
A Novel, Low-latency Algorithm
for Multiple Group-By Query Optimization

Duy-Hung Phan
EURECOM

phan@eurecom.fr

Pietro Michiardi
EURECOM

michiard@eurecom.fr

Abstract—Data summarization is essential for users to interact
with data. Current state of the art algorithms to optimize its most
general form, the multiple Group By queries, have limitations in
scalability. In this paper, we propose a novel algorithm, Top-
Down Splitting, that scales to hundreds or even thousands of
attributes and queries, and that quickly and efficiently produces
optimized query execution plans. We analyze the complexity
of our algorithm, and evaluate, empirically, its scalability and
effectiveness through an experimental campaign. Results show
that our algorithm is remarkably faster than alternatives in prior
works, while generally producing better solutions. Ultimately, our
algorithm reduces up to 34% the query execution time, when
compared to un-optimized plans.

I. INTRODUCTION

Data is one of the most valuable assets to a company as it
is transformed to become decisional information. Typically, in
large organizations, users share the same platform to process
data by issuing queries to the data management system,
whether it is a relational database, a traditional data warehouse
or a modern big-data system such as Google BigTable [1] and
MapReduce [2]. Regardless of the underlying technology to
store and process data, typical users or data analytic applica-
tions issue many queries and expect results as fast as possible.
As a consequence, query optimization is vitally important.

In this paper, we focus on optimizing a predominant
operation in databases: data summarization. Users that interact
with data (especially “big data”) constantly feel the needs of
computing aggregates to extract insights and obtain value from
their data assets. Of course, humans can not be expected to
parse through Gigabytes or Terabytes of data. In fact, typically,
users interact with data through data summaries. A summary
is obtained by grouping data on various combinations of
dimensions (e.g., by location and/or time), and by computing
aggregates of those data (e.g., count, sum, mean, etc.) on such
combinations. These summaries are then used as input data
for all kinds of purposes such as joining with other data,
visualization on dashboards, business intelligence decisions,
data analysis, anomaly detection, etc. From this perspective, we
consider data summarization as a crucial task that is performed
extremely frequently. The workload and query templates of
industrial benchmarks for databases justify this point. For
instance, 20 of 22 queries in TPC-H [3] and 80 out of 99
queries in TPC-DS [4] are data summarization queries. In
addition, a significant portion of queries in TPC-H and TPC-
DS access the same data, which means some data is “hotter”
than others. A cross-industry study in [16] actually confirms
this observation. All together, these bestow a great chance

for mulitple Group By query optimization to achieve better
performance.

The family of data summarization queries consists of four
operators: Group By, Rollup, Cube and Grouping Sets. A
Group By operator finds all records having identical values
w.r.t. a set of attributes, and computes aggregates over those
records. For instance, consider a table CarSale(CS) with two
attributes model(M), and package(P), the query: SELECT M,
Count(*) FROM CarSale GROUP BY (M) counts the volume
of car sales for each model.

The Group By operator is the building block of data
summarization, as all other operators are its generalizations. A
Cube operator (introduced by Gray et al. [5]) computes Group
Bys corresponding to all possible combinations of a list of
attributes. Thus, a Cube query such as Select M, P, Count(*)
From CS Group By Cube(M, P) can be rewritten into four
Group By queries:

Q1: Select M,P,Count(*) From CS Group By(M, P)
Q2: Select M, Count(*) From CS Group By(M)
Q3: Select P, Count(*) From CS Group By(P)
Q4: Select Count(*) From CS Group By(*)

The Group By (*) in Q4 denotes an all Group By, (or some-
times called empty Group By). A Rollup operator [5] considers
a list of attributes as different levels of one dimension, and
it computes aggregates along this dimension upward level by
level. Thus a Rollup query like Select M, P, Count(*) From CS
Group By Rollup(M, P) computes volume sale for Group Bys
(M, P), (M), (*) (or Q1, Q2, Q4) in the above example. The
Rollup and Cube operators allow users to compactly describe
a large number of combinations of Group Bys. Numerous
solutions for generating the whole space of data Cube and
Rollup have been proposed [6]–[10]. However, in the era of
“big data”, datasets with hundreds or thousands of attributes
are very common (e.g. data in biomedical, physics, astronomy,
etc.). Due to the large number of attributes, generating the
whole space of data Cube and Rollup is inefficient. Also, very
often users are not interested in the set of all possible Group
Bys, but only a certain subset. The Grouping Sets operator
facilitates this preference by allowing users to specify the exact
set of desired Group Bys. In short, Cube, Rollup and Grouping
Sets are convenient ways to declare multiple Group By queries.

Example 1: Consider a scenario in medical research, in
which there are records of patients with different diseases.
There are many columns (attributes) associated with each pa-
tient such as age, gender, city, job, etc. A typical data analytic

task is to measure correlations between the diseases of patients
and one of the available attributes. For instance, heart attack is
often found in elderly people rather than teenagers. This can
be validated by obtaining a data distribution over two-column
Group By (disease, age) and by comparing the frequency of
heart attack of elderly ages (age ≥ 50) versus teenagers age
(12 ≤ age ≤ 20). Typically, for newly developed diseases,
a data analyst would look into many possible correlations
between these diseases and available attributes. A Grouping
Sets query allows her to specify different Group Bys like
(disease, age), (disease, gender), (disease, job), etc.

In this paper, we tackle the most general problem in
optimizing data summarization: how to efficiently compute a
set of multiple Group By queries. This problem is known to be
NP-complete ([7], [11]), and all state of the art algorithms ([7],
[11]–[13]) use heuristic approaches to approximate the optimal
solution. However, none of prior works scales well with
large number of attributes, and/or large number of queries.
Therefore, in this paper, we present a novel algorithm that:

• Scales well with both large numbers of attributes and
numbers of Group By queries. In our experiment, the
latency introduced by our query optimization algorithm
is several orders of magnitude smaller than that of prior
works. As the optimization latency is an overhead that we
should minimize, our approach is truly desirable.

• Empirically performs better than state of the art al-
gorithms: in many cases our algorithm finds a better
execution plan, in many other cases it finds a comparable
execution plan, and in only a few cases it slightly trails
behind.

In the rest of the paper, we formally describe the problem in
Section II. We then discuss the related work and their limita-
tions in Section III to motivate the need for a new algorithm.
The details of our solution with a complexity analysis are
presented in Section IV . We continue with our experimental
evaluation in Section V. A discussion about our algorithm and
its extension is in Section VI. Finally we conclude and discuss
our future work in Section VII.

II. PROBLEM STATEMENT

There are two types of query optimization: single-query
optimization and multi-query optimization. As its name sug-
gest, single-query optimization optimizes a single query by
deciding, for example, which algorithm to run, configuration
to use and optimized values for parameters. An example
is the work in [14]: when users issue a Rollup query to
compute aggregates over day, month and year, the optimization
engine automatically picks the most suitable state of the art
algorithms [15] and set the appropriate parameter to obtain
the lowest query response time.

On the other hand, multi-query optimization optimizes the
execution of a set of multiple queries. In large organizations,
there are many users who share the same data management
platform, resulting in a high probability of systems having
concurrent queries to be processed. A cross industry study [16]
shows that not all data is equal: in fact, some input data is
“hotter” (i.e. get accessed more frequently) than others. Thus,
there are high chances of users accessing these “hot” files
concurrently. This is also verified by in industrial benchmarks

(TPC-H and TPC-DS) in which their queries frequently access
the same data. The combined outcome is that optimizing
multiple queries over the same input data can be significantly
beneficial.

