
Efficient Techniques for Publicly Verifiable Delegation
of Computation

Kaoutar Elkhiyaoui, Melek Önen, Monir Azraoui, Refik Molva
EURECOM

Campus SophiaTech
Biot Sophia Antipolis, France

{elkhiyao, onen, azraoui, molva}@eurecom.fr

ABSTRACT

With the advent of cloud computing, individuals and companies
alike are looking for opportunities to leverage cloud resources not
only for storage but also for computation. Nevertheless, the re-
liance on the cloud to perform computation raises the unavoid-
able challenge of how to assure the correctness of the delegated
computation. In this regard, we introduce two cryptographic pro-
tocols for publicly verifiable computation that allow a lightweight
client to securely outsource to a cloud server the evaluation of high-
degree univariate polynomials and the multiplication of large ma-
trices. Similarly to existing work, our protocols follow the amor-
tized verifiable computation approach. Furthermore, by exploiting
the mathematical properties of polynomials and matrices, they are
more efficient and give way to public delegatability. Finally, be-
sides their efficiency, our protocols are provably secure under well-
studied assumptions.

1. INTRODUCTION
Cloud computing is increasingly becoming an attractive option

for SMEs interested in minimizing their expenditures by outsourc-
ing their data and computations. However, the lack of security still
deters the wide adoption of cloud technology. As a matter of fact,
cloud clients lose control over their data once outsourced, and as
such they can neither thwart nor detect cloud servers’ misbehavior.

Recently, researchers [6, 11, 13, 17, 19] introduced solutions for
verifiable outsourced computation whereby a client delegates the
execution of computationally demanding operations to the cloud,
and further receives the result with some cryptographic proofs as-
serting the correct execution of requested operations. By defini-
tion, these cryptographic proofs fulfill the classical security require-
ments of correctness and soundness: They neither yield a situation
in which a server is falsely accused of misbehavior, nor make the
client accept an incorrect result.

In addition to the previously mentioned security requirements,
another key prerequisite that should be taken into account when de-
signing solutions for verifiable computation is the efficiency of the
proof verification at the client: For a solution to be viable, the com-
putational and the storage complexity of the verification process

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’16, May 30-June 03, 2016, Xi’an, China

c© 2016 ACM. ISBN 978-1-4503-4233-9/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897845.2897910

should naturally be lower than the complexity of the outsourced
function. This requirement thus seeks solutions that minimize the
computational and the storage load at lightweight clients, in the aim
of not offsetting the advantages of cloud computing.

In order to be able to check the proof of correct computation ef-
ficiently, the client generates a verification key: While some solu-
tions [6, 13] keep this verification key secret, in which case only the
client verifies the correctness of the outsourced computation, other
proposals [11, 17–19] allow public verifiability which empowers
any third party to verify the validity of the outsourced computation.

Besides public verifiability, several schemes achieve public del-

egatability [17–19]. As the name implies, public delegatability
enables any third party to submit computation queries to the out-
sourced function and verify the returned results. Such a property
comes in handy in scenarios where an organization outsources the
computation of a function to a cloud server, and still wants its em-
ployees to delegate the evaluation of that function without exchang-
ing or sharing any secret keys.

In this paper, we focus on the public verifiability and delegata-
bility of two specific functions, namely, high-degree polynomial
evaluation and matrix multiplication. Similarly to existing work,
we adopt the amortized model [13]: In this model, the client is
required to execute a one-time expensive pre-processing operation
that is leveraged later for efficient verifications. Furthermore, we
suitably tailor the algebraic properties of polynomials and matrices
to devise cryptographic solutions that compare favorably to exist-
ing work, as they offer better performances and contrary to [11, 20]
enable public delegatability.
Contributions:

‚ We first propose a publicly verifiable polynomial evaluation
solution whose efficiency derives from the Euclidean divi-

sion of the polynomial to be outsourced by some randomly
generated small-degree polynomial. The basic idea of our
solution is that the outsourced polynomial and the quotient
polynomial are used to produce the proof of correct com-
putation, whereas the divisor and the remainder polynomi-
als are used together to verify the correctness of the evalu-
ation. Thanks to the properties of Euclidean division, our
proposal ensures public delegatability while enjoying better
performances than existing work [17].

‚ Secondly, we propose a solution for publicly verifiable ma-
trix multiplication that exploits the associative property of
multiplication in the ring of matrices. As such our solution
outperforms the schemes in [11, 20] while ensuring the addi-
tional feature of public delegatability.

‚ Both of our solutions are proved to be correct and sound.
Their soundness is proved under the t-strong Diffie Hellman

(t-SDH) and co-computational Diffie-Hellman (co-CDH) as-
sumptions.

The rest of the paper is organized as follows. Section II formally
defines publicly verifiable computation and the underlying security
model. The proposed publicly verifiable polynomial evaluation and
matrix multiplication solutions are described and evaluated in Sec-
tions III and IV respectively. Finally, we review the state of the art
in section V.

2. BACKGROUND

2.1 Publicly Verifiable Computation
According to [18], a publicly verifiable computation scheme em-

powers a client to outsource the evaluation of a function to a poten-

tially malicious server while meeting the requirements of:

‚ public delegatability: Any querier (not necessarily the client)
can submit inputs to evaluate the outsourced function;

‚ public verifiability: Any verifier (not necessarily the client or
the querier) can assess the correctness of the server’s results.

Thus, Parno et al. [18] formally define publicly verifiable compu-
tation schemes by the following algorithms:

Setupp1κ, fq Ñ pparam,PKf,EKfq It is a randomized algorithm
executed by the client. It takes as input the security parameter
1κ and a description of the function f to be outsourced, and
outputs a set of public parameters param that will be used by
subsequent algorithms, a public key PKf, and an evaluation

key EKf.

ProbGenpx,PKfq Ñ pσx,VKxq Given an input x in the domain
Df of the outsourced function f and public key PKf, the
querier calls this algorithm to produce an encoding σx of in-
put x and a public verification key VKx.

Computepσx,EKfq Ñ σy On input of the encoding σx and the
evaluation key EKf, the server runs this algorithm to compute
an encoding σy of f’s output y “ fpxq.

Verifypσy,VKxq Ñ outy A verifier operates this deterministic al-
gorithm to check the correctness of the result σy supplied by
the server on input σx. More precisely, this algorithm first
decodes σy which yields a value y, and then uses the pub-
lic verification key VKx associated with the encoding σx to
decide whether y is equal to the expected output fpxq. If so,
Verify outputs outy “ y meaning that fpxq “ y; otherwise
it outputs an error outy “K.

Besides the properties of public delegatability and verifiability,
a publicly verifiable computation scheme should also ensure the
security properties of correctness and soundness.

