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Abstract—We consider a combined form of partial CSIT
(Channel State Information at the Transmitter(s) (Tx)), compris-
ing both channel estimates (mean CSIT) and covariance CSIT. In
particular multipath induced structured low rank covariances are
considered that arise in Massive MIMO and mmWave settings.
For the beamforming optimization, we first revisit Weighted
Sum Rate (WSR) maximization with perfect CSIT and introduce
yet another equivalent approach: Weighted Sum Unbiased MSE
(WSUMSE). We then turn to the partial CSIT case where
we consider Expected WSR (EWSR) maximization for which
EWSUMSE turns out to be a better approximation compared to
the existing EWSMSE approach. These approaches also allow an
uplink/downlink duality interpretation for partial CSI.

I. INTRODUCTION

In this paper, Tx may denote transmit/transmitter/
transmission and Rx may denote receive/receiver/reception.
Interference is the main limiting factor in wireless transmis-
sion. Base stations (BSs) disposing of multiple antennas are
able to serve multiple Mobile Terminals (MTs) simultaneously,
which is called Spatial Division Multiple Access (SDMA) or
Multi-User (MU) MIMO. However, MU systems have precise
requirements for Channel State Information at the Tx (CSIT)
which is more difficult to acquire than CSI at the Rx (CSIR).
Hence we focus here on the more challenging downlink (DL).

The main difficulty in realizing linear IA for MIMO I(B)C
is that the design of any BS Tx filter depends on all Rx filters
whereas in turn each Rx filter depends on all Tx filters [1].
As a result, all Tx/Rx filters are globally coupled and their
design requires global CSIT. To carry out this Tx/Rx design
in a distributed fashion, global CSIT is required at all BS
[2]. The overhead required for this global distributed CSIT
is substantial, even if done optimally, leading to substantially
reduced Net Degrees of Freedom (DoF) [3].

The recent development of Massive MIMO (MaMIMO) [4]
opens new possibilities for increased system capacity while at
the same time simplifying system design. We refer to [5] for
a further discussion of the state of the art, in which MIMO
IA requires global MIMO channel CSIT. Recent works focus
on intercell exchange of only scalar quantities, at fast fading
rate, as also on two-stage approaches in which the intercell
interference gets zero-forced (ZF). Also, massive MIMO in
most works refers actually to MU MISO.

Whereas the exploitation of covariance CSIT may be ben-
eficial, in a MaMIMO context it may quickly lead to high
computational complexity and estimation accuracy issues.
Computational complexity may be reduced (and the benefit of

covariance CSIT enhanced) in the case of low rank or related
covariance structure, but the use and tracking of subspaces
may still be cumbersome. In the pathwise approach, these
subspaces are very parsimoniously parameterized. In a FDD
setting, these parameters may even be estimated from the
uplink (UL). In a TDD setting with reciprocity, the channel
estimation error may account for time variation also in the
UL/DL ping-pong. As opposed to the instantaneous channel
CSIT, the path CSIT is not affected by fast fading.

Whereas path CSIT by itself may allow zero forcing (ZF)
[6], which is of interest at high SNR, we are particularly
concerned here with maximum Weighted Sum Rate (WSR)
designs accounting for finite SNR. ZF of all interfering links
leads to significant reduction of useful signal strength. Massive
MIMO makes the pathwise approach viable: the (cross-link)
beamformers (BF) can be updated at a reduced (slow fading)
rate, parsimonious channel representation facilitates not only
uplink but especially downlink channel estimation, the cross-
link BF can be used to significantly improve the downlink
direct link channel estimates (in FDD), minimal feedback can
be introduced to perform meaningful WSR optimization at a
finite SNR (whereas ZF requires much less coordination).