The problem we address in this paper, the multiple Group
By query optimization (MGB-QO), can come from both sce-
narios. From the single-query optimization perspective, any
Cube, Rollup or Grouping Sets query is equal to multiple
Group Bys. From the multi-query optimization perspective, the
fact that many users issue one Group By over the same data
means multiple Group Bys and it requires optimization. More
formally, we consider an offline version of the problem:

• For a time window ω, without loss of generality, we
assume the system receives data summarization queries
over the same input data that contains one of the following
operators:
◦ Group By
◦ Rollup
◦ Cube
◦ Grouping Sets

• These queries correspond to n Group By queries
{Q1, Q2, ..., Qn}

In reality, hardly any query arrives at our system at the
exact same time. The time window ω can be interpreted as
a period of time in which queries arrive and are treated as
concurrent queries. The value of ω can either be predetermined
or dynamically adjusted to suit the system workload and
scheduler, which lead to the online version of this problem.
However, the online problem is not addressed in this paper: it
remains part of our future work.

A. Definitions

We assume that the input data is a table T with m attributes
(columns). Let S = {s1, s2, ..., sn} be the set of groupings that
have to be computed from n queries {Q1, Q2, ..., Qn}, where
si is a subset of attributes of T . Each query Qi is a Group By
query:

Qi: Select si, Count(*) From T Group By si

To simplify the problem, we assume that all queries per-
form the same aggregate measure (function) (e.g. Count(*)).
Later in Section VI-B, we discuss the solution to adapt to
different aggregate measures.

a) Search DAG: Let Att = {a1, ...am} =
⋃∞

i=1 si be
the set of all attributes that appear in n Group By queries. We
construct a directed acyclic search graph G = (V,E) defined
as follows. A node in G represents a grouping (or a Group By
query). V is the set of all possible combinations of groupings
constructed from Att plus a special node: the root node T .
The root node is essentially the input data itself.

An edge e = (u, v) ∈ E from node u to node v indicates
that grouping v can be computed directly from grouping u.
For instance, an edge AB → A means that grouping A can be
computed from grouping AB. There are two costs associated
with an edge e between two nodes: a sort cost csort(e) and
a scan cost cscan(e). If grouping AB is sorted in order of
(A,B), computing grouping A would require no additional
sort, but only a scan over the grouping AB. We denote this

cost by cscan(e). However if grouping AB is not sorted, or
sorted in order of (B,A), computing grouping A would require
a global sort on the attribute A, incurring a sort cost csort(e).
The costs are of course different in two cases. We note the
only exception: the root node. If input data is not sorted, then
all outgoing edges from the root node have only one sort cost.

ABC

ACAB BC

CBA

T

Fig. 1: An example of a search DAG

We call G a search DAG. Next, we show an example
with four queries. In this example, we have an input table
T (A,B,C) and four Group By queries:

Q1: Select A, Count(*) From T Group By(A)
Q2: Select B, Count(*) From T Group By(B)
Q3: Select C, Count(*) From T Group By(C)
Q4: Select A,B,Count(*) From T Group By(A,B)

From the above definitions, we have:

• S = {A,B,C,AB}.
• Att = {A,B,C}.
• V = {T, ∗, A,B,C,AB,AC,BC,ABC}.

It is easy to see that S ⊆ V . We call S the terminal (or
mandatory) nodes: all of these nodes have to be computed
and materialized as these are outputs of our Group By queries
{Q1, Q2, Q3, Q4}. Other nodes in V \ S are additional nodes
which may be computed if it helps to speed up the execution
of computing S. In this example, even though grouping ABC
is not required, computing it allows S = {A,B,C,AB} to
be directly computed from ABC rather than the input table
T . If the size of ABC is much smaller than T , the execution
time of S is indeed reduced. Because V contains all possible
combinations of groupings constructed from Att, we are sure
that all possible groupings that help reduce the total execution
cost are inspected. We also prune the space of V to exclude
nodes that have no outgoing edges to at least one of the
terminal nodes, i.e. these nodes certainly cannot be used to
compute S. The final search DAG for the above example is
shown in Figure 1.

Intuitively if a grouping is used to compute two or more
groupings, we want to store it in memory or disk to serve later
rather than recompute it.

b) Problem Statement: In data management systems,
the problem of multiple Group By query optimization is
processed through both logical and physical optimization. In
logical optimization, we set to find an optimal solution tree

G′ = (V ′, E′). The solution tree G′ is a directed subtree from
G, rooted at T , that covers all terminal nodes si ∈ S. It can
be seen as a logical plan for computing multiple Group By
queries efficiently. This is the main objective of this paper.

The physical optimization, as its name suggests, takes care
of all physical details to execute the multiple Group By queries
and return actual aggregates. Understandably, different data
management systems have different architectures to organize
their data layout, disk access, indexes, etc. Thus, naturally
each system may have is own technique to implement the
physical multiple Group By operator. For reference purpose,
some example techniques are PipeSort, PipeHash [7], Partition-
Cube, Memory-Cube [10] or newer technique for multipro-
cessors in [17] for databases, or In-Reducer Grouping [15],
[18] for MapReduce and its extensions. We note that the
physical optimization is not our paper’s target: our solution
is not affected by any particular technique. Also, regardless of
the physical techniques, the grouping order is guided by the
solution tree G′ obtained from our logical optimization.

More formally, in the optimized solution tree G′ we have:

1) S ⊆ V ′ ⊆ V .
2) E′ ⊂ E and for any edge e(u, v) ∈ E′, there is only one

type of cost associated to edge e:

c(e) =

{
csort(e)

cscan(e)

3) From any node u ∈ V ′, there is at most one outgoing
scan edge.

ABC

AB

CA B

T

Fig. 2: An example of a solution tree

An optimal solution tree is the solution tree with the
minimal total execution cost C(E′) =

∑
e∈E′ c(e). Figure 2

shows an optimal solution tree for the above example. The
dotted lines represent sort edges, and the solid lines show the
scan edges. The bold nodes are the required grouping (i.e.
terminal nodes). The italic node (ABC) is the additional node
whose computation helps to reduce the total execution cost of
G′. Additional groupings BC and AC are not computed as
doing so does not bring down the cost of G′.

Finding the optimal solution tree for multiple Group By
queries is an NP-complete problem[11], [19]. State of the
art algorithms use heuristic approaches to approximate the
solution. In the next Section, we discuss in more detail why
none of those algorithms scale well with large number of
attributes, and/or large number of Group By queries. This
motivates us to find a more scalable approach.

B. Cost model

Our primary goal is to find the solution tree G′ with a
small total execution cost. The total execution cost is the sum
of the cost from all edges in G′. Therefore, we need a cost
model that assigns the scan and sort costs to all edges in our
search graph. However, our work does not depend on a specific
cost model as its main purpose is to quantify the execution
time of computing a node (a Group By) from another node.
Any appropriate cost model for various systems like parallel
databases, MapReduce systems, etc. can be plugged into our
algorithm.

III. RELATED WORK

Optimizing data summarization in traditional databases has
been one of the main tasks in database research. The multiple
Group By query problem are studied through the lenses of the
most general operator in data summarization: Grouping Sets.
The Grouping Sets is syntactically an easy way to specify
different Group By queries at the same time, therefore all of
Group By, Rollup, Cube queries can be translated directly into
a Grouping Sets query.

