of uplink also increases with the increase of PRB and MCS. Higher perfor-
mance (lower processing time) is achieved by the Haswell architecture followed by
SandyBridge and Xeon. This is primarily due to the respective clock frequency (c.f.,
Sect. 4.3, but also due to a better vector processing and faster single threaded perfor-
mance of the Haswell architecture9. For the Haswell architecture, the performance
can be further increased by approximately a factor of two if AVX2 (256-bit Single
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Fig. 6 BBU processing budget on the downlink (left) and uplink(right) for different CPU architec-
ture

8 https://svn.eurecom.fr/openair4G/trunk/openair1/PHY/TOOLS/time_
meas.h
9 http://en.wikipedia.org/wiki/Haswell_(microarchitecture)
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instruction multiple data (SIMD) compared to 128-bit SIMD) instructions are used
to optimize the turbo decoding and FFT processing.

4.3 CPU Frequency Analysis

Fig. 7 illustrates the total BBU processing time as a function of different CPU fre-
quencies (1.5, 1.9, 2.3, 2.7, 3.0, and 3.4 GHz) on the Haswell architecture. The most
time consuming scenario is considered with 100 PRBs and MCS 27 on both down-
link and uplink. In order to perform experiments with different CPU frequencies,
Linux ACPI interface and cpufreq tool are used to limit the CPU clock. It can be
observed that the BBU processing time scales down with the increasing CPU fre-
quency. The figure also reflects that the minimum required frequency for 1 CPU
core to meet the HARQ deadline is 2.7 GHz.
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Fig. 7 Total processing time as a function of the CPU frequency

Based on the above figure, the total processing time per subframe, Tsubframe, can
be modeled as a function of the CPU frequency [1]:

Tsubframe(x) [µs] = α/x ,

where α = 7810±15 for the MCS of 27 in both directions, and x is CPU frequency
measured in GHz.
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4.4 Virtualization Technique Analysis

Fig. 8 compares the BBU processing budget of a GPP platform with different vir-
tualized environments, namely LXC, Docker, and KVM, on the SandyBridge ar-
chitecture (3.2 GHz). While on average the processing time are very close for all
the considered virtualization environments, it can be observed that GPP and LXC
have slightly lower processing time variations than that of DOCKER and KVM,
especially when PRB and MCS increase.
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Fig. 8 BBU processing budget on the downlink (left) and uplink (right) for different virtualized
environments
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Fig. 9 BBU processing time distribution for downlink MCS 27 and uplink MCS 16 with 100 PRB

Fig. 9 depicts the Complementary Cumulative Distribution Function (CCDF) of
the overall processing time for downlink MCS 27 and uplink MCS 16 with 100
PRB10. It can be seen that the execution time is stable for all the platforms on the
uplink and downlink. The processing time for the KVM (hypervisor-based) has a
longer tail and mostly skewed to longer runs due to higher variations in the non-
native execution environments (caused by the host and guest OS scheduler). Higher
processing variability is observed on a public cloud with unpredictable behaviors,
suggesting that cares have to be taken when targeting a shared cloud infrastruc-
ture [1].

10 The CCDF plot for a given processing time value displays the fraction of subframes with exe-
cution times exceeding this value.
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4.5 I/O Performance Analysis

Generally, the fronthaul one-way-delay depends on the physical medium, technol-
ogy, and the deployment scenario. However in the cloud environment, the guest-
to-host interface delay (usually Ethernet) has to be also considered to minimize the
access to the RRH interface. To assess such a delay, bidirectional traffics are gener-
ated for different set of packet sizes (64, 768, 2048, 4096, 8092) and inter-departure
time (1, 0.8, 0.4, 0.2) between the host and LXC, Docker, and KVM guests. It can be
seen from Fig. 10 that LXC and Docker are extremely efficient with 4-5 times lower
round trip times. KVM has a high variations, and requires optimization to lower the
interrupt response delay as well as host OS scheduling delay. The results validate
the benefit of containerization for high performance networking.
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Fig. 10 Round trip time between the host and LXC, Docker, and KVM guests

4.6 New trends in C-RAN signal processing

This chapter is an attempt to analyze three critical issues in processing radio access
network functions in the cloud through modeling and measurements. The results
reveal new directions to enable a cloud-native radio access network that are outlined
below.