2.2 Correctness
A publicly verifiable computation scheme for a family of func-

tions F is deemed to be correct, if whenever an honest server ex-
ecutes the algorithm Compute to evaluate a function f P F on an
input x P Df, this algorithm always yields an encoding σy that will
be accepted by algorithm Verify (i.e. Verifypσy,VKxq Ñ fpxq).

Definition 1. A publicly verifiable computation scheme for a family

of functions F is correct, iff for any function f P F and any input

x P Df:

If ProbGenpx,PKfq Ñ pσx,VKxq and Computepσx,EKfq Ñ
σy , then:

PrpVerifypσy ,VKxq Ñ fpxqq “ 1

Algorithm 1: Soundness experiment of publicly verifiable
computation

pparam,PKf,EKfq Ð OSetupp1κ, fq;
A Ñ x;
pσx,VKxq Ð OProbGenpx,PKfq;
A Ñ σy;
outy Ð Verifypσy ,VKxq;

2.3 Soundness
A publicly verifiable computation scheme for a family of func-

tions F is said to be sound, if for any f P F and for any x P Df,
a server cannot convince a verifier to accept an incorrect result.
Notably, a verifiable computation scheme is sound if it assures
that the only way a server generates a result σy that will be ac-
cepted by a verifier as a valid encoding of the evaluation of some
function f P F on an input x, is by correctly computing σy (i.e.
σy Ð Computepσx,EKfq).

Similarly to [18], we capture the adversarial capabilities of an
adversary (i.e. malicious server) A against a publicly verifiable
computation scheme for a family of functions F through a sound-

ness experiment (cf. Algorithm 1).
In this experiment, adversary A first accesses the output of algo-

rithm Setup by calling oracle OSetup. When queried with a security
parameter 1κ and a description of a function f P F , oracle OSetup

returns the set of public parameters param, public key PKf, and
evaluation key EKf.

Afterwards, adversary A outputs a challenge input x P Df and
submits the latter together with public key PKf to oracle OProbGen.
Oracle OProbGen accordingly executes algorithm ProbGen and out-
puts a pair of matching encoding σx and public verification key
VKx.

Finally, adversary A generates an encoding σy and runs algo-
rithm Verify on the pair pσy ,VKxq.

Let outy denote the output of algorithm Verify at the end of
the experiment. We say that adversary A succeeds in the sound-
ness experiment of publicly verifiable computation if outy ‰K and
outy ‰ fpxq.

Definition 2. Let ΠA,f denote the probability that adversary A suc-

ceeds in the soundness experiment of publicly verifiable computa-

tion (i.e. Prpouty ‰K ^ outy ‰ fpxqq).

A publicly verifiable computation scheme for a family of func-

tions F is sound, iff: For any adversary A and for any f P F ,

ΠA,f ď ǫ and ǫ is a negligible function in the security parameter κ.

3. PUBLICLY VERIFIABLE POLYNOMIAL

EVALUATION

3.1 Protocol Overview
The solution we propose for publicly verifiable evaluation of

polynomials draws upon the basic properties of Euclidean division

of polynomials. Specifically the fact that for any pair of polyno-
mials A and B ‰ 0 of degree d and 2 respectively, the Euclidean
division of A by B yields a unique pair of polynomials Q and R
such that: i.) A “ QB ` R and ii.) the degree of quotient poly-
nomial Q equals d ´ 2, whereas the remainder polynomial R has
a degree ď 1.

Now a client which would like to outsource the evaluation of
a polynomial A of degree d, first defines a polynomial BpXq “
X2 ` b0 for a randomly chosen b0, and divides A by B to get the

quotient polynomial QpXq “
řd´2

i“0
qiX

i and the remainder poly-
nomial RpXq “ r1X `r0. Next, the client outsources polynomial
A together with quotient polynomial Q to the server and publishes
the public key PKA “ pgb0 , gr1 , gr0q. Consequently, whenever a
querier wants to evaluate polynomial A at point x, it first computes
and advertises the public verification key VKx “ pgBpxq, gRpxqq,
and then transmits x to the server. The latter in turn computes
y “ Apxq and generates the proof π “ Qpxq. Given the server’s
output py, πq, a verifier checks whether gy “ pgBpxqqπgRpxq.

The efficiency of the verification in the solution sketched above
stems from the fact that B and R are small-degree polynomials.
Indeed, to verify the correctness of a result py, πq provided by the
server on an input x, the verifier performs a small and constant
number of computations as opposed to carrying out Opdq opera-
tions to evaluate polynomial A.

It is clear that the soundness of such a protocol relies on the se-
crecy of polynomials B and R. However since B is a two-degree
polynomial, the secrecy of these two polynomials can be easily
compromised by disclosing the quotient polynomial Q. To remedy
this shortcoming, the client encodes polynomial Q using an addi-

tively homomorphic one-way encoding. Namely, each coefficient
qi of polynomial Q is encoded as hqi . In this manner, we allow the
server to compute the proof π “ hQpxq of correct execution while
ensuring the confidentiality of polynomials B and R.

Finally, we use bilinear pairings to let verifiers assess the correct-
ness of the server’s results. Accordingly, we show that our solution
is sound under the td{2u-Strong Diffie-Hellman (td{2u-SDH) as-
sumption.

Before describing our protocol in full details, we recall the defi-
nitions of bilinear pairings and the SDH assumption.

3.2 Bilinear Pairings

Definition 3 (Bilinear Pairing). Let G1, G2 and GT be three cyclic

groups of the same finite order p.

A bilinear pairing is a map e: G1 ˆ G2 Ñ GT , with the follow-

ing properties:

1. e is bilinear: @ α, β P Zp, g P G1 and h P G2, epgα, hβq “
epg, hqαβ;

2. e is computable: There is an efficient algorithm to compute

epg, hq for any pg, hq P G1 ˆ G2;

3. e is non-degenerate: If g is a generator of G1 and h is a

generator of G2, then epg, hq is a generator of GT .

Definition 4 (t-SDH Assumption). Let G1, G2 and GT be three

cyclic groups of the same finite prime order p such that there exists

a bilinear pairing e : G1 ˆ G2 Ñ GT .

We say that the t-Strong Diffie-Hellman assumption (t-SDH)

holds, if given the tuple pg, gα, h, hα, ..., hαt

q P G
2
1 ˆ G

t`1

2 for

some randomly chosen α P F
˚
p , the probability to produce a pair

pβ, h1{pβ`αqq P Fpzt´αu ˆ G2 is negligible.

3.3 Description
We assume here that the client wants to outsource the evaluation

of a d-degree polynomial ApXq “
řd

i“0
aiX

i with coefficients
ai P Fp where p is a large prime.

Setupp1κ, Aq Given security parameter 1κ and a description of
polynomial A, algorithm Setup first selects two cyclic groups
G1 and G2 of prime order p that admit a bilinear pairing

e : G1 ˆG2 Ñ GT . Then it picks a generator g and a gener-
ator h of groups G1 and G2 respectively, and defines the set
of public parameters as:

param “ pp,G1,G2,GT , e, g, hq.