In this paper we first introduce a new approach to max-
imizing WSR, called minimum Weighted Sum Unbiased
MSE (WSUMSE). In the perfect CSIT case, WSUMSE also
converges to a local optimum of WSR. We then consider
various approaches for maximizing Expected WSR (EWSR)
for the case of partial CSIT. The existing EWSMSE approach
improves over Naive EWSR (NEWSR) by accounting for
covariance CSIT in the interference. This can have significant
impact, even on the sumrate prelog (DoF) if the instantaneous
channel CSIT quality does not scale with SNR. A further
improvement is proposed here in the EWSUMSE approach
which represents a better approximation of the EWSR. In
a MaMIMO setting, the way mean and covariance CSIT
are combined in the EWSMSE or WSUMSE approaches for
the interference terms becomes equally optimal as in the
EWSR for a large number of users. EWSUMSE represents an
improvement over EWSMSE for capturing the signal power
(matched filtering and diversity aspects) and only leads to a
finite (dB) gain in ESINR, but its remaining approximation er-
ror over EWSR may be limited. Strictly speaking, in the large
number of users setting, EWSMSE ≤ EWSR ≤ EWSUMSE.
The step from EWSMSE to EWSUMSE also deals with the
following question. Covariance CSIT can be used to improve



the channel estimate from a basic deterministic estimate to a
Bayesian estimate. The question then arises: is that enough?
The answer is no and a first take at this issue is proposed here.
This paper is a followup on [7] from which we reproduce some
sections to ease reading. In [7] we introduced a heuristic to
design the Tx separately using path CSIT only. It turns out
that this heuristic is recovered by the EWSUMSE approach
proposed here, which furthermore provides expressions for a
number of auxiliary quantities that are needed and allows the
combination of channel estimate and path CSIT.

II. CHANNEL (INFORMATION) MODELS

In this section we drop the user index k for simplicity.

A. Specular Wireless MIMO Channel Model

The MIMO channel transfer matrix at any particular sub-
carrier of a given OFDM symbol can be written as [8], [9]

H =

Np∑
i=1

Ai e
jψi hr(φi)h

T
t (θi) = BAH (1)

where there are Np (specular) pathwise contributions with
• Ai > 0: path amplitude
• θi: direction of departure (AoD)
• φi: direction of arrival (AoA)
• ht(.), hr(.): M/N × 1 Tx/Rx antenna array response

with ||ht(.)|| = 1, ||hr(.)|| = N , and

B=[hr(φ1)hr(φ1) · · ·]

e
jψ1

ejψ2

. . .

,AH=

A1

A2

. . .


h

T
t (θ1)

hTt (θ2)
...


(2)

The antenna array responses are just functions of angles AoD,
AoA in the case of standard antenna arrays with scatterers in
the far field. In the case of distributed antenna systems, the
array responses become a function of all position parameters
of the path scatterers. The fast variation of the phases ψi (due
to Doppler) and possibly the variation of the Ai (when the
nominal path represents in fact a superposition of paths with
similar parameters) correspond to the fast fading. All the other
parameters vary on a slower time scale and correspond to slow
fading.

B. Dominant Paths Partial CSIT Channel Model

Assuming the Tx disposes of not much more than the
information about r dominant path AoDs, we shall consider
the following MIMO (Ricean) channel model

H = BAH(θ) +
√
βH̃

′
(3)

which follows from (1), (2) except restricted to the r strongest
paths, with the rest modeled by

√
βH̃

′
(elements i.i.d. ∼

CN (0, β), independent of the ψi). Averaging of the path
phases ψi, we get for the Tx side covariance matrix

EHHH = N Ct = N(AAH + β IM ) (4)

since due to the normalization of the antenna array responses,
EBHB = diag{[hr(φ1)hr(φ2) · · ·]H [hr(φ1)hr(φ2) · · ·]} =

NI. Note that the pathwise channel model, which leads here
to a type of Tx covariance CSIT, does not lead to the usual
separable covariance case, which is discussed e.g. [5].

