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A New Feature for Automatic Speaker Verification
Anti-Spoofing: Constant Q Cepstral Coefficients

Massimiliano Todisco, Héctor Delgado and Nicholas Evans

Abstract

Efforts to develop new countermeasures in order to protect automatic
speaker verification from spoofing have intensified over recent years. The
ASVspoof 2015 initiative showed that there is great potential to detect spoof-
ing attacks, but also that the detection of previously unforeseen spoofing at-
tacks remains challenging. This paper argues that there is more to be gained
from the study of features rather than classifiers and introduces a new feature
for spoofing detection based on the constant Q transform, a perceptually-
inspired time-frequency analysis tool popular in the study of music. Exper-
imental results obtained using the standard ASVspoof 2015 database show
that, when coupled with a standard Gaussian mixture model-based classifier,
the proposed constant Q cepstral coefficients (CQCCs) outperform all previ-
ously reported results by a significant margin. In particular, those for a subset
of unknown spoofing attacks (for which no matched training data was used)
is 0.65%, a relative improvement of 61% over the best, previously reported
results.

Index Terms

Automatic speaker verification, anti-spoofing, ASVspoof, constant Q
transform, constant Q cepstral coefficients.
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1 Introduction

Automatic speaker verification (ASV) technology has matured over recent years
to become a low-cost and reliable approach to person recognition. Unfortunately,
however, and as is true for all biometric modalities, concerns regarding security
vulnerabilities can still form a barrier to exploitation. Vulnerabilities to spoofing,
also known as presentation attacks, are one example which refers to the manipu-
lation of a biometric system by a fraudster impersonating another enrolled person.
For medium to high security applications, such vulnerabilities are clearly unac-
ceptable.

A growing body of work has illustrated the vulnerability of ASV systems to a
diverse range of spoofing attacks [1,2]. The major forms of attack known today
include those of replay [3,4], voice conversion [5, 6], speech synthesis [7, 8] and
impersonation [9, 10] all of which have been shown to degrade verification perfor-
mance. The community has responded by designing countermeasure technologies
to effectively mitigate vulnerabilities to spoofing.

The general countermeasure approach is essentially one of artefact detection
encompassing relatively standard feature extraction and statistical pattern recogni-
tion techniques. These aim to distinguish between natural and spoofed speech by
capturing the tell-tale signs of synthesis or manipulation. This might suggest that
the design of spoofing countermeasures should better focus on feature engineering,
rather than on the investigation of more advanced or complex classifiers.

This view is supported by the results of the recent ASVspoof 2015 challenge [11]
of which the winning system [12] utilised non-conventional features in conjunction
with a classical Gaussian mixture model (GMM) classifier. Taken together, the
work in [13] and [14] produced by the same team, might also suggest that the per-
formance of spoofing countermeasures is more dependent on the particular features
used rather than on the particular classifier.

As is argued in the following, this is perhaps not surprising. A spoofing attack
must first of all manipulate successfully an ASV system into accepting a fraudu-
lent identity claim. It is a reasonable assumption that this will be achieved most
efficiently by presenting to the system a speech signal whose corresponding fea-
tures mimic as closely as possible those used for enrolment, i.e. to train the target
speaker model. In most cases these are short-term, possibly Mel-scaled spectral es-
timates. A spoofing algorithm such as speech synthesis or voice conversion might
then best be implemented using a similar feature representation at its heart.

In this case, a spoofing countermeasure which uses the same or similar feature
representation may not offer the best opportunities for detection. Herein lies the
impetus behind the work presented in this paper. It is supposed that the design of a
spoofing countermeasure system which exploits a feature representation different
to that of a typical ASV system may offer greater robustness to spoofing, in addition
to greater generalisation to unforeseen spoofing attack.

The most significant contribution of this paper is thus the investigation of an en-
tirely new approach to feature extraction for ASV spoofing countermeasures. The



traditional approach used widely for the analysis of speech signals, namely the
Fourier transform, is not necessarily ideal. Whereas it is an extremely powerful,
versatile and efficient tool for time-frequency analysis, it imposes regular spaced
frequency bins. As a consequence, the Fourier transform may lack frequency res-
olution at lower frequencies and lack temporal resolution at higher frequencies.