To optimize Grouping Sets queries, the common approach
is to define a directed acyclic graph (DAG) of nodes, where
each node represents a single Group By appearing in the
Grouping Sets query [7], [11]–[13], [19]. An edge from node
u to node v indicates that grouping v can be computed from
grouping u. For example: group BC can be computed from
BCD.

There are two major differences among various works to
compute Grouping Sets. The first difference is the cost model:
how to quantify a cost (expressed as a weight of an edge)
to compute a group v from a group u. PipeSort [19] sets
the weight of an edge (u, v) to be proportional to the cost
of re-sorting u to the most convenient order to compute v.
For example, to compute BC, the main cost would be to
resort ABC to BCA to compute (B,C). This is a sort cost.
However, if grouping ABC is already in the sorting order of
(B,C,A), the cost to compute BC would be mainly scan
(hence scan cost). In contrast, [12] and [11] simplify the
cost model by having only one weight for each edge (u, v),
regardless of how physically v is computed: the weight of an
edge (u, v) is equal to the cardinality of group u.

The other difference is, given a DAG of Group By nodes
and weighted edges with appropriate costs, how to construct
an optimal execution plan that covers all required Group Bys
with the minimum total cost. This problem is proven to be NP-
complete ([11], [19]), thus approximations through heuristic
approaches are studied.

The work in [12] gives a simple greedy approach to address
the problem. It considers Group By nodes in descending order
of cardinality. Each Group By is connected to one of its super
nodes. Super nodes of v is any node u such that (u, v) exists. If
there are super nodes that can compute this Group By without
incurring a sorting cost, it chooses the one with the least cost.
This Group By becomes a scan child of its parent node. If
all super nodes already have a scan child, it chooses the super
nodes with the least sort cost. This approach is called Smallest
Parent. It is simple and fast, however it does not consider any

additional node that can help reducing the total cost. In the
rest of this section, we consider algorithms that include also
additional nodes.

In [7], the authors transform the problem into a Minimal
Steiner Tree (MST) on directed graph problem. Because the
cost of an edge depends on the sorting order of the parent
node, a Group By node is transformed into multiple nodes:
each corresponds to a sorting order that can be generated
(using permutation) from the original Group By node. Then
the approach in [7] adds cost to all pairs of nodes, and
uses some established approximation of MST to retrieve the
optimized solution. The main drawback of this approach is
that, the transformed DAG contains a huge number of added
nodes and edges (because of permutation), and even a good
approximation of MST problem cannot produce solutions in
feasible time, as any good MST approximation is at least
O(|V |2) where |V | is the number of nodes. For example, to
compute Cube with 8 attributes, the transformed DAG consists
of 109, 601 nodes and 718, 178, 136 edges, w.r.t. 256 nodes and
6, 561 edges of the original DAG.

In another work [13], the authors present a greedy approach
on the search DAG of Grouping Sets. Given a partial solution
tree T (which initially includes only the root node), the idea
is to consider all other nodes to find one that can be added to
T with the most benefit. When the node x is added to T , it is
first assumed to be computed from the input data set, and this
incurs a sort cost. Then the algorithm in [13] tries to minimize
this cost, by finding the best parent node from which x can
be computed. Once x’s parent is chosen, this approach finds
all the nodes that are beneficial if computed from x rather
than its current parent. This benefit is then subtracted by the
cost of adding x to yield the total benefit of adding x to T
(which the benefit value can be positive or negative). This
process is repeated until it cannot find any node that brings
positive benefit to add to T. The complexity of this approach
is O(|V ||T |2) where |V | = 2m, m is the number of attributes
and |T | is the size of the solution tree, which is typically larger
than the number of terminal nodes (|T | ≥ n). Note that while
|V | is much smaller than the number of nodes in [7] because
of no added permutation, it is still problematic if m is large.

While the approach in [13] is more practical than the
approach in [7], it cannot scale well with a search DAG of a
much larger number m of attributes, in which the full space of
additional nodes and edges can not be efficiently enumerated.
To address this problem, [11] proposes a bottom-up approach.
It first constructs a naı̈ve plan in which all mandatory nodes
are computed from the input data set. Then from all children
nodes of the input data set, it considers all pairs of nodes (x, y)
that can be merged. For each pair, it computes the cost of a
new plan obtained by merging this pair of nodes. After that, it
pick the pair, say (v1, v2), that has the lowest cost and replace
the original plan with this new plan. In this new plan, the
node v1 ∪ v2 is included to the solution tree. In other words,
an additional node is only considered and added if and only if
it is the parent of at least two different nodes. This eliminates
the task of scanning all nodes in the search DAG, making
this algorithm a major improvement over previously described
algorithms. At some point in time, if all the possible pairs
result in a worse cost then the current plan, the algorithm stops.
This algorithm callsO(n3) times the procedure of merging two

nodes where n is the number of terminal nodes. The merging
procedure has the complexity of O(n). Overall, the complexity
of this algorithm is O(n4).

The advantage of the algorithm described in [11] is that,
it scales irrespectively to the space of |V | but only to n, the
number of Group By queries. If n is small, it scales better
than [7], [13]. However, for dense multiple Group By queries,
i.e. large n and small m (e.g. computing Cube of 10 attributes
results in n = 1024), this algorithm scale worse than [7], [13].
This motivates us for a more scalable and efficient algorithm
to approximate the solution tree.

IV. THE TOP-DOWN SPLITTING ALGORITHM

In this Section, we propose a heuristic algorithm called
Top-Down Splitting to find a solution tree in the multiple
Group By query optimization discussed in Section II. Our
algorithm scales well with both large numbers of attributes
and large number of Group By queries. Compared to state
of the art algorithms, our algorithm runs remarkably faster
without sacrificing the effectiveness. In Section IV-A, we
present our algorithm in detail with its complexity evaluation
in Section IV-B. Finally, we discuss the choice of appropriate
values for an algorithm-wise parameter, as it affects directly
the running time of our algorithm.

A. Top-Down Splitting algorithm

Our algorithm consists of two steps. The first step is to
build a preliminary solution tree that consists of only terminal
nodes and the root node. Taking this preliminary solution tree
as its input, the second step aims to repeatedly optimize the
solution tree by adding new nodes to reduce the total execution
cost. While the second step sounds similar to [13], we do
not consider the whole space of additional nodes. Instead, we
consider only additional nodes that can evenly split a node’s
children into k subsets. Here k is an algorithm-wise parameter
set by users. By trying to split a node’s children into k subsets,
we apply a structure to our solution tree: we transform the
preliminary tree into a k-way tree (i.e. at most k fan-out).
Observing the solution trees obtained from state of the art
algorithms, we see that most of the times they have a relatively
low fan-out k.

a) Constructing the preliminary solution tree: This step
returns a solution tree including only terminal nodes (and of
course, the root node). Later, we further optimize this solution
tree. The details of this step are shown in Algorithm 1.