New functional split between BBU and RRH: To reduce the fronthaul data rate
requirements, optimal functional split is required between BBU and RRH. This de-
pends on the deployment on the cell load, spatial multiplexing (number of UEs / RE /
RRH, e.g. MU detection and CoMP), and scenario and can be dynamically assigned
between RRH and BBU. In addition some non-time critical function may be per-
formed at a remote cloud. Three principles must be considered while retaining the
benefit of coordinated signal processing and transmission, namely (1) minimize the
FH data rate, (2) minimize the split on the time-critical path, (3) no split of the de-
terministic functions. The proposed split is shown in Fig. 11. In TX chain, full PHY
layer can be moved from BBU to RRH (c.f. label 4 in Fig. 2) in order to minimize
the fronthaul capacity requirements as the operation of PHY layer remain determin-
istic as long as the L2/MAC layer provides transport blocks for all channels with
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the required pre-coding information. When it comes to RX chain, moving cell pro-
cessing to RRH seems promising as it halves the fronthaul capacity requirements.
Additional fronthaul capacity reduction can be obtained if part of user processing
can be dynamically assigned to RRH (i.e. log-likelihood ratio ) depending on the
number of UEs scheduled per resource elements and per RRH. The control plane
protocols may be moved to a remote cloud as they are not time-critical functions.
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Fig. 11 Functional split between BBU and RRH

Number of CPU cores per BBU: In LTE-FDD, the total RX (Uplink) + TX
(Downlink) processing should take less than 3 ms to comply with HARQ RTT, leav-
ing 2 ms for RX and 1 ms for TX. Because TX requires the output of RX to proceed,
the number of concurrent threads/cores per eNB subframe is limited to 3 even if each
subframe is processed in parallel. By analyzing processing time for a 1 ms LTE sub-
frame, 2 cores at 3 GHz are needed to handle the total BBU processing of an eNB.
One processor core for the receiver, assuming 16-QAM on the uplink, and approx-
imately 1 core for the transmitter processing with 64-QAM on the downlink, are
required to meet the HARQ deadlines for a fully loaded system. Processing load
is mainly dominated by uplink and increases with growing PRBs and MCSs [1, 4].
Furthermore, the ratio and variation of downlink processing load to that of uplink
also grows with the increase of PRB and MCS. With the AVX2/AVX3 optimiza-
tions, the computational efficiency is expected to double and thus a full software
solution would fit with an average of one x86 core per eNB. Additional processing
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gain is achievable if certain time consuming functions are offloaded to a dedicated
hardware accelerator.

Virtualization environment for BBU: When comparing results for different
virtualization environments, the average processing times are very close mak-
ing both container and hypervisor approach to RAN virtualization a feasible ap-
proach. However, the bare metal and LXC virtualization execution environments
have slightly lower variations than that of DOCKER and KVM, especially with
the increase of PRB and MCS increase. In addition, the I/O performance of con-
tainer approach to virtualization proved to be very efficient. This suggests that
fast packet processing (e.g. through DPDK) is required in hypervisor approach
to minimize the packet switching time, especially for the fronthaul transport net-
work. Due to the fact that containers are built upon modern kernel features such as
cgroups,namespace,chroot, they share the host kernel and can benefit from
the host scheduler, which is a key to meet real-time deadlines. This makes containers
a cost-effective solution without compromising the performance.

5 Modeling BBU Processing Time

We confirm with the results from Sect. 4 that the total processing time increases
with PRB and MCS, and that uplink processing time dominates the downlink. A
remaining analysis to study the contribution of each BBU function to the overall
processing time is to be done together with an accurate model, which includes the
PRB and MCS as input parameters. In this study, three main BBU signal process-
ing modules are considered as main contributors to the total processing including
(de-)coding, (de-)modulation, and iFFT/FFT. For each module, the evaluate pro-
cessing time is measured for different PRB, MCS, and virtualization environment
on the Intel SandyBridge architecture with CPU frequency of 3.2 GHz (c.f., Fig. 12).