C. Combined Channel and Path Partial CSIT

Now, the Tx dispose also of a (det erministic) channel
estimate

Ĥ = H+
1√
N

H̃dC
1/2
d (5)

where the elements of H̃d are i.i.d. ∼ CN (0, 1), and
typically Cd = σ2

h̃
IM . The combination of the channel

estimate with the prior information leads to the (posterior)
LMMSE estimate. The non-separable prior covariance should
in principle be accounted for properly in the LMMSE estima-
tion. However, to simplify beamformer design, we shall force
a separable prior model by considering all of B to be unknown
with elements that are i.i.d. ∼ CN (0, 1). As a result we can
interpret H to be of the form H = H̃C

1/2
t and we get for the

LMMSE estimatê̂
H = Ĥd (Ct +Cd)

−1Ct = H+ H̃pC
1/2
p

Cp = Cd (Ct +Cd)
−1Ct

(6)

where ̂̂H and H̃p are independent. Note that we get for the
MMSE estimate of a quadratic quantity of the form

EH|Ĥd
HHH =

̂̂
H
H ̂̂
H+N Cp = W . (7)

Let us emphasize that this MMSE estimate implies W =
argminT EH|Ĥd

||HHH−T||2. It averages out to

EĤd
W = EH,Ĥd

HHH = EHHHH = N Ct . (8)

III. STREAMWISE IBC SIGNAL MODEL

In this paper we shall consider mostly a per stream approach
(which in the perfect CSI case would be equivalent to per
user). In an IBC formulation, one stream per user can be
expected to be the usual scenario. In the development below, in
the case of more than one stream per user, treat each stream as
an individual user. So, consider again an IBC with C cells with
a total of K users. We shall consider a system-wide numbering
of the users. User k is served by BS bk. The Nk × 1 received
signal at user k in cell bk is

yk=Hk,bk gk xk︸ ︷︷ ︸
signal

+
∑
i6=k

bi=bk

Hk,bk gi xi

︸ ︷︷ ︸
intracell interf.

+
∑
j 6=bk

∑
i:bi=j

Hk,j gi xi︸ ︷︷ ︸
intercell interf.

+vk

(9)
where xk is the intended (white, unit variance) scalar signal
stream, Hk,bk is the Nk ×Mbk channel from BS bk to user
k. BS bk serves Kbk =

∑
i:bi=bk

1 users. We considering a
noise whitened signal representation so that we get for the
noise vk ∼ CN (0, INk

). The Mbk × 1 spatial Tx filter or
beamformer (BF) is gk. Treating interference as noise, user k
will apply a linear Rx filter fk to maximize the signal power
(diversity) while reducing any residual interference that would



not have been (sufficiently) suppressed by the BS Tx. The Rx
filter output is x̂k = fHk yk

x̂k = fHk Hk,bk gk xk +

K∑
i=1,6=k

fHk Hk,bi gi xi + fHk vk

= fHk hk,k xk +
∑
i 6=k

fHk hk,i xi + fHk vk

(10)

where hk,i = Hk,bi gi is the channel-Tx cascade vector.
ZF (IA) feasibility for both the general reduced rank MIMO
channels case and the pathwise MIMO case has been discussed
in [6], in particular also when only based on Tx side covariance
CSIT. Also the role of Rx antennas is highlighted and a
comparison with FIR ZF in an asynchronous scenario is
presented.

IV. MAX WSR WITH PERFECT CSIT

Consider as a starting point for the optimization the
weighted sum rate (WSR)

WSR =WSR(g) =

K∑
k=1

uk ln
1

ek
(11)

where g represents the collection of BFs gk, the uk are rate
weights, the ek = ek(g) are the Minimum Mean Squared
Errors (MMSEs) for estimating the xk:

1

ek
=1+gHk HH

k,bk
R−1
k

Hk,bkgk=(1−gHk HH
k,bk

R−1k Hk,bkgk)
−1

Rk = Hk,bkQkH
H
k,bk

+Rk , Qi = gig
H
i ,

Rk =
∑
i 6=k

Hk,biQiH
H
k,bi + INk

.