We sort the terminal nodes in descending order of their
cardinality. As we traverse through terminal nodes in descend-
ing order, we add them to the preliminary solution tree G′:
we find their parent node in G′ with the smallest sort cost
(line 5). Obviously, nodes with smaller cardinality cannot be
parents of a higher cardinality node. Thus we assure that all
possible parent nodes are examined. Up to this point, we have
considered only the sort cost. When all terminal nodes are
added, we update the scan/sort connection between a node
u and its children. Essentially, the fix scan(u) procedure
finds a child node of u that brings the biggest cost reduction
when its edge is turned from sort to scan mode. The output of
Algorithm 1 is a solution tree G′ which is not yet optimized.

Algorithm 1 Step 1: Constructing preliminary solution

1: function BUILD PRELIMINARY SOLUTION
2: G′ ← T
3: sort S in descending order of cardinality
4: for v ∈ S do
5: umin = argminu csort(u, v)|u ∈ G′

6: G′ ← G′ ∪ v: add v to G′

7: E′ ← E′ ∪ esort(umin, v)
8: end for
9: for u ∈ G′ do

10: fix scan(u)
11: end for
12: return G′

13: end function

Algorithm 2 Step 2: Optimizing G′

1: procedure TOPDOWN SPLIT(u, k)
2: repeat
3: b← partition children(u, k)
4: until (b == false)
5: Children = {v1...vq}|(u, vi) ∈ E′

6: for v ∈ Children do
7: topdown split(v, k)
8: end for
9: end procedure

b) Optimizing the solution tree: In this step, we call
topdown split(T, k), with T is the root node, to further
optimize the preliminary solution tree obtained in Algorithm 1.
The procedure topdown split(u, k) (Algorithm 2) repeatedly
calls partition children(u, k) (Algorithm 3) that splits the
children of node u into at most k subsets. The function
partition children(u, k) returns true if it can find a way to
optimize u, i.e. split children of node u into smaller subsets
and reduce the total cost. Otherwise, it returns false to indicate
that children of node u cannot be further optimized. We then
recursively apply this splitting procedure to each child node
of u. Since the flow of our algorithm is to start partitioning
from the root down to the leaf nodes, we call it the Top-Down
Splitting algorithm.

The function partition children(u, k) (Algorithm 3) tries
to split the children of u into at most k subsets. Each of these k
subsets is represented by an additional node that is the union
of all nodes in that subset. The intuition is that, instead of
computing children nodes directly from u, we try to compute
them from one of these k additional nodes and check if this
reduces the total execution cost. Observing the solution tree
obtained from state of the art algorithms, we see that in many
situation, the optimal splitting strategy may not be exactly k,
but a value k′ (1 ≤ k′ ≤ k). By trying every possible split k′
from 1 to k, we compute the new total execution cost with new
additional nodes, and retain the best partition scheme, i.e. the
one with the lowest total cost. Then, we update the solution
graph accordingly: removing edges from u to children, adding
new nodes and edges from u to new nodes, and from new
nodes to children of u.

The divide subsets(u, k′) (Algorithm 4) is called to di-
vide all children of u into k′ subsets and return k′ new

Algorithm 3 Find the best strategy to partition children of a
node u to at most k subsets

1: function PARTITION CHILDREN(u, k)
2: CN = {v1...vq}|(u, vi) ∈ E′

3: if q ≤ 1 then . q: number of child nodes
4: return false
5: end if
6: Cmin = cost(G′)
7: SS ← ∅
8: if k > q then
9: k = q . constraint: k ≤ q

10: end if
11: for k′ = 1→ k do
12: A = divide subsets(u, k′)
13: compute the new cost C ′

14: if C ′ < Cmin then
15: Cmin ← C ′ . remember the lowest cost
16: SS ← A . remember new addition nodes
17: end if
18: end for
19: if SS 6= ∅ then
20: Update G′ according to SS
21: return true
22: else
23: return false
24: end if
25: end function

Algorithm 4 Dividing children into k′ subsets

1: function DIVIDE SUBSETS(u, k′)
2: CN = {v1...vq}|(u, vi) ∈ E′

3: sort CN by the descending order of cardinality
4: Cmin = cost(G′)
5: for i = 1→ k′ do
6: SSi ← ∅ . initialize subsets ith
7: end for
8: for v ∈ CN do
9: imin = argmini attach(v, SSi)|i ∈ 1, ...k′

10: SSimin
← SSimin

∪ v
11: end for
12: return SS = {SSi}∀1 ≤ i ≤ k′
13: end function

additional nodes. At first, we sort the children nodes (CN) in
descending order of their cardinality. As we traverse through
these children nodes, we add each child node into a subset
that yields the smallest cost. The cost of adding a child node
v into a subset SSi is:

attach(v, SSi) =
[
csort(u, SSi ∪ v)

+ csort(SSi ∪ v, v)− csort(u, v)
]

Here SSi denotes the additional node representing the ith
subset (i ≤ k′). If a node v is attached to a subset SSi, the
new additional node is updated: SSi ← SSi ∪ v.

Now that we have described our two steps, our algorithm
is described in Algorithm 5.

Algorithm 5 Top-Down Splitting algorithm

1: G′ = build preliminary solution()
2: topdown split(G′.getRoot(), k)

B. Complexity of our algorithm

In this Section, we evaluate the complexity of our algorithm
in the best case and the worst case scenarios. The average case
complexity depends on uncontrolled factors such as: input data
distribution, relationship among multiple Group Bys, specific
cost models, etc. We cannot compute the average complexity
without making assumptions on such factors. Therefore this
remains part of our future work. Empirically, we observe that
in our experiments the average case leans towards the best case
with just a few exceptions that are closer to the worst case.

a) The worst case scenario: As the first step and the
second step of our algorithm are consecutive, the overall
complexity is the maximum complexity of two steps. It is
easy to see that the complexity of Algorithm 1 is O(n2) where
n = |S| is the number of Group By queries.

For the second step, we first analyze the complexity of
Algorithm 3: it calls O(k) times the divide subsets function
and it computes O(k) times the cost of the modified solution
tree. The complexity of the divide subsets function (i.e.
Algorithm 4) is O(max(k2, kq)). As we cannot divide q
children nodes into more than q subsets, k ≤ q. Therefore
the complexity of Algorithm 4 is O(kq). It is not difficult to
see that q is bounded by n, i.e. q ≤ n. The case of q = n
happens when all mandatory nodes connect to the root node.
Therefore the worst case complexity of Algorithm 4 is O(kn)

Since Algorithm 3 limits itself in only modifying node u
and its children, we can compute the new cost by accounting
only altered nodes and edges. There are at most k new
additional nodes, and there are q children nodes of node u,
so computing each time a new cost of the solution tree is in
O(k+ q) time. As k ≤ q ≤ n, the complexity of computing a
new cost is O(n), which is smaller than O(kn) of Algorithm 4.
As such, the worst case complexity of Algorithm 3 is O(k2n)

T

A

B

C D

BCD

ABCD

CD

Fig. 3: An example of worst case scenario with k = 2

The complexity of Algorithm 2 depends on how many
times partition children is called. Let |V ′| be the number
of nodes in the final solution tree. Clearly topdown split

T

A B C D

AB CD

ABCD

Fig. 4: An example of best case scenario with k = 2

is called at most |V ′| times, and each time it calls
partition children at least once. In order for topdown split
to terminate, partition children has to return false, and it
does so in O(|V ′|) time.