In contrast, the constant Q transform (CQT), initially proposed in the field of
music processing, employs geometrically space frequency bins. This ensures a
constant Q factor across the entire spectrum. This results in a higher frequency
resolution at lower frequencies while providing a higher temporal resolution at
higher frequencies. This reflects more closely the human perception system. This
paper investigates the coupling of the CQT with traditional cepstral analysis. The
latter facilitates the use of a conventional GMM for spoofing detection. The new
features are referred to as constant Q cepstral coefficients (CQCCs).

The second significant contribution of this paper relates to the development of
a generalised spoofing countermeasure. While not a necessity, since the nature of
a spoofing attack can never be known a priori, generalisation is always beneficial.
The paper thus investigates the performance of the new feature representation in
the face of both known and unknown spoofing attacks.

The reminder of the paper is as follows. Section 2 sets the new contribution
against related prior work. Section 3 presents the constant Q transform whereas
the new CQCC features are described in Section 4. Section 5 describes the ex-
perimental setup whereas Section 6 presents experimental results. Conclusions are
presented in Section 7.

2 Prior work

This section reviews briefly the current state of the art in spoofing counter-
measures for automatic speaker verification. As the first database to support such
research, and being that used for the first competitive evaluation, focus is placed
upon results derived from the standard ASVspoof 2015 database. Presented first is
a brief description of the ASVspoof database followed by a treatment of leading
results produced by other authors.

2.1 ASVspoof 2015 database

The ASVspoof challenge [15] was created in order to address a number of
shortcomings in previous work. These revolve around the use of non-standard
datasets and metrics (prior to 2015 there were none) which forced researchers to
create their own databases to support their research.

A consequence of this meant that the past work is characterised by spoofing at-
tacks implemented with full knowledge of speaker verification systems and coun-
termeasures implemented with full knowledge of spoofing attacks. The use of a



standard database avoided this problem (at least for the first evaluation) and also
allowed results produced by different researchers to be compared meaningfully.

ASVspoof 2015 focused on the assessment of stand-alone spoofing detectors in
independence from ASV. Through the provision of disjoint training, development
and evaluation sets, the evaluation also encouraged the development of generalised
countermeasures. Generalisation is important since the nature of a spoofing attack
never be known in advance; ideally, countermeasures should be robust to unfore-
seen attacks.

Each of the three ASVspoof 2015 subsets contains a mix of genuine and spoofed
speech, the latter of which is comprised of diverse spoofing attacks generated
through either speech synthesis or voice conversion. A total of 10 different speech
synthesis and voice conversion algorithms were used to generate spoofed data. In
order to promote generalised countermeasures, only 5 of these were used to gen-
erate the training and development subsets whereas the evaluation subset was gen-
erated with the full 10. The first 5 are collectively referred to as known attacks,
whereas the second 5, being present only in the evaluation set, are referred to as
unknown attacks. Prior to the evaluation, only the key for the training and devel-
opment subsets were available to participants; that for the evaluation subset was
withheld meaning no information concerning unknown attacks was distributed to
evaluation participants.

2.2 ASVspoof 2015 results

For the ASVspoof 2015 evaluation, spoofing detection algorithms were op-
timised using the training and development data and associated protocols. The
evaluation subset was processed blindly. Score files were submitted by the partic-
ipants and scored post evaluation by the ASVspoof 2015 organisers. High scores
indicate genuine speech whereas low scores indicate spoofed speech. The offical
metric was the equal error rate (EER) and the average EER across all 10 spoofing
attacks in the evaluation subset was used for system ranking.

A brief description of the top 3 performing systems is presented below. The
performance of the new CQCC features in detecting spoofing is compared to that
of these systems later in Section 6.

e DA-IICT [12]: This system employed a fusion of two GMM classifiers. The
first used MFCC features. The second used cochlear filter cepstral coeffi-
cients and change in instantaneous frequency (CFCC-IF) features.

e STC [16]: This system used three different sets of i-vectors based on MFCCs,
Mel-Frequency Principal Coefficients and Cosine Phase Principal Coeffi-
cients. Classification was performed on stacked i-vectors and a Support Vec-
tor Machine (SVM) classifier with a linear kernel.

e NTU [17]: This system used multiple, diverse and fused features including
two types of magnitude-based features (log-magnitude spectrum and resid-



Table 1: Equal error rate (%) results for the top 3 performing systems for the
ASVspoof 2015 evaluation. The 3 first rows correspond to official evaluation re-
sults, while the last row is a post-evaluation result. Results are illustrated indepen-
dently for known and unknown attacks and their average.