The plots in Fig. 12 reveals that processing time for iFFT and FFT increase only
with the PRB while (de-)coding and (de-)modulation are are increasing as a func-
tion of both PRB and MCS. Moreover, the underlying processing platform adds a
processing offset to each function. It can be seen from different plots in Fig. 12 that
coding and decoding functions represent most of processing time on the uplink and
downlink chains, and that decoding is the dominant factor. The QPSK, 16-QAM,
and 64-QAM modulation schemes correspond to MCS 9, 16, and 27. The OAI im-
plementation speeds up the processing by including highly optimized SIMD integer
DSP instructions for encoding and decoding functions, such as 64-bit MMX, 128-bit
SSE2/3/4. However, when operating the OAI in a hypervisor-based virtualization,
some extra delay could be added if these instructions are not supported by the hard-
ware emulation layer (c.f., Fig. 4).

From Fig. 12, we observed that the downlink and uplink processing curves
have two components: dynamic processing load added to a base processing load.
The dynamic processing load includes user parameters, such as (de-)coding and
(de-)modulation, which is in linear relation to the allocated MCS and PRBs. Note
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Fig. 12 Contribution of (i-)FFT, (de-)modulation, and (de-)coding to the total BBU processing for
different PRB, MCS, and platforms

the (de-)coding functions depend also on the channel quality and SNR. The re-
maining user parameters, namely DCO coding, PDCCH coding, and scrambling,
are modelled as the root mean square error (RMSE) for each platform. The base
processing load includes iFFT/FFT cell-processing parameter for each PRB and the
platform-specific parameter relative to the reference GPP platform.

The fitted curve of the total processing time for GPP is illustrated in Fig. 13(a)
and the RMSE for all platforms in Fig. 13(b).

Given the results in Fig. 13, we propose a model that compute the total BBU
downlink and uplink processing time for different MCS, PRB, and underlying plat-
form, as indicated by the following formula.
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Fig. 13 Modeling BBU processing time

Tsubframe(x,y,w) [µs] = c[x]+ p[w]︸ ︷︷ ︸
base processing

+ ur[x]︸︷︷︸
RMSE

+ us(x,y)︸ ︷︷ ︸
dynamic processing

,

PRB, MCS, and underlying platform are represented by the triple (x,y,w). The p[w]
and c[x] are the base offsets for the platform and cell processing, ur[x] is the re-
minder of user processing, and us(x,y) is the specific user processing that depends
on the allocated PRB and MCS. We fit us(x,y) part linearly to a(x)y+ b(x), where
y is the input MCS, a and b are the coefficients. Table 3 and 2 provide the uplink
and downlink modelling parameters of equation 3 for a SandyBridge Intel-based ar-
chitecture with the CPU frequency set to 3.2 GHz. For different BBU configuration
(e.g., Carrier aggregation or Multiple-Input and Multiple-Output (MIMO)), CPU
architecture and frequency (c.f., Fig. 6 and 7), a and b has to be adjusted. In our
setup, the achieved accuracy using our model is illustrated given an example. Given
that PRB equals to 100, Downlink MCS to 27, Uplink MCS to 16, and performing
within LXC platform, the estimated total processing time is 723.5µs (111.4 + 7.4
+ 12×27 + 147 + 133.7) against 755.9µs on the downlink, and 1062.4µs (108.8 +
13.2 + 41.9×16 + 196.8 + 73.2) against 984.9µs on the uplink.



Towards a Cloud-Native Radio Access Network 21

Table 2 Downlink processing model parameters in us

x c p us(x,y) uc
GPP LCX DOCKER KVM a b GPP LCX DOCKER KVM

25 23.81 0 5.2 2.6 3.5 4.9 24.4 41.6 57.6 55.6 59.4
50 41.98 0 5.7 9.7 13 6.3 70 79.2 80 89.3 79.7
100 111.4 0 7.4 13 21.6 12 147 145.7 133.7 140.5 153