(12)
Rk, Rk are the total and interference plus noise Rx covariance
matrices resp. and ek is the MMSE obtained at the output
x̂k = fHk yk of the optimal (MMSE) linear Rx fk,

fk = R−1k Hk,bkgk = R−1k hk,k . (13)

The WSR cost function needs to be augmented with the power
constraints ∑

k:bk=j

tr{Qk} ≤ Pj . (14)

A. From Max WSR to Min WSMSE

For a general Rx filter fk we have the MSE

ek(fk,g) = (1− fHk Hk,bkgk)(1− gHk HH
k,bk

fk)

+
∑
i 6=k f

H
k Hk,bigig

H
i HH

k,bi
fk + ||fk||2 = 1−fHk Hk,bkgk

−gHk HH
k,bk

fk+
∑
i

fHk Hk,bigig
H
i HH

k,bifk+||fk||
2.

(15)
The WSR(g) is a non-convex and complicated function of g.
Inspired by [10], we introduced [11], [1] an augmented cost
function, the Weighted Sum MSE, WSMSE(g, f , w)

=

K∑
k=1

uk(wk ek(fk,g)− lnwk) +

C∑
i=1

λi(
∑
k:bk=i

||gk||2−Pi)

(16)

where λi = Lagrange multipliers. After optimizing over the
aggregate auxiliary Rx filters f and weights w, we get the
WSR back:

min
f ,w

WSMSE(g, f , w) = −WSR(g) +

K∑
k=1

uk (17)

The advantage of the augmented cost function: alternating
optimization leads to solving simple quadratic or convex
functions:

min
wk

WSMSE ⇒ wk = 1/ek

min
fk

WSMSE ⇒ fk=(
∑
i

Hk,bigig
H
i HH

k,bi+INk
)−1Hk,bkgk

min
gk

WSMSE ⇒
gk=(

∑
i uiwiH

H
i,bk

fif
H
i Hi,bk+λbkIM )−1HH

k,bk
fkukwk (18)

UL/DL duality: the optimal Tx filter gk is of the form of a
MMSE linear Rx for the dual UL in which λ plays the role of
Rx noise variance and ukwk plays the role of stream variance.

B. Difference of Convex Functions Programming

In a classical difference of convex functions (DC pro-
gramming) approach, Kim and Giannakis [12] propose to
keep the concave signal terms and to replace the convex
interference terms by the linear (and hence concave) tangent
approximation. More specifically, consider the dependence of
WSR on Qk alone. Then

WSR = uk ln det(R
−1
k

Rk) +WSRk ,

WSRk =
∑K
i=1,6=k ui ln det(R

−1
i

Ri)
(19)

where ln det(R−1
k

Rk) is concave in Qk and WSRk is convex
in Qk. Since a linear function is simultaneously convex and
concave, consider the first order Taylor series expansion in Qk

around Q
′

(i.e. all Q
′

i) with e.g. R
′

i = Ri(Q
′
), then

WSRk(Qk,Q
′
) ≈WSRk(Q

′

k,Q
′
)− tr{(Qk −Q

′

k)T
′

k}

T
′

k
=−

∂WSRk(Qk,Q
′
)

∂Qk

∣∣∣∣∣
Q

′
k,Q

′

=

K∑
i6=k

uiH
H
i,bk

(R
′−1
i
−R

′−1
i )Hi,bk

(20)
Note that the linearized (tangent) expression for WSRk
constitutes a lower bound for it. Now, dropping constant
terms, reparameterizing the Qk = gkg

H
k , performing this

linearization for all users, and augmenting the WSR cost
function with the constraints, we get the Lagrangian

WSR(g,g
′
, λ) =

C∑
j=1

λjPj+

K∑
k=1

uk ln(1 + gHk S
′

kgk)− gHk (T
′

k
+ λbkI)gk

(21)

where
S

′

k = HH
k,bk

R
′−1
k

Hk,bk . (22)

The gradient (w.r.t. gk) of this concave WSR lower bound is
actually still the same as that of the original WSR criterion!