’ System H Known ‘ Unknown ‘ Average ‘
DA-IICT [12] 0.408 2.013 1.211
STC [16] 0.008 3.922 1.965
NTU [17] 0.058 4.998 2.528
UEF [13] (post-eval) || 0.11 | 167 | 089 |

ual log-magnitude spectrum) and five types of phase-based features (group
delay, modified group delay, instantaneous frequency derivative, baseband
phase difference, and pitch synchronous phase). A Multi-Layer Perceptron
(MLP) with long context (500 ms) was trained for each feature type. The
final score is the average of the 5 MLP scores.

Results obtained by the three systems are illustrated in Table 1. All 3 systems
achieve excellent results in the detection of known attacks, with all EERs below
0.5%. However, EERs for unknown attacks are significantly higher and all above
2%.

The results of a fourth system are presented in the final row of Table 1. These
results, the best reported to date, are post-evaluation results reported in [13]. This
system used the dynamic coefficients (delta and acceleration) corresponding to 20
Linear Frequency Cepstral Coefficients (LFCC) and a classifiers based on two 512-
component GMMs trained with expectation-maximisation (EM). While this system
sacrifices performance in the case of known attacks, that for unknown attacks is
well below 2%, a significant decrease in EER. Even so, the difference in perfor-
mance for known and unknown attacks is significant and highlights the challenge
to develop generalised countermeasures.

3 From Fourier to constant Q

This section describes the motivation behind the use of constant Q transforms
for the analysis of speech signals. The starting point for the discussion is the time-
frequency representation. This is followed by a treatment of the short-term Fourier
transform before a description of the constant Q transform.

3.1 Time-frequency representation

In digital audio signal processing applications, time-frequency representations
are ubiquitous tools. The uncertainly principle dictates that time and frequency



content cannot be measured precisely at the same time [18], hence the well know
relation:

AfAt > 1/4n ()

The parameter for this trade-off between time and frequency resolution is the
window length N; Af is proportional to 1/N whereas At is proportional to N.
Equation 1 implies that, if a signal is dispersed in frequency, then its temporal
representation is compressed in time, and vice versa. Put differently, the product
A fAt is a constant; time and frequency resolutions cannot be reduced simultane-
ously. This means that the same time-domain signal can be specified by an infinite
number of different time-frequency representations. Among these, the short-time
Fourier transform (STFT) is the most popular.

3.2 The short-term Fourier transform

The STFT performs a Fourier Transform on a short segment which is extracted
from a longer data record upon its multiplication with a suitable window function.
A sliding window is applied repetitively in order to analyse the local frequency
content of the longer data record as a function of time [19].

The STFT is effectively a filter bank. The Q factor is a measure of the selec-
tivity of each filter and is defined as the ratio between the center frequency fi and
the bandwidth ¢ f:

Tk
= 5f 2)

In the STFT the bandwidth of each filter is constant and related to the window
function. The Q factor thus increases when moving from low to high frequencies
since the absolute bandwidth A f is identical for all filters.

This is in contrast to the human perception system which is known to approxi-
mate a contant Q factor between S00Hz and 20kHz [20]. At least from a perceptual
viewpoint, the STFT may thus not be universally ideal for the time-frequency anal-
ysis of speech signals.

3.3 The constant Q transform

A more perceptually motivated time-frequency analysis known as the constant
Q transform (CQT) was developed over the last few decades. The first was in-
troduced in 1978 by Youngberg and Boll [21] with an alternative algorithm being
proposed by Mont-Reynaud [22]. In these approaches, octaves are geometrically
distributed while the centre frequencies of each filter are linearly spaced.

CQT was refined some years later in 1991 by Brown [23]. In contrast to the
earlier work, the centre frequencies of each filter are also geometrically distributed,
thereby following the equal-tempered scale [24] of western music. For this reason,
Brown’s algorithm is widely used in music signal processing. The approach gives a



higher frequency resolution for lower frequencies and a higher temporal resolution
for higher frequencies. As illustrated in Figure 1, this is in contrast to the fixed
time-frequency resolution of Fourier methods. From a perceptual point of view,
geometrically spaced frequencies mean that the centre frequency of every pair of
adjacent filters has an identical frequency ratio and is perceived as being equally
spaced. Over the last decade the CQT has been applied widely to the analysis,
classification and separation of audio signals with impressive results, e.g. [25-27].