Table 3 Uplink processing model parameters in us

x c p us(x,y) uc
GPP LCX DOCKER KVM a b GPP LCX DOCKER KVM

25 20.3 0 5.4 4.8 8.8 11.9 39.6 18 25.6 30.6 32
50 40.1 0 6 9.2 15.8 23.5 75.7 39.6 55.6 59.8 42.9
100 108.8 0 13.2 31.6 26.6 41.9 196.8 77.1 73.2 93.8 80

6 Potential Architectures of C-RAN

While from the operators’ perspective such an architecture has to meet the scalabil-
ity, reliability/resiliency, cost-effectiveness requirements, from the software-defined
RAN, two key requirements have to be satisfied: (1) realtime deadline to maintain
both protocol, frame and subframe timing, and (2) efficient and elastic computa-
tional and I/O resources (e.g. CPU, memory, networking ) to perform intensive dig-
ital signal processing required, especially for different transmission schemes (beam-
forming, MIMO, CoMP, and Massive MIMO).

Broadly, three main choices are possible to design a RAN, each of which provide
a different cost, power, performance, and flexibility trade-offs.

• Full GPP: where all the processing (L1/L2/L3) functions are software-defined.
According to China Mobile, the power consumption of the OAI full GPP LTE
modem is around 70 W per carrier [7].

• Accelerated: where certain computationally-intensive functions, such as turbo
decoding and encryption/decryption, are offloaded to a dedicated hardware such
as an FPGA, GPU, and/or DSP. The remaining functions are software-defined
and performed on the host/guest OS. In this case, the power consumption can be
reduced to around 13–18 W per carrier.

• System-on-Chip: where the entire Layer 1 is performed in a dedicated hardware
(e.g. a SoC), and the layer 2 functions are run on the host/guest OS. This can
reduce the power consumption to around 8 W per carrier.

As shown in Fig. 14, the hardware platform can either be a full GPP or a hybrid.
In the later case, all or part of the L1 functions might be split and placed either lo-
cally at the BBU cloud infrastructure or remotely at the RRH unit. In either cases,
some of the L1 functions might be offloaded to dedicated accelerator. It can be seen
that a pool of base station (BS) can be virtualized inside the same (or different) cloud
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infrastructure and mapped to RF interface within the RRH gateway. A virtualized
RAN (vRAN) can communicate with core networks (CN) through a dedicated in-
terface (e.g. S1 in LTE), and with each other directly through another interface (e.g.
X2 in LTE). In addition, vRAN can rely on the same cloud infrastructure to provide
localized edge service such as content caching and positioning, and network APIs
to interact with the access and core networks [23]. Different service compositions
and chaining can be considered, ranging from all-in-one software radio application
virtualization to per carrier, per layer or per function virtualization [10]. The vir-
tualization technology can either be based on container or a hypervisor, under the
control of a cloud OS, managing the life-cycle of a composite service (orchestrator
logic) as well as provisioning the required resources dynamically.

Nevertheless, a full GPP approach to RAN brings the required flexibility in split-
ting, chaining, and placement of RAN functions while meeting the realtime dead-
lines along with the following principles [11, 19, 26]:

• NFV and Micro service Architecture: breaks down the network into a set of
horizontal functions that can be bundled together, assigned with target perfor-
mance parameters, mapped onto the infrastructure resources (physical or virtual),
and finally delivered as a service. This implies that micro virtualized network
functions (VNF) are stateless (services should be designed to maximize stateless-
ness even if that means deferring state management elsewhere) and composable
(services may compose others, allowing logic to be represented at different levels
of granularity; this allows for re-usability and the creation of service abstraction
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layers and/or platforms). In addition, they can be autonomous (the logic governed
by a service resides within an explicit boundary), loosely coupled (dependencies
between the underlying logic of a service and its consumers are limited to confor-
mance of the service contract), reusable (whether immediate reuse opportunities
exist, services are designed to support potential reuse), and discoverable (services
should allow their descriptions to be discovered and understood by (possibly) hu-
mans, service requesters, and service discovery that may be able to make use of
their logic).11

• Scalability: monitors the RAN events (e.g. workload variations, optimization,
relocation, or upgrade) and automatically provision resources without any degra-
dations in the required/agreed network performance (scale out/in).