And it allows an interpretation as a generalized eigenvector
condition

S
′

k gk =
1 + gHk S

′

kgk
uk

(T
′

k
+ λbkI)gk (23)

or hence gk = Vmax(S
′

k,T
′

k
+ λbkI) is the (normalized)

”max” generalized eigenvector of the two indicated matrices,
with max eigenvalue σk = σmax(S

′

k,T
′

k
+ λbkI). Let σ(1)

k =

gHk S
′

kgk, σ(2)
k = gHk T

′

k
gk. The advantage of formulation (21)

is that it allows straightforward power adaptation: introducing
stream powers pk ≥ 0 and substituting gk =

√
pk gk in (21)

yields

WSR=

C∑
j

λjPj +

K∑
k=1

{uk ln(1 + pkσ
(1)
k )− pk(σ(2)

k +λbk)}

(24)
which leads to the following interference leakage aware water
filling (WF)

pk =

(
uk

σ
(2)
k + λbk

− 1

σ
(1)
k

)+

(25)

where the Lagrange multipliers are adjusted to satisfy the
power constraints

∑
k:bk=j

pk = Pj . This can be done by
bisection and gets executed per BS. Note that some Lagrange
multipliers could be zero. Note also that as with any alternating
optimization procedure, there are many updating schedules
possible, with different impact on convergence speed. The
quantities to be updated are the gk, the pk and the λl.

Note that the DC programming approach, which avoids
introducing Rxs, can at every BF update allow to introduce
an arbitrary number of streams per user by determining mul-
tiple dominant generalized eigenvectors, and then let the WF
operation decide how many streams can actually be sustained.

V. FROM MAX WSR TO MIN WEIGHTED SUM UNBIASED
MSE (WSUMSE)

For the Rx output x̂k to be an unbiased estimator for the
Tx signal xk, we require

E|xk
x̂k = xk ⇒ fHk Hk,bk gk = 1 . (26)

If the Tx/Rx filters satisfy the unbiasedness constraint, then
we get the Unbiased MSE (UMSE)

euk(fk,g) =
∑
i 6=k

fHk Hk,bigig
H
i HH

k,bifk + ||fk||
2 . (27)

In the complex case, it is more convenient to work with the
alternative unbiasedness constraint

|fHk Hk,bk gk|2 = 1 (28)

in which the phase uncertainty does not affect SINR
or Gaussian capacity. Now consider the following

augmented cost function, the Weighted Sum UMSE,
WSUMSE(g, f , w1, w2)

=

K∑
k=1

uk(w1,ke
u
k(fk,g)−lnw1,k − w2,k(e

u
k(fk,g)+1)+lnw2,k)

+

K∑
k=1

µk(1− |fHk Hk,bkgk|2) +
C∑
i=1

λi(
∑
k:bk=i

||gk||2−Pi)

(29)
where the λi, µk are Lagrange multipliers. After optimizing
over the aggregate auxiliary Rx filters f and weights w1, w2,
we get the WSR back:

min
f

min
w1

max
w2

WSUMSE(g, f , w1, w2) = −WSR(g) (30)

where WSR =
∑
k uk ln(1 + 1

euk
). The augmented cost

function can again be conveniently optimized by alternating
optimization:

min
w1,k

max
w2,k

WSUMSE ⇒ w1,k = 1/euk , w2,k = 1/(euk + 1)

min
fk

WSUMSE ⇒ fk=R−1
k

Hk,bkgk
µkg

H
k HH

k,bk
fk

ukwk
min
gk

WSUMSE ⇒
gk=(Tk+λbkIM )−1HH

k,bk
fk µkf

H
k Hk,bkgk (31)

where wk = w1,k − w2,k > 0. Note that |fHk Hk,bkgk| = 1.
We can choose the phase such that fHk Hk,bkgk = 1. If we
also reparameterize µk = ukwkµ

′

k, where the µ
′

k are chosen
to satisfy fHk Hk,bkgk = 1, then we can rewrite
fk =R−1

k
Hk,bkgk µ

′

k, gk = (Tk+λbkIM )−1HH
k,bk

fkukwk µ
′

k

which are proportional to the Tx/Rx found by the WSMSE
approach.