The CQT is similar to a wavelet transform with relatively high Q factors (~100
bins per octave.) Wavelet techniques are, however, not well suited to this compu-
tation [28]. For example, methods based on iterative filter banks would require the
filtering of the input signal many hundreds of times [29].

3.4 CQT computation
The CQT X“@(k, n) of a discrete time domain signal z(n) is defined by:

n+|Ny/2]
XCk,n) = > x(iap(j —n+ Ny/2) 3)
j:n— I_Nk/QJ

where k£ = 1,2, ..., K is the frequency bin index, a}(n) is the complex conjugate
of ax(n) and Ny, are variable window lengths. The notation || infers rounding
down towards the nearest integer. The basis functions ay(n) are complex-valued
time-frequency atoms, defined according to:
1, n ) fx
ar(n) = =(—)expli(2mn=— + P}, 4
(n) = G5 )expli2mny + )

where f, is the center frequency of the bin &, f; is the sampling rate, and w(t) is a
window function (e.g. Hann window). @ is a phase offset. The scaling factor C'

is given by: -
N./2
I+ Ni/2
- 2 R5) ®
I=—[Np/2]

Since a bin spacing corresponding to the equal-tempered scale is desired, the
center frequencies fj, obey:

fo=F2'F ©6)

where f; is the center frequency of the lowest-frequency bin and B determines the
number of bins per octave. In practice, B determines the time-frequency resolution
trade-off. The Q factor is then given by:

_ i _ (91/B _ 1y-1
Q_fk+1—fk 2 b 7

The window lengths Vi, € R in Equations 3 and 4 are real-valued and inversely
proportional to fj, in order that Q is constant for all frequency bins k, i.e.:
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Figure 1: A comparision of the time-frequency resolution of the STFT (la) and
CQT (1b). For the STFT, the time and frequency resolutions, At and Af, are
constant. Here, H is the duration of the sliding analysis window (hop size). CQT,
in contrast, employs a variable time resolution Aty (which increases for higher
frequencies) and a variable frequency resolution A fi, (which increases for lower
Jfrequencies). Now, the duration of the sliding analysis window H|, varies for each
frequency bin. fs is the sampling rate and k is the frequency bin index. Red dots
correspond to the filter bank centre frequencies f, (bin frequencies).
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Figure 2: Spectrograms of utterance ‘the woman is a star who has grown to love the
limelight’ for a male speaker in the ASVspoof database. Spectrograms computed
with the short-time Fourier Transform (top) and with the constant Q transform
(bottom).
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The work in [30] introduced an additional parameter -y that gradually decreases

the Q factors for low frequency bins in sympathy with the filters of the human

auditory system. In particular, when v = I' = 228.7 * (2(1/3) — 2(_1/3)), the
bandwidths equal a constant fraction of the ERB critical bandwidth [31].

Example CQT results are illustrated in Figure 2 which shows STFT and CQT-
derived spectrograms for an arbitrarily selected speech signal from the ASVspoof
database. The pitch F'0O of the utterance varies between 80Hz and 90Hz; the dif-
ference is only 10Hz. The frequency resolution of the conventional STFT is not
sufficient to detect such small variations; 512 temporal samples at a sampling rate
of 16kHz correspond to a spectral separation of 31.25Hz between two adjacent
STFT bins. This same is observed for the second partial which varies between
160Hz and 180Hz where the difference is 20Hz. The spectral resolution of the
STFT can of course be improved using a larger window, but to the detriment of
time resolution. The CQT efficiently resolves these different spectral contents at
low frequency.

Ng )
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Figure 3: Block diagram of the proposed CQCC features.

4 CQCC extraction

This section describes the extraction of constant Q cepstral coefficients. The
discussion starts with a treatment of conventional cepstral analysis before the ap-
plication to CQT.