Now, for each time topdown split is called,
partition children is called more than once if and
only if it returns true, which means at least an additional
node is added to V ′. When an additional node is added,
it puts together a new subset, which consists of at least 2
children nodes or more. In other words, if an additional node
is formed, in the worst case it applies a binary structure to the
solution tree that has maximum n leaves nodes. A property of
binary trees states that |V ′| ≤ 2n− 1, which means there are
no more than n− 1 additional nodes in the final solution tree.
As a consequence, in the worst case, partition children
returns true in essentially O(n) time. Since |V ′| ≤ 2n− 1, it
also returns false in O(|V ′|) ≡ O(n) time.

The worst-case complexity of Algorithm 2 (i.e. our second
step) is O(k2n2). As O(k2n2) is higher than O(n2) of the first
step, the worst case complexity of our algorithm is O(k2n2).
Figure 3 shows an example of the optimized solution tree
obtained in the worst case scenario.

b) The best case scenario: In the best case scenario,
we obtain a balanced k-way solution tree. Figure 4 shows
an example of such a balanced solution tree. In this sce-
nario, Algorithm 2 calls partition children to return true
in O(logkn) times instead of O(n) times like the worst case
scenario. Therefore, the best case complexity is O(k2nlogkn).

C. Choosing appropriate values of k

Our algorithm depends on an algorithm-wise parameter: k
representing the fan-out of the solution tree. We observe that
for solution trees obtained from state of the arts algorithm,
the value of k is rather small. For example, let us consider a
primary study case that motivates the work in [11]: a Grouping
Sets query to compute all single-column Group By in a table
with m attributes (i.e. the number of Group By is equal to
m). In this example, small values of k such as 2 ≤ k ≤ 4 are
sufficient to find an optimized solution tree. In our experiments
in Section V, high values of k do not result in a lower cost
solution tree. We note that our observation is in line to what
observed in [11].

For any node u, let qu be the number of its children. Clearly
we cannot force to split u’s children into more than qu subsets,
i.e. k ≤ qu. We denote k maxu = qu. Thus, any value of k

higher than qu is wasteful, and our algorithm does not consider
such values (line 9 in Algorithm 3).

On the other hand, for some node u, we cannot split its
children into less than a certain number of subsets. Let us
consider an example in which we want to partition 5 children
nodes of u = ABCDE: ABCD,ABCE,ABDE,ACDE
and BCDE. Clearly splitting these children nodes into any
number of subsets smaller than 5 is not possible, as merging
any pairs of nodes results in the parent node u itself. In this
example, 5 is the minimum number of subsets for node u.
Values of k smaller than 5 result in no possible splits. We call
this the lower bound of k. To find an exact lower bound of k in
a specific node u is not a trivial task. For instance, let us replace
5 children nodes of u = ABCDE with: A,B,C,D,E. In this
situation, the lower bound of k for node u is 2. We denote
k minu = 2

As k is an algorithm wise parameter, we have the fol-
lowing: k minu ≤ k, ∀u ∈ T . Obviously, we can set k =
max(k minu). However, doing this is not always beneficial.
Let us continue with our example, as Figure 3 and Figure 4
suggests, for node ABCD and its children (A,B,C,D), k = 2
is sufficient to obtain an optimized solution tree; in other
words, for this node, k = 5 is wasteful.

Algorithm 6 Adaptively dividing children

1: function DIVIDE SUBSETS(u, k′)
2: CN = {v1...vq}|(u, vi) ∈ E′

3: sort CN by the descending order of cardinality
4: Cmin = cost(G′)
5: p = k′ . p: the current number of subsets
6: for i = 1→ p do
7: SSi ← ∅ . initialize subsets ith
8: end for
9: for v ∈ CN do

10: imin = argmini attach(v, SSi)|(SSi ∪ v) 6= u
11: if imin 6= null then
12: SSimin

← SSimin
∪ v

13: else
14: p← p+ 1 . increase number of subsets
15: SSp ← v . add v to the new subset
16: end if
17: end for
18: return SS
19: end function

In the general case, if we partition children nodes of u into
a predetermined number of subsets k, i) for some node u it
could be impossible to partition in such a way; ii) for some
node u′ it may be wasteful. Again, our observation is that
most nodes have a very low fan-outs. Nodes with high upper
bound of k are relatively scarce. So our strategy is to attempt
partitioning children nodes of u into small numbers of subsets
(i.e., k is small). Whenever such a split is unachievable, we
dynamically increase our number of subsets until the partition
is possible. We modify Algorithm 4 to reflect the new strategy
(Algorithm 6). The gist of this algorithm is that, we can attach
a child node v of u to a subset SSi if and only if (SSi∪v) 6= u.
When there is no such SSi, we add a new subset (i.e. at this
node, we increase the number of subsets by 1).

V. EXPERIMENTS AND EVALUATION

An optimization algorithm for the multiple Group By query
problem can be evaluated from three different aspects:

• Optimization latency: the time (in second) that an algo-
rithm takes to return the optimized solution tree. It is
also the optimizing overhead. The lower the optimization
latency, the better. This is an important metric to assess
the scalability of an algorithm.

• Solution cost: given a cost model and a solution tree, it
is the total of scan and sort cost associated to edges of
the tree. A lower cost means a better tree. This metric
assesses the effectiveness of an algorithm.

• Runtime of the solution tree: the execution time (in sec-
ond) to compute n Group By queries using the optimized
execution plan.

In this Section, we empirically evaluate the performance
of our algorithm compared to other state of the art algorithms.
The experimental results of this Section can be summarized as
follows:

• The optimization latency of our algorithm is up to several
orders of magnitude smaller than other algorithms when
scaling to both large number of attributes and large
number of Group By queries. In our experiments, the
empirical results suggest that, on average, our algorithm
leans towards the best case scenario more than to the
worst case scenario (analyzed in Section IV-B).

• We do not sacrifice the effectiveness of finding an opti-
mized solution cost for low latency. In fact, compared to
other algorithms, in many cases our algorithm finds better
solutions, in many other cases it finds comparable ones,
and in only a few cases it slightly trails behind.

• Using PipeSort as the physical implementation to com-
pute multiple Group By queries, we show that our algo-
rithm can reduce the execution runtime significantly (up
to 34%) compared to the naı̈ve solution tree, in which all
Group Bys are computed from the input data.

A. Experiment Setup

The experiments are run on a machine with 8GB RAM.
To evaluate the latency and the solution cost of various
algorithms, we synthetically generate query templates. Each
query template consists of i) a list of Group By queries;
ii) cardinalities of nodes. The cardinalities of nodes can be
obtained from available datasets using the techniques described
in [20], [21], or can be randomly generated (with an uniform
distribution, or a power law distribution to represent skewed
data). In some situations (e.g. large number of attributes),
we cannot effectively generate all node cardinalities. In this
situation, we take the product of cardinality of each attribute
in a node to be the cardinality of that node.

To evaluate the improvement that an optimized solution tree
brings compared to a naı̈ve one, we issue a query that contains
all two-attribute Group Bys from the lineitem table of TPC-
H [3]. This table contains 10 million records with 16 attributes.
For each algorithm, we report its optimization latency as well
as the query runtime obtained when we execute the PipeSort
operator guided by its solution tree.

The state of the art algorithms that we compare are the ones
presented in [13] and in [11]. We omit the algorithm presented
in [7] because it is shown to be inferior to the algorithm in [13].
For convenience, we name our algorithm Top-Down Splitting
or TDS, the one in [11] Bottom-Up Merge (BUM), and finally
the one in [13] Lattice Partial Cube or LPC. For the case of
our algorithm, as k can have multiple values, we evaluate both
cases: small value k = 3 and large value k = n.