A word about convergence. Note that given the f and g (or
in other words the euk), the WSUMSE decomposes into the w1

and w2 dependencies, which can be optimized in parallel. The
optimization over w1, w2 jointly decreases the cost function
since ln(

euk
1+euk

) is an increasing function of euk . Now, as long
as the optimization over the w1, w2 is done jointly, every
alternating optimization in (31) decreases the WSUMSE cost
function.

VI. EXPECTED WSR (EWSR)

For the WSR criterion, we have assumed so far that the
channel H is known. The scenario of interest however is
that of partial CSIT. Once the CSIT is imperfect, various
optimization criteria could be considered, such as outage
capacity. Here we shall consider the expected weighted sum
rate E

H| ̂̂HWSR(g,H) =

EWSR(g) = E
H| ̂̂H

∑
k

uk ln(1 + gHk HH
k,bk

R−1
k

Hk,bkgk)

(32)
where we now underlign the dependence of various quantities
on H. The EWSR in (32) corresponds to perfect CSIR
since the optimal Rx filters fk as a function of the ag-
gregate H have been substituted, namely WSR(g,H) =



maxf
∑
k uk(− ln(ek(fk,g))). At high SNR, max EWSR at-

tempts ZF. Now we consider various deterministic approxima-
tions for the EWSR.

VII. EWSR LOWER BOUND: EWSMSE

The criterion EWSR(g) is difficult to compute and to
maximize directly. It is much more attractive to consider
E
H| ̂̂Hek(fk,g,H) as in [13] since ek(fk,g,H) is quadratic

in H. Hence consider optimizing the expected weighted sum
MSE E

H| ̂̂HWSMSE(g, f , w,H).

minf ,w E
H| ̂̂HWSMSE(g, f , w,H)

≥ E
H| ̂̂H minf ,wWSMSE(g, f , w,H) = −EWSR(g)

(33)
or hence

EWSR(g) ≥ −min
f ,w

E
H| ̂̂HWSMSE(g, f , w,H) . (34)

So now only a lower bound to the EWSR gets maximized,
which corresponds in fact to the CSIR being equally partial as
the CSIT (whereas the EWSR criterion corresponds to partial
CSIT but perfect CSIR). Now, since

E
H| ̂̂H HQHH =

̂̂
HQ

̂̂
H
H

+ tr{QCp} IN

E
H| ̂̂H HHQH =

̂̂
H
H

Q
̂̂
H+ tr{Q}Cp

(35)

we get E
H| ̂̂Hek =

̂̂ek = 1−2<{fHk
̂̂
Hk,bkgk}+

∑K
i=1 f

H
k
̂̂
Hk,bigig

H
i
̂̂
H
H

k,bifk

+||fk||2
∑K
i=1 g

H
i Cp,k,bigi+||fk||2.

(36)
where Ct,k,bi are Tx side (LMMSE error) covariance matrices

of Hk,bi . Note that the signal term disappears if ̂̂Hk = 0 !
Hence the EWSMSE lower bound is (very) loose unless the
Rice factor is high, and is useless in the absence of channel
estimates. Alternating optimization as before leads to

min
wk

EWSMSE ⇒ wk = 1/̂̂ek
min
fk

EWSMSE ⇒ fk=
̂̂
R
−1

k
̂̂
Hk,bkgk

min
gk

EWSMSE ⇒ gk=(
̂̂
Tk+λbkIM )−1

̂̂
H
H

k,bk
fkukwk

(37)
wherê̂
Rk =

∑
i
̂̂
Hk,bigig

H
i
̂̂
H
H

k,bi + (1 +
∑
i g

H
i Cp,k,bigi) INk̂̂

Tk =
∑K
i=1 uiwi(

̂̂
H
H

i,bk
fif

H
i
̂̂
Hi,bk + ||fi||2Cp,k,bi) .