• Reliability: shares the RAN contexts across multiple replicated RAN services to
keep the required redundancy, and distributes the loads among them.

• Placement: optimizes the cost and/or performance by locating the RAN services
at the specific area subjected to performance, cost, and availability of the RF
front-end and cloud resources.

• Multi-tenancy: shares the available spectrum, radio, and/or infrastructure re-
sources across multiple tenants (MNOs, MVNOs) of the same cloud provider,

• Real-time Service: allows to open the RAN edge service environment to autho-
rized third-parties to rapidly deploy innovative application and service endpoints.
It provides a direct access to real-time radio information for low-latency and
high-bandwidth service deployed at the network edge [23]. The Real-time Ser-
vice shall be automatically configurable to rapidly adjust to varying requirements
and utilization of the cloud environment (c.f., Sect. 7).

Table 4 compares the requirements of general-purpose cloud application against
the cloud RAN.

Table 4 General purpose cloud applications vs. C-RAN

Application GP-Cloud Computing Cloud-RAN

Data rate Mb/s, bursty Gb/s, stream
Latency / Jitter Tens of ms <1 ms, jitter in ns
Lifetime of data Long Extremely short
Number of clients Millions Thousands – Millions (IoT)
Scalability High (Micro-service and stateless) Low
Reliability Redundancy / load balancing Redundancy, offloading, load balancing
Placement Depends on the cost and perfor-

mance
Specific areas with Radio Frontend. De-
pends on the cost and performance.

Timescale (opera-
tion, recovery)

Non-realtime Realtime

11 Micro-service architecture is in opposition to the so-called “monolithic” ar-
chitecture where all functionality is offered by a single logical executable, see
http://martinfowler.com/articles/microservices.html. It has to be noted that the micro-service
architecture supports the ETSI NFV architecture [10], where each VNF can be seen as a service.
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7 Cloud architecture for the LTE RAN

In cloudified C-RAN, the BBU becomes software-based, hence the concept of C-
RAN cloudification, in which the BBU life-cycle is managed through a cloud op-
erating system and run over the cloud infrastructure, is sound and may become
an important business connection between mobile telephony operators and cloud
providers. Generally, a cloud provider delivers their (publicly available) service
in the form of three different flavors, namely Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS) [22], however, in
the scope of this work, we put a particular focus on the IaaS-based systems. In the
IaaS mode, a cloud operator delivers a resource as a so called Virtual Machines
(VM), which comes with processing power, RAM, and storage (optionally other
services too) accessible through the Internet. A user operating a VM system has
the experience of remote access to an ordinary computer, which is accomplished
through a virtualization procedure. Virtualization, which is enabled through a spe-
cial software layer called a hypervisor, allows us to simultaneously run many VMs
(instances) on a single physical cloud server.

When a Cloud-RAN is deployed on a public cloud, then multiple instances com-
pete for the same infrastructure (e.g., computing power, storage, RAM). Hence, in
an ordinary setup, we cannot be provided with deadlines for required real-time com-
puting. It is therefore necessary to work out new organizational models of publicly
available data centers as currently cloud providers do not offer real-time support in
their virtual environment. Here, we briefly present our efforts to allow for real-time
support in IaaS clouds. We start with an OpenStack installation of a well established
cloud orchestration system. OpenStack looks after computing power, storage, and
networking resources of the cloud infrastructure (server pools) and orchestrates the
execution of VMs including (re-) configuration upon initialization or a user request.