B. Cost model in our experiments

As discussed in Section II-B, we need a cost model to
assign scan and sort cost to edges of the search graph. In our
experiments, we use a simple cost model as a representative in
evaluating all different algorithms to find G′. Again, we stress
that any appropriate cost model can be used. We define the
two costs of an edge as follows:

• Scan cost: cscan(u → v) = |u| where |u| is the size
(cardinality) of node u
• Sort cost: csort(u→ v) = |u| ∗ log2|u|

We assume that the cardinality of any node u is readily
available: estimating |u| is not the focus of our work, and
we rely on works of cardinality estimation such as [20], [21].
Clearly, a bad cardinality estimation worsen the quality of a
solution tree, but all algorithms suffer from the same issue.

C. Scaling with the number of attributes

Number of attributes
5 10 15 20 25 30 35 40 45 50

O
p

ti
m

iz
a

ti
o

n
 L

a
te

n
c
y
 (

s
e

c
o

n
d

)

0

2

4

6

8

10

12

14

16

18

BUM
LPC
TDS k=3
TDS k=n

Fig. 5: Single-attribute Group By - Optimization latency.

Number of attributes

5 10 15 20 25 30 35 40 45 50

N
o

rm
a

li
z
e

d
 S

o
lu

ti
o

n
 C

o
s
t

0.75

0.8

0.85

0.9

0.95

1

1.05

BUM

LPC

TDS k=3

TDS k=n

Fig. 6: Single-attribute Group By - Normalized solution cost.

In this experiment, we generate the query templates as
follows: i) each query template consists of all single-column
(or single-attribute) Group By be generated from a table T ;
ii) the number of attributes, m, in table T is from 5 to 49;
iii) for each number of attributes, we randomly generate 100
different sets of grouping cardinalities, in which 50 sets have
uniform distribution, and 50 sets have power law distribution
with α = 2.5. For each number of attributes and algorithm,
we compute the average of the solution cost of the optimized
solution tree; as well as the average of its optimization latency.

The results for optimization latency are plotted in Figure 5.
The latency of the Lattice Partial Cube algorithm exponentially
increases with the number of attributes. This is in line with
its complexity of O(2m|T |2) where m is the number of
attributes. For the sake of readability, we omit the latency of
LPC for large number of attributes. In this experiment, with
its complexity of O(n4) the Bottom-Up Merge latency scales
better than LPC. Nevertheless, as the line of BUM starts to
take off at the end, we expect that for large n (e.g. n ≥ 100),
BUM has a rather high optimization latency. Our algorithm
achieves the best scalability: it takes less than 0.01 second to
optimize n = 49 queries for both cases of k: k = 3 and k = n.
Understandably, the latency of TDS with k = n is higher than
TDS with k = 3. However, as both cases have very small
latencies, this is indistinguishable in Figure 5.

We note that the solution cost depends on the cost model,
and our cost model (see Section V-B) depends on grouping
cardinalities, which are different in every query template we
generate. Thus, we normalize every cost to a fraction of the
solution cost obtained by a baseline algorithm (here we choose
BUM) so that it is easier to compare the solution costs obtained
by different algorithms. The normalized solution costs are
shown in Figure 6. Due to the large amount of time for LPC to
complete with large number of attributes m, we skip running
LPC for m ≥ 20. For most number of attributes, on average,
our algorithm finds better solution trees than BUM, sometimes
its cost is up to 20% smaller. Only in few query templates,
our solution tree’s cost is a little higher (within 1.5%) than
BUM. Compared to LPC, TDS produces comparable execution
plans. We notice several spikes of TDS and LPC. The reason
is because BUM merges 2 Group Bys at a time and tends to
produce uneven subsets, especially when the number of queries
is an odd number. However, for some queries, BUM merging
results in even subsets. In this case, its solution trees are close
to TDS and LPC - thus the spikes.

Table I shows the average of solution costs obtained
by each algorithm for every query template, normalized to
fractional costs of BUM. Altogether, our algorithm is a little
better than LPC. Also as expected, the execution cost acquired
by TDS k = 3 is a little higher than for k = n, however by
not much (less than 0.5%). In summary, our results indicate
that for a comparable, and often lower cost than that of prior
works, our approach yields substantial savings in optimization
latency and scalability.

Algorithm BUM LPC TDS k = 3 TDS k = n
Normalized Cost 1 0.9419 0.9406 0.9361

TABLE I: Average solution cost - Single-attribute queries

D. Scaling with the number of queries

In this experiment, we assess the scalability of various
algorithms with respect to the number of queries. To fulfill
such a goal, we limit the number of attributes to be very small
(3 ≤ m ≤ 9), and generate the query templates for a Cube
query, i.e. all possible combination of Group By queries. The
node cardinalities are generated similarly to Section V-C.

Number of attributes in the CUBE query
3 4 5 6 7 8 9

O
p

ti
m

iz
a

ti
o

n
 L

a
te

n
c
y
 (

s
e

c
o

n
d

)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

BUM
LPC
TDS k=3
TDS k=n

Fig. 7: Cube queries - Optimization latency

Number of attributes in the CUBE query
3 4 5 6 7 8 9

N
o

rm
a

liz
e

d
 S

o
lu

ti
o

n
 C

o
s
t

0.75

0.8

0.85

0.9

0.95

1

1.05

BUM
LPC
TDS k=3
TDS k=n

Fig. 8: Cube queries - Normalized solution cost

The optimization latency for this experiment is in Figure 7.
To emphasize the difference in latency between two cases TDS
k = 3 and TDS k = n, we select the log scale for the y-
axis. From Figure 7, we see that the latency of TDS k = 3 is
slightly lower than TDS k = n. Nevertheless, in both cases our
algorithm still scales remarkably better than other algorithms.
With m = 9, there are 29 = 512 number of queries: it takes our
algorithm less than 0.1 second to complete. As we mentioned
in Section III, in the case of dense multiple Group By queries,
i.e. large n and small m, the BUM algorithm actually scales
worse than the LPC algorithm (of which the complexity in the
case of a Cube query of becomes O(n3)).

Figure 8 shows the solution cost of different algorithms in a
Cube query. Despite having the highest latency and thus more
time to generate optimized plans, the BUM algorithm does
not produce the best solution tree (i.e. lowest execution cost).
The reason is that BUM starts the optimization process from a
naı̈ve solution tree where all nodes are computed directly from

the input data. For each step, BUM considers all possible pairs
to merge and it selects the one with the lowest cost. As BUM
is a gradient search approach, for large number of queries,
there are too many paths that can lead to local optimum. In
contrast to BUM, LPC and TDS start the optimization process
from a viable solution tree T , which i) has much lower cost
compared to the naı̈ve solution tree; ii) has far less cases (e.g.
paths) to consider. In the case of a Cube query, the initial
solution tree T in LPC and TDS is closely similar to the final
solution tree, with only some minor modifications. This helps
both algorithms to achieve much lower latency. Between our
algorithm and LPC, generally the solution tree obtained by
LPC is slightly better than TDS (both cases). However, the
differences are within 1.5%, which is acceptable if we want to
trade effectiveness in finding solution tree for better scalability.
For example, when m = 9, our algorithm runs in less than 0.05
second, while LPC runs in 1.5 second. Between two cases of
TDS, we actually find very similar solution trees since they
both start from similar preliminary trees.