Next, algorithm Setup selects randomly b0 P F
˚
p such that

polynomial BpXq “ X2 ` b0 does not divide polynomial
A and performs the Euclidean division of polynomial A by
polynomial B in FprXs. We denote the resulting quotient

polynomial by QpXq “
řd´2

i“0
qiX

i and the resulting re-

mainder polynomial by RpXq “ r1X ` r0
1.

Thereupon, algorithm Setup computes the public key

PKA “ pb0, r1, r0q “ pgb0 , hr1 , h
r0q.

To compute evaluation key EKA algorithm Setup computes
qi “ hqi P G2 for all 0 ď i ď d ´ 2, and lets

EKA “ pA,q0,q1, ..., qd´2q.

Algorithm Setup concludes its execution by outputting the
tuple pparam,PKA,EKAq.

ProbGenpx,PKAq On input of a point x P Fp and public key
PKA “ pb0, r1, r0q, algorithm ProbGen first computes

VKpx,Bq “ b0g
x2

VKpx,Rq “ r
x
1r0

and then outputs the public encoding σx “ x and the public
verification key VKx “ pVKpx,Bq,VKpx,Rqq.

Computepσx,EKAq Given σx “ x and evaluation key EKA “
pA,q0,q1, ...,qd´2q, algorithm Compute evaluates

y “ Apxq “
dÿ

i“0

aix
i

mod p,

generates the proof

π “
d´2ź

i“0

q
xi

i ,

and outputs the encoding σy “ py, πq.

Verifypσy,VKxq Provided with encoding σy “ py, πq and veri-
fication key VKx “ pVKpx,Bq,VKpx,Rqq, algorithm Verify

checks whether the following equation holds:

epg, hyq“epVKpx,Bq, πqepg,VKpx,Rqq. (1)

If so, then Verify outputs y meaning that Apxq “ y; other-
wise it outputs K.

3.4 Security Analysis
Here we state and prove the main security theorems pertaining

to our protocol for publicly verifiable polynomial evaluation.

Theorem 1. The scheme proposed above for publicly verifiable

polynomial evaluation is correct.

1R is a polynomial of degree at most 1, i.e. r1 could be 0.

Proof. If on input σx “ x P Fp, the server executes algorithm
Compute correctly, then the latter’s output will correspond to

σy “ py, πq “ pApxq, hQpxqq.

Indeed, we have:

π “
d´2ź

i“0

q
xi

i “
d´2ź

i“0

h
qix

i

“ h
řd´2

i“0
qix

i

“ h
Qpxq

.

Given that A “ QB ` R in FprXs and that the order of epg, hq is
equal to p, we get:

epg, hqApxq “ epg, hqQpxqBpxq`Rpxq

“ epg, hQpxqqBpxq
epg, hqRpxq

.

As y “ Apxq and π “ hQpxq we have:

epg, hqy “ epg, πqBpxq
epg, hqRpxq

“ epgBpxq
, πqepg, hRpxqq.

Since

VKpx,Bq “ b0g
x2

“ g
b0`x2

“ g
Bpxq

and

VKpx,Rq “ r
x
1r0 “ h

r1x`r0 “ h
Rpxq

,

we conclude that

epg, hqy “ epVKpx,Bq, πqepg,VKpx,Rqq

and that Verify outputs y “ Apxq.

Theorem 2. The scheme proposed above for publicly verifiable

polynomial evaluation is sound under the td{2u-SDH assumption.

Proof. Assume there is an adversary A that breaks the soundness
of our protocol for publicly verifiable polynomial evaluation with
a non-negligible advantage ǫ. We demonstrate in what follows
that there exists another adversary B that breaks the td{2u-SDH
assumption with a non-negligible advantage ě ǫ.

Let Osdh be an oracle which when queried returns the pair pg, gαq

in G1 and the tuple ph, hα, hα2

, ..., hαtd{2u

q in G2 for randomly
generated α in F

˚
p .

In order to break td{2u-SDH, adversary B first calls oracle Osdh

to obtain a tuple pg, gα, h, hα, ..., hαtd{2u

q; then simulates the sound-
ness experiment (see Algorithm 1) to adversary A . Namely, when
A calls oracle OSetup with polynomial ApXq “

řd

i“0
aiX

i in
FprXs, adversary B simulates OSetup’s response as follows:

1. It defines the public parameters

{param “ pp,G1,G2,GT , e, g, hq

2. To compute the evaluation key xEKA “ pA, pq0, ..., pqd´2q, it
proceeds as described below:

‚ It lets pqd´2 “ had and pqd´3 “ had´1 ;

‚ For each 2 ď k ď d ´ 2, it computes

pqd´2´k “

tk{2uź

i“0

h
ad´k`2ip´1qiαi

3. It computes the public key xPKA “ ppb0,pr1,pr0q as following:

pb0 “ g
α

pr0 “

td{2uź

i“0

h
a2ip´1qiαi

pr1 “

tpd´1q{2uź

i“0

h
a2i`1p´1qiαi

.

If ppr0,pr1q “ p1, 1q, then adversary B stops the experiment.

4. Otherwise, it returns public parameters {param, evaluation

key xEKA and public key xPKA to adversary A .

It can easily be shown that if adversary B does not stop the ex-

periment, then the distribution of the tuple p {param, xPKA, xEKAq
returned by adversary B is statistically indistinguishable from the
distribution of pparam,PKA,EKAq in the soundness experiment.
As a matter of fact, if we denote for all 0 ď i ď d ´ 2, pqi “ hqi

and if we let ppr0,pr1q “ phr0 , hr1q, then we can easily verify that:

‚ ad “ qd´2 mod p and ad´1 “ qd´3 mod p;

‚ for all 2 ď i ď d ´ 2, ai “ αqi ` qi´2 mod p;

‚ a1 “ αq1 ` r1 mod p and a0 “ αq0 ` r0 mod p;

‚ pr0, r1q ‰ p0, 0q.

This entails that the polynomials defined asQpXq “
řd´2

i“0
qiX

i,
BpXq “ X2 ` α and RpXq “ r1X ` r0 verify the following
equality: A “ BQ ` R with R ‰ 0.

Therefore we can safely conclude (i) that polynomial B does
not divide polynomial A; (ii) that each pqi correctly encodes the ith

coefficient of the quotient polynomial Q that results from the Eu-
clidean division of polynomial A by polynomial B; (iii) that the
pair ppr0,pr1q correctly encodes the corresponding remainder poly-
nomial R.

Eventually, adversary A selects a challenge value x P Fp and

calls oracle OProbGen with the pair px, xPKAq. Accordingly, adver-
sary B computes the response of oracle OProbGen and returns verifi-
cation key

VKx “ pVKpx,Bq,VKpx,Rqq “ ppb0g
x2

,pr0prx1q.