The response time of the full-virtualization KVM-based OpenStack system did
not fully satisfy our requirements due to unpredictable processing delays. We there-
fore decided to modify the host system (cloud compute servers) by installing a
low latency kernel and replace the default virtualization technique with the Linux
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Fig. 15 OpenStack management architecture
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Containers (LXC) plugin of OpenStack (c.f., Fig. 15). LXC is Operating System
Level virtualization providing high performance as all CPU instructions are na-
tively executed. Moreover, it allows us for the real-time process prioritization on
the guest operating system (VM). In our case, the lte-softmodem OAI application
is prioritized real-time within the LXC container using the SCHED DEADLINE
or SCHED FIFO schedulers provided by the low latency Linux kernel. Good per-
formance of RAN satisfied through LXCs could have a big impact on the security
of cloud infrastructure as LXCs do not provide a good separation of VMs from
physical servers and should be avoided in the case of less time-critical applications
such as EPC, HSS, etc. Therefore a heterogeneous cloud infrastructure maintaining
both real-time (e.g., LXC-based) and general-purpose (e.g., KVM-based) comput-
ing regions12 can properly serve purposed of the MNO. The region’s workload is
not know in advance, therefore the cloud provider has to be provided with flexibility
to on-demand re-program the infrastructure when required, e.g., to activate a larger
number of real-time compute nodes for RAN if the current workload exceeds the ca-
pacity of the real-time infrastructure, but the overall cloud-global capacity can still
withhold the workload when reconfigured (i.e., adapting the size of real-time and
non-real-time regions). To this end, we can employ JUJU13 and Metal As a Service
(MAAS)14 to program physical cloud compute nodes and provide the concept of
programmable cloud that dynamically adjusts the cloud region size.

8 C-RAN Prototype

In this section, we demonstrate a RANaaS proof-of-concept (PoC) (c.f., the archi-
tecture presented in Fig. 16). Our cloud infrastructure consists of the OpenStack or-
chestrating software with appropriately designed compute servers. Normally, Open-
Stack manages large pools of resources, but in our example, it controls a local nano
data-center developed to execute RANaaS. Our compute node is deployed on a com-
modity computer running Ubuntu 14.04 with the low latency Linux kernel version
3.17, while the OpenStack installation uses the LXC plugin on compute nodes to
support LXC virtualization. For cloud orchestration OpenStack developed a Heat
module that provides a human- and machine-accessible service for the management
of the entire life-cycle of a virtual infrastructure and applications. This orchestration
engine relies on text-based templates, called Heat Orchestration Templates (HoTs),
to manage multiple composite cloud applications and organize them as a stack of
virtualized entities (e.g. network, LXCs) called the Heat stack.

Following the LTE protocol stack15, our demonstration has to instantiate an E-
UTRAN part, evolved packet core (EPC), and home subscriber server (HSS). The

12 A cloud region is an organizational unit of the cloud containing a pool of cloud workers with
specific properties such as the same configuration or geographical location.
13 http://www.ubuntu.com/cloud/tools/juju
14 http://www.ubuntu.com/cloud/tools/maas
15 Here, the work stack does not refer to Heat and should be understood as a protocol stack.



26 Nikaein, Schiller, et al.

Standard Hardware

(CPU, Memory, NIC)

Low Latency OS

(DEADLINE SCHED)

OpenStack

Keystone Identity

Heat Orchestrator

Neutron Networking

Glance Imaging 

Nova Compouting

LXC

GLIBC / FS / libs /bins

Web Services

Resource Provisioning

     LXC Virtualization

OAI LTE eNB App

(DEADLINE SCHED API)

HEAT Stack

GLIBC / FS / libs /bins

LXC Virtualization

OAI LTE EPC App

GLIBC / FS / libs /bins

LXC Virtualization

OAI LTE HSS App

GLIBC / FS / libs /bins

Network Provider 

(MNO/MVNO)
S1/S6/X2

Guest-only

SGI

External

MGT

External

OVS

RF

(EXMIMO2, B210)

Service Orchestrator

Service Manager

User Interface

4G-enabled 

apps

LT
E

a
a

S
R

R
H

RANaaSSMSO EPCaaSSMSO

IMSaaSSMSO HSSaaSSMSO

Fig. 16 RANaaS prototype (left) and hardware setup (right)

EPC consists of a mobility management entity (MME) as well as a Serving and
Packet data network Gateway (S/P-GW). Mobile Operators (e.g., MNO, MVNO)
use the User Interface (UI) to manage the life-cycle of RANaaS. The Service Man-
ager (SM) component receives user queries from the UI and manages the cloud
execution through the Service Orchestrator (SO) component, which leverages the
use of the Heat API for cloud orchestration.