E. Scaling with both number of queries and attributes

Number of queries
30 60 90 120 150 180 210

O
p

ti
m

iz
a

ti
o

n
 L

a
te

n
c
y
 (

s
e

c
o

n
d

)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

BUM
LPC
TDS k=3
TDS k=n

Fig. 9: Two-attribute Group By - Optimization latency

Number of Queries

30 60 90 120 150 180 210

N
o

rm
a

li
z
e

d
 S

o
lu

ti
o

n
 C

o
s
t

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

BUM

LPC

TDS k=3

TDS k=n

Fig. 10: Two-attribute Group By - Normalized solution cost

In this experiment, we compare optimization algorithms
by scaling both the aforementioned factors at the same time:
number of attributes and number of queries. To achieve such
a goal, we design the query templates to include all two-
attribute Group By queries from a table T . We set the number
of attributes m from 5 to 21, and this makes the number

of queries, which is
(
m
2

)
, increase as well. The grouping

cardinalities are generated similarly to Section V-C.

The optimization latency shown in Figure 9 exhibits the
same traits that we observe in Sections V-C and V-D. For
low number of attributes, LPC has lower latencies compared
to BUM. However, the space of additional nodes scales
exponentially with the number of queries, so starting from
m = 15 (n = 91), optimization latency of BUM gets smaller
than that of LPC. Unsurprisingly, our algorithm has distinctly
low overhead. In fact, the experimental results give us strong
confidence that our algorithm is ready to scale up to hundreds
or even thousands of attributes and queries. An end-to-end
evaluation of our optimization techniques handled with the
physical implementation of Group By operators is part of our
on-going work, which will ultimately validate the scalability
and efficiency of our approach.

Figure 10 shows the solution cost of different algorithms.
Again, we normalize it to a fraction of the BUM total cost.
In some cases, we have spikes where BUM merging results
in even subsets, which is also the goal of TDS. In most
cases, TDS actually finds smaller solution costs than that of
BUM. Even in minor cases where TDS trails behind BUM,
the difference is less than 3%, which is acceptable considering
such a low optimization latency it brings. Table II presents the
total average of execution cost obtained from each algorithm.
An interesting observation here is that, despite having as much
as 5 times the latency of TDS k = 3 (see Figure 9), the solution
tree returned by TDS k = n actually has less than 1% smaller
total cost on average. In general, our solution trees have lower
execution cost than LPC, but not by much. For some cases,
both LPC and our algorithm find significantly smaller solution
trees than BUM.

Algorithm BUM LPC TDS k = 3 TDS k = n
Fractional Cost 1 0.9186 0.8760 0.8732

TABLE II: Average solution cost - Two attribute queries

F. The impact of cardinality skew

As we mention in Section V-C, the node cardinalities are
randomly generated with two different distributions: uniform
and power law with α = 2.5. Overall, the skew introduced
by the power law distribution does not affect the latency
of our algorithm: on average, queries generated from both
distributions have roughly the same runtime1. In spite of that,
the total cost obtained from skewed cardinalities is generally
higher than the solution cost from uniform cardinalities. On
average, it is 6.8% higher, with some particular cases that
are up to 18% higher. Our explanation is that, for uniform
cardinalities, it is easier to evenly partition children nodes into
subsets, while skewed cardinalities tend to return a very big
subset and many small subsets. As a very big subset is used
to compute other nodes, most likely it increases the solution
cost by a large margin.

G. Quality of solution trees

A solution tree is a logical plan to direct the physical
operator to execute multiple Group By operator. A solution

1Uniform distribution has a slightly higher running time of 1.4%

tree G′
1 is of higher quality than a solution tree G′

2 if the
runtime to execute G′

1 is smaller than the runtime to execute
G′

2. In this experiment, we implement the PipeSort algorithm
as the physical operator to execute the solution trees returned
from TDS, LPC and BUM. We also execute a naı̈ve solution
tree to prepare a baseline for comparison.

Algorithms
BUM LPC TDS Naive

T
im

e
 (

s
e

c
o

n
d

)

0

200

400

600

800
Optimization Latency

 Query Runtime

Fig. 11: The optimization latency and query runtime.

XXXXXXX
Algorithm BUM LPC TDS Naı̈ve

Optimization Latency (s) 66 87 0.17 0
Query Runtime (s) 632 551 547 826
Total Runtime (s) 698 638 547.17 826
Improvement (%) 15.49 22.76 33.75 0

TABLE III: The optimization latency and query runtime

The dataset we use in this experiment is the lineitem
table from the industrial benchmark TPC-H [3]. It contains
10 million records with 16 attributes. Our query consists of all
two-attribute Group Bys from lineitem. For each algorithm,
we report, in Figure 11, its optimization latency as well as
its query runtime. Detail numbers found in Table III indicate
that multiple Group By query optimization techniques actually
reduce the query runtime over a naı̈ve solution. We observe
that, in this workload, the optimization latency of TDS is
almost 0% of the total runtime. This is in contrast to that of
BUM (9.45%) and LPC (13.63%). With BUM and LPC, since
the optimization latency contributes a non-negligible part to
the total runtime, instead of 23.48% and 33.29% improvement
respectively, they improve only 15.49% and 22.76%. Also,
we note that the solution trees of LPC and our algorithm,
TDS, are identical. This lead to the virtually same query
runtime. Nevertheless, overall our algorithm provides greater
performance boost because of its close-to-zero latency.

VI. DISCUSSIONS AND EXTENSIONS

In this Section, first we discuss about the intuition of our
algorithm, and attempt to explain why its solution cost may be
better than other algorithms in many cases. Then we discuss
about solutions to extend our algorithm to handle different
aggregate functions.

A. Intuition and Discussion

In the multiple Group By query optimization problem,
to design a scalable algorithm, the first building block to

consider is how to explore the potential additional groupings
(i.e. nodes) to include in a solution. As the space of additional
groupings can be very large, they cannot be effectively gen-
erated. Therefore, to scale to a large number of queries and
attributes, we cannot explore all possible additional groupings.
A more scalable approach is to consider merging terminal
nodes to form new groupings, as the subset of these additional
groupings is much likely considerably smaller than their full
space. Both our algorithm and BUM in [11] use this approach.

The difference between TDS and BUM is the process to
construct new groupings. At each step, BUM only considers
merging two groupings into a new one. Meanwhile, TDS
evaluates splitting all children nodes of a grouping into at
most k subsets, each with a new grouping. The implication of
these steps on the algorithm’s complexity is already discussed
in Section III and IV-B. Here, we intuitively discuss why,
in general, we believe that TDS can produce better solution
trees than BUM. The main reason is because TDS makes
a more “global” decision than BUM at each step of their
process. When considering partitioning children nodes, TDS
uses available information at the moment: i) cardinalities of all
nodes; ii) associated costs to pair of nodes; iii) multiple ways
to split. In addition, while it is making a decision of putting
together a new grouping, TDS inspects the connection of this
newly formed grouping with respect to all other groupings
available. As a top-down approach, when TDS triggers a
splitting decision in a high-level grouping (e.g. the root node),
it dramatically decreases the total execution cost. Even though
the subtree optimization might be far from optimal, early
decisions are more important.