Finally, adversary A returns a pair py, πq such that y ‰ Apxq and
py, πq is accepted by algorithm Verify with a non-negligible advan-
tage ǫ.

Consequently, adversary B breaks td{2u-SDH by first computing
Apxq and the proof

π
˚ “

d´2ź

i“0

pqxi

i

and finally outputting:

pβ, h1{pβ`αqq “

ˆ
x
2
,
´

π

π˚

¯py´Apxqq´1
˙
.

Indeed, since the pair py, πq passes the verification, it satisfies Equa-
tion 1, namely:

epg, hqy “ eppb0g
x2

, πqepg,pr0prx1 q “ epgx
2`α

, πqepg,pr0prx1 q.
(2)

Furthermore, by construction:

epg, hqApxq “ epgx
2`α

, π
˚qepg,pr0prx1 q. (3)

Algorithm Computation Client’s storage Server’s storage

Setup 1 prng and d mul in Fp Op1q Opdq
1 exp in G1

d ` 1 exp in G2

ProbGen 1 mul in Fp – –
1 exp and 1 mul in G1

1 exp and 1 mul in G2

Compute 2d ´ 3 mul in Fp – –
d ´ 1 exp and d ´ 2 mul in G2

Verify 1 exp and 1 div in G2 – –
2 pairings

Table 1: Computation and storage requirements of our protocol for publicly verifiable polynomial evaluation

By dividing Equation 2 by 3, we obtain:

epg, hqpy´Apxqq “ e
´
g
x2`α

,
π

π˚

¯
.

Since y ‰ Apxq, the above equation implies:

epg, hq “ e

ˆ
g
x2`α

,
´

π

π˚

¯py´Apxqq´1
˙
.

Hence if adversary B does not stop the experiment, then it will be
able to break the td{2u-SDH assumption.

Now if adversary B aborts the experiment which occurs when
ppr0,pr1q “ p1, 1q, then adversary B can conclude that B divides
A. This means that by using a factorization algorithm in FprXs on
polynomial A, adversary B will be able to find α, and therewith,
break the td{2u-SDH assumption.

Thus, we deduce that if there is an adversary A that breaks the
soundness of our protocol for publicly verifiable polynomial evalu-
ation with a non-negligible advantage ǫ, then there is an adversary
B that breaks the td{2u-SDH assumption with a non-negligible ad-
vantage ě ǫ.

Remark 1. Notice that if BpXq “ Xδ ` b0, then using a similar

argument as the one above, we can easily show that our protocol

for verifiable polynomial evaluation is secure under the t-SDH as-

sumption for t ě td{δu.

3.5 Performance Analysis
The reader may refer to Table 1 for a summary of the perfor-

mances of our protocol for publicly verifiable polynomial evalua-
tion.

Algorithm Setup first generates a random coefficient b0 P F
˚
p

to construct polynomial B and conducts an Euclidean division of
polynomial A by polynomial B. The latter operation consists of d
multiplications and additions, where d is the degree of polynomial
A. Once the Euclidean division is performed, algorithm Setup per-
forms one exponentiation in G1 to derive b0, and d ` 1 exponenti-
ations in G2 to compute r0, r1 and qi. Although computationally
expensive, algorithm Setup is executed only once by the client. Be-
sides, its computational cost is amortized over the large number of
verifications that third-party verifiers can carry out.

On the other hand, algorithm ProbGen computes the verification
key VKx “ pVKpx,Bq,VKpx,Rqq which demands a constant num-
ber of operations that does not depend on the degree of polynomial
A. More precisely, ProbGen’s work consists of computing x2 in
Fp, performing one exponentiation and one multiplication in G1

to get VKpx,Bq “ gBpxq, and running one exponentiation and one

multiplication in G2 to obtain VKpx,Rq “ hRpxq.
Furthermore, algorithm Compute runs in two steps: (i) the eval-

uation of polynomial A at point x which requires at most d addi-
tions and multiplications in Fp if the server uses Horner’s rule; and
(ii) the generation of the proof π which involves d ´ 3 multiplica-
tions in Fp and d ´ 1 exponentiations and d ´ 2 multiplications in
G2.

Finally, the work at third-party verifiers only consists of one ex-
ponentiation and one division in G2 and the computation of 2 bi-
linear pairings.

With respect to storage, the client is required to store and publish
the public key pb0, r1, r0q P G1 ˆ G

2
2. The server however keeps

the d ` 1 coefficients ai P Fp of polynomial A and the d ´ 1

encodings qi P G2.
The reader may refer to Table 1 for a summary of the perfor-

mances of our protocol for publicly verifiable polynomial evalua-
tion.

4. PUBLICLY VERIFIABLE MATRIX MUL-

TIPLICATION

4.1 Protocol Overview
The protocol we introduce in this section relies on the intuition

already expressed in [11], which states that in order to verify that
a server correctly multiplies an pn,mq-matrix M of elements Mij

with some column vector ~x “ px1, x2, ..., xmq⊺, it suffices that
the client randomly picks a secret pn,mq-matrix R of elements
Rij , and supplies a server with pn,mq-matrix M and an auxiliary
pn,mq-matrix N such that Nij “ g̃MijgRij (where g̃ “ gδ for
some randomly generated δ). Consequently, when a client prompts
the server to multiply matrix M with vector ~x, the latter returns
vector ~y “ py1, y2, ..., ynq⊺ and proof ~π “ pπ1, π2, ..., πnq⊺, such

that πi “ g̃yig
řm

j“1
Rijxj if the server is honest. If we denote

πi “ gγi and ~γ “ pγ1, γ2, ..., γnq⊺, then loosely speaking, the
verification process consists of checking whether ~γ “ δ~y ` R~x.

Now to transform this intuition into a viable solution, one must
ensure that the verification process is much less computationally
demanding than the matrix multiplication M~x for all vectors ~x. In
[11], the authors speed up the verification process by generating
the secret matrix R using dedicated algebraic PRFs that optimize
the multiplication R~x. Although this solution gives way to an ef-
ficient verification process that takes Opn ` mq time, it does not
enable public delegatability: Only the client can submit multiplica-
tion queries to the server.

We tackle this issue by observing that for any vector ~λ “ pλ1, λ2,

..., λnq, the verification of whether ~λ~γ “ δ~λ~y`~λpR~xq takes Opnq

time if the vector ~λR is computed beforehand. Therefore, we define

the public key by an exponent encoding of ~λR, and the verification

key for vector ~x by an exponent encoding of p~λRq~x.