In the demonstrated scenario, a HoT file describes the whole virtual infrastruc-
ture including the LTE network elements as well as the required network setup tai-
lored to a specific business case. Using the HoT template, Heat manages the service
instantiation of every required LTE network function implemented in OAI spread
among multiple VMs. As we previously explained, RANaaS has strict latency and
timing requirements to achieve a required LTE frame/subframe timing. To this end,
we use the SCHED DEALINE Linux scheduler to allocates the requested runtime
(i.e., CPU time) upon every sub-frame to meet the deadline.

Listing 1 presents an example HoT file, which instantiates the RAN as a Service
(RANaaS) stack. The template is provided to Heat, which automatically spawns a
VM using an arbitrary image previously uploaded to OpenStack (enb-1 provides the
installation of the OAI lte-softmodem), attaches the network (e.g., PUBLIC NET
defined in OpenStack), and pre-configures the VM through a bash script provided
as user-data. Other VMs illustrated in Fig. 16 could be instantiated in a similar way.
Heat allows us to use previously defined resource attributes. For instance, if an eNB
requires the address of an HSS, one can reference to it through the get attr Heat
function, i.e., get attr: [EPC, first address], where the EPC is a previously defined
resource and first address is the attribute of the resource (an IP address of the first
interface). Consequently, the whole LTE as a Service (LTEaaS) containing an HSS,
EPC, and eNBs can be instantiated from a single HoT file with one request to Heat.

Listing 1 The LTEaaS HoT file

h e a t t e m p l a t e v e r s i o n : 2013−05−23
d e s c r i p t i o n : LTEaaS
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parameters :
key name:

type : s t r i n g
d e s c r i p t i o n : >

Name of a KeyPair to enable
SSH a c c e s s to the i n s t a n c e

d e f a u l t : c l o u d k e y
r e s o u r c e s :

HSS: . . .
MME: . . .
S+P−GW: . . .
eNB:

type : OS::Nova:: S e r v e r
p r o p e r t i e s :

image: enb−1
f l a v o r : eNB . l a r g e
key name: c l o u d k e y
networks : [{ ne twork : PUBLIC NET } ]
u s e r d a t a :

s t r r e p l a c e :
t empla te : |
#!/bin/bash
MY IP= ‘ ip addr show dev eth0 | \
awk −F’[ /]*’ ’/inet /{print $3}’ ‘
sed − i ’s#MY_IP_ADDRESS_REPLACE#’$MY IP’#g’ \
enb . band7 . tm1 . usrpb210 . conf
sed − i ’s#MME_IP_ADDRESS_REPLACE#’$MME IP’#g’ \
enb . band7 . tm1 . usrpb210 . conf
. / b u i l d o a i . bash −−eNB −w USRP > / tmp / o a i . l o g
. / l t e −softmodem −O \
enb . band7 . tm1 . usrpb210 . conf

params:
$MME IP: { g e t p a r a m : mme ip }

LTEaaS describes the service life-cycle of an on-demand, elastic, pay as you go
RAN that is running on top of the cloud infrastructure. We believe that life-cycle
management is a key for successful adoption and deployment of C-RAN and related
services (e.g. MVNO as a Service). It is a process of network design, deployment,
resource provisioning, operation and runtime management, and disposal as shown
in Fig. 17. In this figure, SM/SO indicates Service Manager/Service Orchestrator,
while Keystone and Heat Orchestrator are OpenStack services; the box OpenStack
refers to other OpenStack services such as Compute, Storage, Networking, etc. With
the help of the UI, the MNO first designs the HoT and spawns other actions such as
Deploy, Provision, Manage, and Disposal, which are then managed by the SM/SO
that directly communicates with the Heat Orchestrator.
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8.1 LTEaaS: eNB resource provisioning

This section presents the performance study of the time-critical eNB application
running in the LTE as a Service (LTEaaS) architecture. We conducted several ex-
periments particularly relying on the LTE eNB and UE implementation [19, 21] us-
ing the OAI platform that implements standard compliant 3GPP protocol stack. We
deploy the LTEaaS on the cloud center as shown in Fig. 16 and as described above.
The parameters of the real-time OAI eNB are the following: FDD 10 MHz channel
bandwidth (50 PRBs) in SISO mode over band 7. MCS are fixed to 26 in downlink
and 16 in uplink to produce high processing load. The eNB sends grants to the UE
for UL transmission only in downlink SF #0, 1, 2 and 3. Useful UL SFs are then SF
# 4, 5, 6, 7. The others UL SFs can possibly be used for HARQ retransmissions.