In contrast, the merging process in BUM solely depends
on two individual nodes. With so little information at hand,
BUM tends to trigger groupings that decrease the solution cost
by a relatively small margin (because BUM is a bottom-up
approach). In addition, since the initial solution tree is a naı̈ve
solution, there are so many pairs of nodes such that inspecting
the potential merging of all pairs leads to a local optimum.

B. Different Aggregate Functions

The multiple Group By optimization problem is based on
the premise that a Group By can be computed from the results
of another Group By, instead of the input data. To assure
this property, the aggregate measure (function) must be either
distributive, or algebraic [5]: fortunately, almost all common
aggregate functions are so. Let us consider an input data T
which is split into p chunks Ci. A function F is:

• Distributive if there is a function G such that: F (T) =
G(F (C1), F (C2), ..., F (Cp)). Usually, for many distribu-
tive functions like Min,Max, Sum, etc., G = F . For
G 6= F , an example is Count which is also distributive
with G = sum().

• Algebraic if there are functions G and H such
that: F (T) = H(G(C1), G(C2), ..., G(Cp)). Examples
are Average,MinN,MaxN, Standard deviation. In
function Average, for instance, G is to collect the sum of
elements and the number of elements, while H adds up
these two components and divides the global sum by the
total number of elements from all the chunks to obtain
final results.

Thus far, we have assumed that all Group By queries com-
pute the same aggregate function (Count(∗) in our example).
Typically this is the case in single-query optimization when a
user issues a Grouping Sets query. Nonetheless in multi-query
optimization, more often the aggregate functions are different.
An easy way to adapt our solution to different aggregate
functions is to separate Group By queries into groups of the
same aggregate function. However, this approach may decrease
the opportunity to share pre-computed Group Bys, and it may
end up computing a large portion of Group Bys from the input
data (or from a much larger Group Bys). For instance, let us
consider the following queries:

Q1: Select A, Count(*) From T Group By(A)
Q2: Select B, Sum(v) From T Group By(B)

Here v is an integer value in table T . Using the aforementioned
approach we end up with both Group Bys A and B computed
from the input data T .

Another approach is to apply our optimization to the
set of all Group Bys queries. For a Group By, not only
its aggregates are computed, but also are all those of their
successors. To continue our example, our algorithm suggests
computing grouping AB from T , then A and B from AB.
When computing AB from T , we evaluate and store both
aggregates, Count(∗) and Sum(v). At this moment, Group By
Q1 is obtained from grouping AB with aggregate Count(∗),
while we use AB with aggregate Sum(v) to calculate Group
By Q2. The downside of this approach is to incur the cost of
storing potentially numerous intermediate aggregates.

For systems in which the storage cost is relatively expen-
sive compared to reading/sorting a large amount of data, the
first approach may be preferred. For other systems, in which
the sorting cost is relatively expensive (e.g. it requires a global
shuffle of data over network), the second approach may be
a more viable option. Facilitating users in making the right
choice of approaches is the challenge that we will tackle in
our future work.

VII. CONCLUSION AND FUTURE WORK

Data summarization is a crucial task to understand and
interact with data. This is exacerbated by the increasingly
large amount of data that is collected nowadays. Such data is
often multi-dimensional, characterized by a very large number
of attributes. This calls for the design of new algorithms to
optimize the execution of data summarization queries.

In this work, we presented our method to address the
general problem of optimizing multiple Group By queries, thus
filling the gap left by current proposals that cannot scale in
the number of concurrent queries or the number of attributes
each query can handle. We have shown, both theoretically and
experimentally, that our algorithm incurs in extremely small
latencies, compared to alternative algorithms, when producing
optimized query plans. This means that, in practice, our algo-
rithm can be applied at the scale that modern data processing
tasks require, dealing with data of hundreds of attributes and
executing thousands of queries. In addition, our experimental
evaluation illustrated the effectiveness of our algorithm to find
optimized solution trees. In fact, in many cases, our algorithm
outperformed others in terms of producing optimized solutions,

while being remarkably faster. Finally, we discussed about the
intuition behind our algorithm and the possible approaches to
extend it to handle general, heterogeneous queries in terms of
diversity of aggregate functions.

We conclude by noting that our algorithm can be easily in-
tegrated to current optimization engines of relational databases
or traditional data warehouses. Instead, using our algorithm to
optimize query execution on recent systems such as Hadoop,
Spark and their respective high-level, declarative interfaces,
requires the development of an appropriate cost model as well
as an optimization engine to transform original query plans
into optimized ones.

Our future work aims at i) further studying our algorithm
with respect to the analysis of its computational complexity;
ii) evaluating our algorithm in an end-to-end system imple-
mentation; iii) integrating our proposed algorithm into a multi-
query optimization engine for Spark, that we have designed
and built such that it can accept arbitrary optimization modules,
including one for multiple Group By queries.

REFERENCES

[1] F. Chang et al., “Bigtable: A distributed storage system for structured
data,” ACM TCS, 2008.

[2] J. Dean and S. Ghemawat, “MapReduce : Simplified Data Processing
on Large Clusters,” in ACM OSDI, 2004.

[3] “Tpc-h, decision support benchmark.” [Online]. Available: http:
//www.tpc.org/tpch/

[4] “Tpc-ds, new decision support benchmark standard.” [Online].
Available: http://www.tpc.org/tpcds/

[5] J. Gray et al., “Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals,” DMKD, 1997.

[6] V. Harinarayan et al., “Implementing data cubes efficiently,” in Proc.
ACM SIGMOD, 1996.

[7] S. Sarawagi et al., “On computing the data cube,” IBM Almaden
Research Center, Tech. Rep., 1996.

[8] R. T. Ng et al., “Iceberg-cube computation with PC clusters,” ACM
SIGMOD Record, 2001.

[9] K. Beyer and R. Ramakrishnan, “Bottom-up computation of sparse and
iceberg cubes,” in ACM SIGMOD, 1999.

[10] K. A. Ross and D. Srivastava, “Fast computation of sparse datacubes,”
in PVLDB, 1997.

[11] Z. Chen et al., “Efficient computation of multiple group-by queries,” in
Proc. ACM SIGMOD 2005, 2005.

[12] S. Ballamkonda et al., “Evaluation of Grouping Sets by reduction to
group-by clause, with or without a rollup operator, using temporary
tables,” Patent US Patent 6,775,681, 2004.

[13] F. Dehne et al., “Computing partial data cubes,” in Proc. HICSS, 2004.
[14] D.-H. Phan et al., “Efficient and self-balanced rollup aggregates for

large-scale data summarization,” in BigData Congress, 2015.
[15] H. D. Phan et al., “On the design space of MapReduce ROLLUP

aggregates,” in BeyondMR, 2014.
[16] Y. Chen et al., “Interactive analytical processing in big data systems:

A cross-industry study of MapReduce workloads,” in PVLDB, 2012.
[17] J. Cieslewicz and K. A. Ross, “Adaptive aggregation on chip multipro-

cessors,” in PVLDB, 2007.
[18] A. Baer et al., “Two parallel approaches to network data analysis,” in

LADIS, 2011.
[19] S. Agarwal et al., “On the computation of multidimensional aggregates,”

in Proc. VLDB, 1996.
[20] P. J. Haas et al., “Sampling-based estimation of the number of distinct

values of an attribute,” in PVLDB, 1995.
[21] S. Chaudhuri et al., “Effective use of block-level sampling in statistics
estimation,” in Proc. ACM SIGMOD, 2004.