More concretely, we generate the elements in the auxiliary ma-

trix N as Nij “ g̃
Mij

i g
Rij

i for gi “ gλi , we let the public key PKM

be a vector of m components PKj “ ep
śn

i“1
g
Rij

i , hq, and we

compute the verification key for vector ~x as VKx “
śm

j“1
PK

xj

j .
Therefore, the problem generation combined with the verification
take Opn ` mq time as opposed to performing Opnmq operations
to compute the matrix multiplication ~y “ M~x.

As a result, the proposed solution does not only offer public del-
egatability, but also is sound under the assumption of co-computa-
tional Diffie-Hellman (co-CDH).

Definition 5 (co-CDH Assumption). Let G1, G2 and GT be three

cyclic groups of the same finite prime order p such that there exists

a bilinear pairing e : G1 ˆ G2 Ñ GT .

We say that the co-computational Diffie-Hellman assumption

(co-CDH) holds in G1, if given g, gα P G1 and h, hβ P G2 for

random α, β P F
˚
p , the probability to compute gαβ is negligible.

4.2 Protocol for Verifiable Matrix Multiplica-
tion

Without loss of generality, we assume that a client outsources to
a server the multiplication operations involving an pn,mq-matrix
M of elements Mij P Fp (1 ď i ď n and 1 ď j ď m) with p
being a large prime.

Setupp1κ,Mq Given security parameter 1κ and matrix M , algo-
rithm Setup chooses two cyclic groups G1 and G2 of prime
order p that admit a bilinear pairing e : G1 ˆ G2 Ñ GT . It
then selects a generator h of group G2 and computes h̃ “ hδ

for a randomly selected δ in F
˚
p . Thereafter, it randomly

picks n generators2gi of G1, for all 1 ď i ď n. Subse-
quently, algorithm Setup defines the public parameters asso-
ciated with matrix M as:

param “ pp,G1,G2,GT , e, tgiu1ďiďn, h, h̃q.

Afterwards, algorithm Setup computes the evaluation key
EKM as follows:

‚ It selects an pn,mq-random matrix R of elements Rij

in F
˚
p .

‚ It derives another pn,mq-matrix N of elements Nij “

g
δMij`Rij

i , @ 1 ď i ď n, 1 ď j ď m.

‚ Finally, it sets the evaluation key to

EKM “ pM,Nq.

Next, algorithm Setup determines public key PKM as de-
picted hereafter:

‚ It generates m keys PKj “ ep
śn

i“1
g
Rij

i , hq, 1 ď j ď
m.

‚ Then, it lets PKM “ pPK1,PK2, ...,PKmq.

At the end of its execution, algorithm Setup outputs pub-
lic parameters param, public key PKM and evaluation key
EKM .

2Without loss of generality, we can assume that gi “ gλi for ran-
dom λi in F

˚
p .

ProbGenp~x,PKM q On input of a column vector ~x “ px1, x2..., xmq⊺

in F
m
p and public key PKM “ pPK1,PK2, ...,PKmq asso-

ciated with matrix M , algorithm ProbGen derives

VKx “
mź

j“1

PK
xj

j

and returns the encoding σx “ ~x and the verification key
VKx.

Computepσx,EKM q Provided with encoding σx “ ~x “ px1, x2,

..., xmq⊺ and evaluation key EKM “ pM,Nq, algorithm
Compute multiplies matrix M with vector ~x which yields a
column vector ~y “ py1, y2, ..., ynq⊺, evaluates the product:

Π “
nź

i“1

mź

j“1

N
xj

ij

and outputs the encoding σy “ p~y,Πq.

Verifypσy,VKxq Given σy “ p~y,Πq and verification key VKx, al-
gorithm Verify checks whether the following equality holds:

epΠ, hq
?
“ ep

nź

i“1

g
yi
i , h̃qVKx. (4)

If so, algorithm Verify outputs ~y meaning that M~x “ ~y;
otherwise it outputs K.

4.3 Security Analysis
In this section, we formally prove the security properties of our

solution for publicly verifiable matrix multiplication.

Theorem 3. The solution described above for publicly verifiable

matrix multiplication is correct.

Proof. If when queried with vector ~x “ px1, x2, ..., xnq⊺, the server
correctly operates algorithm Compute, then Equation 4 always holds.

Actually in that case, σy corresponds to the pair p~y,Πq such that
~y “ py1, y2, ..., ynq⊺ “ M~x and Π “

śn
i“1

śm
j“1

N
xj

ij . This

implies that for all 1 ď i ď n: yi “
řm

j“1
Mijxj mod p, and as

the order of gi is p, it also implies that:

Π “
nź

i“1

mź

j“1

N
xj

ij “
nź

i“1

mź

j“1

´
g
δMij`Rij

i

¯xj

“
nź

i“1

mź

j“1

´
g
δMijxj`Rijxj

i

¯
“

nź

i“1

mź

j“1

g
δMijxj

i g
Rijxj

i

“
nź

i“1

g
δ

řm
j“1

Mijxj

i

nź

i“1

mź

j“1

g
Rijxj

i

“
nź

i“1

g
δyi
i

nź

i“1

mź

j“1

g
Rijxj

i

Therefore, we have:

epΠ, hq “ ep
nź

i“1

g
δyi
i

nź

i“1

mź

j“1

g
Rijxj

i , hq

“ ep
nź

i“1

g
yi
i , h

δqep
nź

i“1

mź

j“1

g
Rijxj

i , hq

“ ep
nź

i“1

g
yi
i , h

δq
mź

j“1

ep
nź

i“1

g
Rij

i , hqxj

As h̃ “ hδ and VKx “
śm

j“1
PK

xj

j , where

PKj “ ep
nź

i“1

g
Rij

i , hq

we get:

epΠ, hq “ ep
nź

i“1

g
yi
i , h̃qVKx

and we conclude that Verify outputs ~y “ M~x.

Theorem 4. The solution described above for publicly verifiable

matrix multiplication is sound under the co-CDH assumption in

G1.

Proof. Assume there is an adversary A that breaks the soundness
of our protocol for publicly verifiable delegation of matrix multipli-
cation with a non-negligible advantage ǫ. We show in what follows
how an adversary B can use adversary A to break the co-CDH as-
sumption in G1 with a non-negligible advantage ǫ1 » ǫ.

To break the co-CDH assumption, adversary B first calls oracle
Oco´cdh which in turn outputs the pair pg, gαq P G

2
1 and the pair

ph, hβq P G
2
2.

Later, adversary B simulates the soundness experiment (cf. Al-
gorithm 1) to adversary A as following:

When adversary A calls the oracle OSetup with some matrix M of
elements Mij in Fp, adversary B simulates the oracle OSetup of the
soundness experiment by executing algorithm Setup as depicted in
Section 4.2 except for the following:

1. It lets pg “ gα and ph “ phβqδ , computes for all 1 ď i ď n,
pgi “ pgλi for some randomly chosen λi P F

˚
p , and sets the

public parameters to

{param “ pp,G1,G2,GT , e, tpgiu1ďiďn, h,phq.