(38)

VIII. EXPECTED WEIGHTED SUM UNBIASED MSE
(EWSUMSE)

Consider now the Expected WSUMSE (EWSUMSE) cri-
terion obtained by averaging (29) over E

H| ̂̂H. Alternating

optimization leads to

wk = 1/(̂̂euk(̂̂euk + 1))

fk = Vmax(
̂̂
Hk,bkgkg

H
k
̂̂
H
H

k,bk
+ gHk Cp,k,bkgk INk

,
̂̂
Rk)

gk = Vmax(
̂̂
H
H

k,bk
fkf

H
k
̂̂
Hk,bk + ||fk||2Cp,k,bk ,

̂̂
Tk+λbkIM )

(39)
where ̂̂Rk and ̂̂Tk are like ̂̂Rk and ̂̂Tk in (38) but without
the term for user k. Note that in case of no channel estimate,̂̂
Hk,bk = 0, then

fk = Vmin(
̂̂
Rk)

gk = Vmax(Cp,k,bk ,
̂̂
Tk+λbkIM ) .

(40)

The Rx and Tx filters optimizing the EWSUMSE criterion also
optimize the ESEINR (Expected Signal to Expected Interfer-
ence plus Noise Ratio) and (optimally weighted) ESELNR
(Expected Signal to Expected Leakage plus Noise Ratio):

ESEINRk =
fHk (

̂̂
Hk,bkgkg

H
k
̂̂
H
H

k,bk
+ gHk Cp,k,bkgk INk

)fk

fHk
̂̂
Rkfk

ESELNRk =
gHk (

̂̂
H
H

k,bk
fkf

H
k
̂̂
Hk,bk + ||fk||2Cp,k,bk)gk

gHk (
̂̂
Tk+λbkIM )gk

.

(41)
Of course, the scale factors of the Tx and Rx filters in (39)
need to be adjusted, which could be done as in [10] or (with
the Lagrange multipliers also) using an appropriate adaptation
of the DC programming waterfilling. In that case, fk is left to
be unit norm as in (39) whereas gk from (39) is interpreted as
gk. The stream powers and Lagrange multipliers get adapted

from (24),(25) with ̂̂Tk replacing Tk and Sk being replaced
by ̂̂

Sk =
̂̂
H
H

k,bk

̂̂
R
−1

k
̂̂
Hk,bk + tr{ ̂̂R−1k }Cp,k,bk . (42)

IX. DISCUSSION EWSR APPROXIMATIONS

In the case of partial CSIT we get for the symbol estimate

x̂k = fHk
̂̂
Hk,bk gk xk + fHk H̃k,bk gk xk︸ ︷︷ ︸

sig. ch. error

+

K∑
i=1,6=k

(fHk
̂̂
Hk,bi gi xi + fHk H̃k,bi gi xi︸ ︷︷ ︸

interf. ch. error

) + fHk vk .

(43)

A first approach would be Naive EWSR (NEWSR) which
would just replace H by ̂̂

H in a perfect CSIT approach.
It ignores the channel estimation error in both signal and
interference terms. The EWSMSE approach improves over
NEWSR by accounting for covariance CSIT in the interfer-
ence. This can have significant impact, even on the DoF if
the instantaneous channel CSIT quality does not scale with
SNR. However, note from (38) that EWSMSE also moves the
channel estimation error in the signal term to the interference
plus noise. A further improvement is proposed here in the



EWSUMSE approach which represents a better approximation
of the EWSR. In EWSUMSE, the channel estimation error
in the signal term is accounted for in the signal power. In
a MaMIMO setting, the way mean and covariance CSIT are
combined in the WSUMSE approach for the interference terms
becomes equally optimal as in the EWSR for a large number
of users. Indeed, in the MaMIMO setting the interference
becomes Gaussian due to the Central Limit Theorem and
hence is characterized by its covariance. EWSUMSE further-
more represents an improvement over EWSMSE for capturing
the signal power (matched filtering and diversity aspects)
but only leads to a finite (dB) gain in ESEINR, though its
remaining approximation error over EWSR may be limited. In
the MaMIMO setting, EWSUMSE represents a EWSR upper
bound due to the concavity of ln(.).

Both EWSMSE and EWSUMSE lead to UL/DL duality for
partial CSIT, but only EWSUMSE treats signal and interfer-
ence terms similarly.
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