We compare the feasibility and performance of the proposed LTEaaS ar-
chitecture using two different linux OS schedulers: namely SCHED FIFO (not
SCHED OTHER) or SCHED DEADLINE (low-latency policy) while running the
eNB in LXC containers. Linux cgroups and cpu-sets are used to control the CPUs
cores accessible to the container. Bandrich C500, a commercial LTE UE dongle is
connected to the instantiated eNB using the classical LTE over-the-air attachment
procedure. We measure the uplink goodput (data-rate over a period of a second)
for each scheduler applying to the eNB and for different numbers of available CPU
cores (CPU is i7-3930k 3.2 GHz with hyper-threading and turbo mode disabled).
The measurement lasts 120 seconds while iperf is generating UDP traffic between
the UE and a local server connected to the EPC.

Fig. 18 and Fig. 19 present the complementary cumulative distribution function
of the running time of each RX thread at the eNB, when using SCHED FIFO or
SCHED DEADLINE with 3 or 2 CPU cores available. Each of these threads cor-
responds to a specific UL SF. It should be noted that those threads are not the only
ones running, as there are also a management thread and a TX thread for each DL
SF. In Fig. 18, the value (1) of 0.65 ms indicates the BBU and protocol processing
time of a fully loaded SF (most of the time for SFs #4, 5, 6 and 7 shown as solid
lines in the figure, from time to time corresponding to HARQ retransmission for
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Fig. 18 OAI LTE soft-modem running on 3 CPU cores
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Fig. 19 OAI LTE soft-modem running on 2 CPU cores

the other subframes), while the increase (2) of 0.2 ms is related to the RLC packet
reassembly event that also triggers the PDCP integrity check.

Both schedulers behave similarly in this scenario when 3 CPU cores are avail-
able as shown on Fig. 18. There is no missed deadline in either case, meaning that
the processing power is sufficient to directly execute the required threads in their
constrained time (2 ms after receiving RF samples for RX, and 1 ms for generating
the RF samples for TX).

When only 2 CPU cores are available, the results change for the FIFO scheduler
as shown in Fig. 19. Using the low-latency scheduler, the results are similar than
with 3 CPU cores and there is no missed subframes. But using the FIFO scheduler,
it can be seen that the SF processing time is sometimes larger than 2 ms as indicated
by the tails of the curves and during the 120 seconds transfer, there are 708 missed
SFs. It represents a loss of 0.6% of the SFs due to late scheduling. Fig. 20 shows
that while this loss might seem small, it impacts the average uplink goodput with
a more than 6% decrease. The DL channel should present a similar behavior when
full loaded.
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The results of this experiment are in line with what was presented throughout
this chapter and underlines that adequate hardware resources provisioning (pro-
grammable cloud concept) and scheduling are mandatory to achieve high perfor-
mances in cloud architectures.
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Fig. 20 Impact of the execution environment on the LTE soft-modem uplink performance

9 Conclusions

In this chapter, we have studied and analyzed several important aspects of the radio
access network cloudification. First, we have presented C-RAN as a cost effective,
scalable, energy efficient, and flexible service for MNOs and MVNOs. Second, cur-
rent requirements of the LTE standard were translated in terms of various require-
ments for C-RAN including fronthaul properties, processing software latencies, and
real-time capabilities of the operating system. Third, by using OAI, we have eval-
uated C-RAN in various execution environments such as dedicated Linux, LXC,
and KVM. We drew new conclusions on the RRH-based BBU offloading and vir-
tualization environment for C-RAN; we highlighted advantages of containerization
over virtualization in C-RAN provisioning. Fourth, we described the properties of
RANaaS focusing on the radio-processing organization and micro-service, multi-
tenant architecture; we pointed out main differences between RANaaS and general
purpose cloud computing. Finally, we described the cloud architecture for LTE RAN
and focused on the C-RAN prototype and its life-cycle management.
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