2. It generates an pn,mq-random matrix pN of elements pNij P
G1;

3. It computes for all 1 ď j ď m,

xPKj “
ep

śn
i“1

pNij , hq

ep
śn

i“1
pgMij

i ,phq
; (5)

4. It defines the public key associated with matrixM as xPKM “

p xPK1, ..., xPKmq;

5. Finally, it sets the corresponding evaluation key to xEKM “

pM, pNq.

Adversary B concludes its simulation of the oracle OSetup by out-

putting public parameters {param, public key xPKM and evaluation

key xEKM .
Note here that the simulated output of oracle OSetup in the game

is statistically indistinguishable from the distribution of the output
of algorithm Setup in the soundness experiment. Namely, the fol-
lowing is true:

‚ The statistical distribution of matrix pN is identical to the dis-
tribution of matrix N generated by algorithm Setup.

‚ For all vectors ~x “ px1, ..., xmq⊺ P F
m
p and ~y “ py1, ..., ynq⊺

“ M~x, the simulated public key xPKM “ p xPK1, ..., xPKmq

verifies this equation:

ep
nź

i“1

mź

j“1

pNxj

ij , hq “ ep
nź

i“1

pgyii ,phq
mź

j“1

xPKxj

j .

Therefore, we conclude that the distribution of matrix pN and
public key xPKM is the same as the distribution of matrix N

and PKM “ pPK1, ...,PKmq produced by algorithm Setup.

At the end of the experiment, adversary A picks a challenge vec-
tor ~x “ px1, x2, ..., xmq⊺ and queries oracle OProbGen with the pair

p~x, xPKM q.
As a result, adversary B simulates oracle OProbGen and outputs

the pair p~x, xVKxq with xVKx “
śm

j“1
xPKxj

j .

Afterwards, adversary A returns a response σy “ p~y,Πq such
that ~y ‰ M~x.

In the remainder of this proof, we denote ~y˚ “ py˚
1 , y

˚
2 , ..., y

˚
nq⊺ “

M~x.
To break the co-CDH assumption in G1, adversary B first fetches

the vector ~λ “ pλ1, λ2, ..., λnq used to compute the powers pgi “

pgλi and verifies whether ~λ~y “ ~λ~y˚ mod p. If so, adversary B

aborts the game; otherwise it breaks co-CDH by returning:

g
αβ “

˜
Π

śn
i“1

śm
j“1

pNxj

ij

¸pδ~λp~y´~y˚qq´1

.

Indeed, if σy “ p~y,Πq passes the verification, then this implies that
the following equation holds:

epΠ, hq “ ep
nź

i“1

pgyii ,phq xVKx. (6)

Also given Equation 5, we have:

ep
nź

i“1

mź

j“1

pNxj

ij , hq “ ep
nź

i“1

pgy
˚
i

i ,phq xVKx (7)

By dividing Equation 6 with Equation 7, we obtain:

e

˜
Π

śn
i“1

śm
j“1

pNxj

ij

, h

¸
“ e

˜
nź

i“1

pgyi´y˚
i

i ,ph
¸

“ e

˜
nź

i“1

pgλipyi´y˚
i

q
,ph

¸

“ e
´

pg
řn

i“1
λipyi´y˚

i
q
,ph

¯

“ e
´

pg~λp~y´~y˚q
,ph

¯

As pg “ gα and ph “ hβδ , we deduce that

e

˜
Π

śn
i“1

śm
j“1

pNxj

ij

, h

¸
“ e

´
g
α~λp~y´~y˚q

, h
βδ

¯

“ e
´
g
αβ

, h
¯δ~λp~y´~y˚q

Therefore if ~λp~y´~y˚q ‰ 0 mod p, then δ~λp~y´~y˚q ‰ 0 mod p

(δ P F
˚
p) and we can compute:

g
αβ “

˜
Π

śn
i“1

śm
j“1

pNxj

ij

¸pδ~λp~y´~y˚qq´1

Hence, adversary B breaks the co-CDH assumption in G1 as long

Algorithm
Computation cost

Client’s Server’s
storage storage

Setup nm prng in Fp and nm mul in Fp Opn ` mq Opnmq
mpn ´ 1q mul and 2nm exp in G1

m pairings

ProbGen pm ´ 1q mul and m exp in GT – –

Compute nm mul in Fp – –
pn ´ 1qpm ´ 1q mul and nm exp in G1

Verify pn ´ 1q mul and n exp in G1 – –
1 mul in GT

2 pairings

Table 2: Computation and storage requirements of our protocol for publicly verifiable matrix multiplication

as ~λ~y ‰ ~λ~y˚ mod p. Fortunately, under the hardness of discrete

logarithm, the probability that adversary B finds ~y such that ~λ~y “
~λ~y˚ mod p is negligible.

Lemma 1. If adversary A outputs ~y such that ~λ~y “ ~λ~y˚ mod p,

then adversary B can break the discrete logarithm (DL) assumption

in G1.

Proof Sketch. Assume there is an adversary A that outputs a vec-
tor ~y “ py1, y2, ..., ynq⊺ verifying the property above with a non-
negligible advantage ǫ. Here we show that there is another ad-
versary B which uses adversary A to break the discrete logarithm
assumption in G1 with a non-negligible advantage ě ǫ{n.

Assume that adversary B receives qg P G1 and is required to
output λ P Fp such that qg “ gλ.

To this effect, adversary B simulates the soundness experiment
as depicted in Algorithm 1. More precisely, upon receipt of an
pn,mq-matrix M , it simulates the output of OSetup exactly as the
soundness experiment except for the following:

‚ It selects k randomly in t1, 2, ..., nu and lets qgk “ qg;

‚ for all 1 ď i ď n, i ‰ k, it randomly selects λi P F
˚
p and

sets qgi “ qgλi ;

‚ it sets the public parameters to ­param “ pp,G1,G2,GT , e,

tqgiu1ďiďn, h, h̃q.

Adversary A eventually returns a pair of vectors ~x “ px1, x2, ...,

xmq⊺ and ~y “ py1, y2, ..., ynq⊺ that verify ~y ‰ M~x and ~λ~y “
~λM~x mod p, whereby ~λ “ pλ1, ..., λk´1, λ, λk`1, ..., λnq.

If we denote ~y˚ “ py˚
1 , y

˚
2 , ..., y

˚
nq⊺ “ M~x, then the above

equality entails that

λ “

řn
i“1,i‰k λipy

˚
i ´ yiq

yk ´ y˚
k

as long as yk ‰ y˚
k .

Since ~y ‰ ~y˚, then there is at least one index 1 ď j ď n
such that yj ‰ y˚

j . Since k is randomly chosen from t1, ..., nu,

the probability that yk ‰ y˚
k is at least 1{n, and consequently,

adversary B will be able to break the discrete logarithm assumption
with advantage ě ǫ{n.

To summarize, if there is an adversary A that breaks the sound-
ness of our protocol for publicly verifiable matrix multiplication
with a non-negligible advantage ǫ, then there exists an adversary
B that breaks the co-CDH assumption in G1 with a non-negligible
advantage ǫ1 » ǫ.

4.4 Performance Analysis
Algorithm Setup generates the pn,mq-random matrix R which

requires the generation of nm random numbers in Fp. To com-

pute the elements Nij of matrix N as g
δMij`Rij

i , algorithm Setup

performs nm multiplications and nm additions in Fp, and nm ex-
ponentiations in G1. Furthermore, the generation of public key
PKM demands mpn ´ 1q multiplications in G1, nm exponentia-
tions in G1 and m pairings. It should be noted that while algorithm
Setup involves expensive operations such as exponentiations and
pairings, it is executed only once by the client, and consequently,
its cost is amortized over the large number of verifications that a
verifier can perform.

To multiply a vector ~x “ px1, x2, ..., xmq⊺ with matrix M , al-
gorithm ProbGen computes VKx “

śm

j“1
PK

xj

j . This involves
m ´ 1 multiplications and m exponentiations in GT .

Moreover, algorithm Compute consists of two operations: (i) the
matrix multiplication ~y “ M~x which requires nm multiplications
and additions in Fp; and (ii) the generation of the proof Π which
involves nm exponentiations and pn ´ 1qpm ´ 1q multiplications
in G1.

Finally, algorithm Verify evaluates two bilinear pairings, pn´1q
multiplications and n exponentiations in G1, and one multiplica-
tion in GT .

As for storage, the server is required to keep the pn,mq-matrix
M of elements Mij P Fp and the pn,mq-matrix N of elements
Nij P G1. On the other hand, the client is required to store and
publish the public parameters which are of size Opnq and the public
key PKM whose size is Opmq. We highlight the fact that the public
parameters’ size can be made constant: Instead of advertising the
set tgiu1ďiďn, the client can select a hash function H : F

˚
p Ñ

G1zt1u and compute the generators gi as Hpiq, for all 1 ď i ď n.
On the downside, this optimization makes our scheme secure only
in the random oracle model.

Table 2 summarizes the performance analysis of our scheme for
publicly verifiable matrix multiplication.

5. RELATED WORK
Verifiable Polynomial Evaluation. Benabbas et al. [6] were the

first to use algebraic PRFs for the problem of verifiable polynomial
evaluation. Their solution only works in the symmetric-key setting,
thus does not enable public verifiability as the schemes presented
in this paper. In the same line of work, Fiore and Gennaro [11]
devise new algebraic PRFs, also used by Zhang and Safavi-Naini
[20], to develop publicly verifiable solutions. Compared to these
two solutions, our protocol induces the same amount of computa-
tional costs but with the additional property of public delegatabil-
ity. Another solution for public verification considers signatures for

Hardness Public
Setup ProbGen Compute Verify Assumptions Delegatability

Fiore and Gennaro 1 pairing 1 pairing pd ` 1q exp in G1 1 pairing co-CDH No
[11] 2pd ` 1q exp in G1 1 exp in G1 1 exp in GT DLin

1 exp in GT

Papamanthou et al. Polynomial preparation d ` 1 exp in G1 2 pairing d-SBDH Yes
[17] 2d ` 1 exp in G1 2 exp in G1

Our scheme d ` 1 exp in G2 1 exp in G1 d ´ 1 exp in G2 2 pairings td{2u-SDH Yes
1 exp in G1 1 exp in G2 1 exp in G2

Table 3: Comparison of computation complexity with existing work for polynomial evaluation

Hardness Public
Setup ProbGen Compute Verify Assumptions Delegatability

Fiore and Gennaro 3nm exp in G1 n pairings nm exp in G1 n pairings co-CDH No
[11] 2pn ` mq exp in G1 n exp in GT DLin

Zhang and Blanton 1 pairing n exp in G1 nm exp in G2 n pairings M-DDH Yes
[21] m exp in G2 pn ` 1q exp in GT XDH

pn ` 1q exp in GT

Our scheme 2nm exp in G1 m exp in GT nm exp in G1 2 pairings co-CDH Yes
m pairings n exp in G1

Table 4: Comparison of computation complexity with existing work for matrix multiplication

correct computation [17], and uses polynomial commitments [16]
to construct these signatures. Besides public verifiability, this so-
lution implements public delegatability. However, the construction
by [17] relies on the d-SBDH assumption, whereas our solution is
secure under a weaker assumption that is the td{2u-SDH. It is worth
mentioning that our protocol can be changed to rely on the td{δu-
SDH assumption, where δ is the degree of the divisor polynomial,
as specified in Remark 1 of Section 3.3, and therefore our scheme
can accommodate higher-degree polynomials.

Table3 3 compares the computational costs our solution for poly-
nomial evaluation with the work described by Fiore and Gennaro
[11] and Papamanthou et al. [17].

Verifiable Matrix Multiplication.

Fiore and Gennaro [11] and Zhang and Safavi-Naini [20] exploit
algebraic PRFs for publicly verifiable matrix multiplications. How-
ever, only the client which outsourced the matrix can submit input
vectors to the outsourced multiplication, hence their constructions
do not meet the public delegatability requirement. Zhang and Blan-
ton [21] present a construction for publicly delegatable and verifi-
able outsourcing of matrix multiplication that uses mathematical
properties of matrices instead of algebraic PRFs. Unlike our work,
the public verifiable scheme suggested in [21] does not transfer the
matrix M to the server during Setup (whose purpose is reduced
to generating the public parameters). Instead, the problem gener-
ation phase prepares the matrix and the input vector for the dele-
gation. This construction is secure under the multiple decisional
Diffie Hellman (M-DDH) and the eXternal Diffie-Hellman (XDH)
assumptions, which are stronger than the co-CDH assumption we
rely on in our solution.

Table3 4 depicts a comparison of our proposal for matrix multi-
plication with the solution proposed by Fiore and Gennaro [11] and
Zhang and Blanton [21].

Arbitrary functions. A significant collection of work applies
succinct non-interactive arguments of knowledge (SNARKs) to the

3Table 3 and Table 4 compare the computational complexity of our
solution with existing work only in terms of exponentiations and
bilinear pairings which are the most computationally expensive op-
erations.

problem of verifiable computation of arbitrary functions [4, 5, 7,
19]. One of the most relevant applications of the SNARK approach
[7] appears in Pinocchio [19]. Pinocchio translates the outsourced
function into an arithmetic circuit, which is then converted into a
Quadratic Arithmetic Program [14]. As such, it enables public del-
egatability and public verifiability. However, the security of Pinoc-
chio and other SNARK-based protocols relies on non-falsifiable as-
sumptions as proved by Gentry and Wichs [15], whereas the secu-
rity of our schemes only relies on falsifiable assumptions.

Parno et al. [18] propose a solution for public delegation and ver-
ification of computation using Attribute-Based Encryption (ABE).
However, this scheme is limited to the computation of Boolean
functions that output a single bit. For functions with more than one
output bit, the client has to repeatedly (for each output bit) launch
several instances of the protocol. Alderman et al. [1, 2] also pro-
pose an ABE-based protocol for Boolean functions. The authors
adopt a scenario orthogonal to ours, in which queriers are identi-
fied according to access control policies. Furthermore, Alderman
et al. [1, 2] introduce the concept of blind verifiability. In a nut-
shell, their protocols distinguish queriers from verifiers: The latter
may only be authorized to verify an outsourced computation but
not to learn its results. In the present paper, the blind verifiability
property is out of scope.

Homomorphic MACs and signatures. Another type of solu-
tions use homomorphic MACs [3, 9, 12] or homomorphic signa-
tures [8, 10]. These solutions generally induce a verification as
costly as the computation of the outsourced function itself. Homo-
morphic MACs proposed by Backes et al. [3] take advantage of al-
gebraic PRFs to allow efficient verification, provided that the data
is indexed. This solution however is suitable for quadratic func-
tions only. Similarly, Catalano et al. [10] propose homomorphic
signatures for polynomial functions with efficient verification and
suggest that they can be used for a publicly verifiable computation
scheme. Nevertheless, their construction uses expensive multilin-
ear pairings.

6. CONCLUSION
In this paper, we introduced two protocols for publicly verifi-

able delegation of computation which enable a client to securely
outsource the evaluation of arbitrary degree univariate polynomi-
als and the multiplication of large matrices. We built our proto-
cols upon the algebraic properties of polynomials and matrices.
This paved the way for practical solutions that are provably secure
against adaptive adversaries under the co-CDH and the SDH as-
sumptions.

7. ACKNOWLEDGEMENTS
This work was partially supported by the TREDISEC project

(G.A. no 644412), funded by the European Union (EU) under the
Information and Communication Technologies (ICT) theme of the
Horizon 2020 (H2020) research and innovation programme.

References

[1] James Alderman, Christian Janson, Carlos Cid, and Jason
Crampton. Revocation in publicly verifiable outsourced
computation. In Information Security and Cryptology, pages
51–71. Springer, 2014.

[2] James Alderman, Christian Janson, Carlos Cid, and Jason
Crampton. Access control in publicly verifiable outsourced
computation. In Proceedings of the 10th ACM Symposium on

Information, Computer and Communications Security, ASIA

CCS, volume 15, pages 657–662, 2015.

[3] Michael Backes, Dario Fiore, and Raphael M. Reischuk.
Verifiable delegation of computation on outsourced data. In
Proceedings of the 2013 ACM SIGSAC Conference on

Computer and Communications Security, pages 863–874.
ACM, 2013.

[4] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran
Tromer, and Madars Virza. SNARKs for C: Verifying
program executions succinctly and in zero knowledge. In
Advances in Cryptology–CRYPTO 2013, pages 90–108.
Springer, 2013.

[5] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and
Madars Virza. Succinct non-interactive zero knowledge for a
Von Neumann architecture. In USENIX Security, pages
781–796, 2014.

[6] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis.
Verifiable delegation of computation over large datasets. In
Phillip Rogaway, editor, Advances in Cryptology – CRYPTO

2011, volume 6841 of Lecture Notes in Computer Science,
pages 111–131. Springer Berlin Heidelberg, 2011.

[7] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran
Tromer. From extractable collision resistance to succinct
non-interactive arguments of knowledge, and back again. In
Proceedings of the 3rd Innovations in Theoretical Computer

Science Conference, pages 326–349. ACM, 2012.

[8] Dan Boneh and David Mandell Freeman. Homomorphic
signatures for polynomial functions. In Advances in

Cryptology–EUROCRYPT 2011, pages 149–168. Springer,
2011.

[9] Dario Catalano and Dario Fiore. Practical homomorphic
macs for arithmetic circuits. In EUROCRYPT, pages
336–352. Springer, 2013.

[10] Dario Catalano, Dario Fiore, and Bogdan Warinschi.
Homomorphic signatures with efficient verification for
polynomial functions. In Advances in Cryptology–CRYPTO

2014, pages 371–389. Springer, 2014.

[11] Dario Fiore and Rosario Gennaro. Publicly verifiable
delegation of large polynomials and matrix computations,
with applications. In Proceedings of the 2012 ACM

Conference on Computer and Communications Security,
CCS ’12, pages 501–512. ACM, 2012.

[12] Rosario Gennaro and Daniel Wichs. Fully homomorphic
message authenticators. In Advances in

Cryptology-ASIACRYPT 2013, pages 301–320. Springer,
2013.

[13] Rosario Gennaro, Craig Gentry, and Bryan Parno.
Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. In Advances in

Cryptology–CRYPTO 2010, pages 465–482. Springer, 2010.

[14] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana
Raykova. Quadratic span programs and succinct NIZKs
without PCPs. In EUROCRYPT, volume 7881, pages
626–645. Springer, 2013.

[15] Craig Gentry and Daniel Wichs. Separating succinct
non-interactive arguments from all falsifiable assumptions.
In Proceedings of the Forty-Third Annual ACM Symposium

on Theory of Computing, pages 99–108. ACM, 2011.

[16] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their
applications. In Advances in Cryptology-ASIACRYPT 2010,
pages 177–194. Springer, 2010.

[17] Charalampos Papamanthou, Elaine Shi, and Roberto
Tamassia. Signatures of correct computation. In Theory of

Cryptography, pages 222–242. Springer, 2013.

[18] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan.
How to delegate and verify in public: Verifiable computation
from attribute-based encryption. In Ronald Cramer, editor,
Theory of Cryptography, volume 7194 of Lecture Notes in

Computer Science, pages 422–439. Springer Berlin
Heidelberg, 2012.

[19] Bryan Parno, Jon Howell, Craig Gentry, and Mariana
Raykova. Pinocchio: Nearly practical verifiable
computation. In IEEE Symposium on Security and Privacy

(SP), 2013, pages 238–252. IEEE, 2013.

[20] Liang Feng Zhang and Reihaneh Safavi-Naini. Verifiable
delegation of computations with storage-verification
trade-off. In Mirosław Kutyłowski and Jaideep Vaidya,
editors, Computer Security - ESORICS 2014, volume 8712
of Lecture Notes in Computer Science, pages 112–129.
Springer International Publishing, 2014.

[21] Yihua Zhang and Marina Blanton. Efficient secure and
verifiable outsourcing of matrix multiplications. Cryptology
ePrint Archive, Report 2014/133, 2014.