4.1 Conventional cepstral analysis

The cepstrum of a time sequence x(n) is obtained from the inverse transforma-
tion of the logarithm of the spectrum. In the case of speech signals, the spectrum
is usually obtained using the discrete Fourier transform (DFT) whereas the inverse
transformation is normally implemented with the discrete cosine transform (DCT).
The cepstrum is an orthogonal decomposition of the spectrum. It maps N Fourier
coefficients onto ¢ < NV independent cepstrum coefficients that capture the most
significant information contained within the spectrum.

The Mel-cepstrum applies prior to cepstral analysis a frequency scale based on
auditory critical bands [32]. It is the most common parametrisation used in speech
and speaker recognition. Such features are referred to widely as Mel-frequency
cepstral coefficients (MFCCs) which are typically extracted according to:

MFCC —iw:l [MF(m)] a(m—3)m )
(@)= 3 g MF ()] cos| R

where the Mel-frequency spectrum is defined as

K
MF(m) = | XL (k)| Hy (k) (10)
k=1

where k is the DFT index, H,, (k) is the triangular weighting-shaped function for
the m-th Mel-scaled bandpass filter. M FC'C(q) is applied to extract a number of
coefficients less than the number of Mel-filters M. Typically, M = 25 and ¢ varies
between 13 and 20.

4.2 Constant Q cepstral coefficients

Cepstral analysis cannot be applied using (6) directly since the k bins in X @ (k)
are on a different scale to those of the cosine function of the DCT; they are re-
spectively geometrically and linearly spaced. Inspired by the signal reconstruction



works in [33, 34], this problem is solved here by converting geometric space to
linear space.

Since the k bins are geometrically spaced, the signal reconstruction can be
viewed as a downsampling operation over the first k bins (low frequency) and as
an upsampling operation for the remaining K — k bins (high frequency). We define
the distance between fi and fi = fiin as:

AR = fo— fi= 1 (27 - 1) (1)

where k = 1,2, ..., K is the frequency bin index. The distance A f*<*! increases as
a function of k. We now seek a period 7 for linear resampling!. This is equivalent
to determining a value of k; € 1,2, ..., K such that:

Ty = Afhet (12)

To solve (12) we need only focus on the first octave; once 7; is fixed for this
octave, higher octaves will naturally have a resolution two times greater than that
of the lower octave. A linear resolution is obtained by splitting the first octave into
d equal parts with period 7; and by solving for k;:

ky—1 1
% = fi (2% - 1) — ki = Blogy(1+ ) (13)

The new frequency rate is then given by:
F= 25 1) 14
= — = B —
=7 [f 1 ( )] (14)

There are thus d uniform samples in the first octave, 2d in the second and 27d
in the (j — 1)** octave. The algorithm for signal reconstruction uses a polyphase
antialiasing filter [35] and a spline interpolation method to resample the signal at
the uniform sample rate Fj.

Constant Q cepstral coefficients (CQCCs) can then be extracted in a more-or-
less conventional manner according to:

p(l—3)m

7 (15)

L
CQCC(p) = Z log ‘XCQ(Z) ‘2 cos
=1

where p = 0,1, ..., L — 1 and where [ are the newly resampled frequency bins. The
extraction of CQCCs is summarised in Figure 3.

S Experimental setup

The focus now returns to the assessment of spoofing countermeasures. Pre-
sented in the following is an overview of the experimental setup which includes
the database, feature extraction and classifier configurations.

"Whereas the period usually relates to the temporal domain, here it is in the frequency domain.

10



Table 2: The ASVspoof 2015 database: number of male and female speakers, num-
ber of genuine and spoofed speech utterances and data partitions.

#Speakers #Speakers
Subset Male ‘ Female | Genuine ‘ Spoofed
Training 10 15 3750 12625
Development | 15 20 3497 49875
Evaluation 20 26 9404 184000

5.1 ASVspoof 2015 database

Table 2 summarizes the structure and contents of the ASVspoof 2015 database [15].
The database is structured into training, development and evaluation subsets. The
three subsets contain both natural and spoofed speech for a number of different
speakers. Spoofed material is derived from natural speech recordings by means
of 10 different spoofing attacks (from S1 to S10). They take the form of popular
speech synthesis and voice conversion algorithms (see [15] for details). In order
to allow assessment of generalized countermeasures only attacks S1 to S5 are in-
cluded in the training and development subsets. Attacks S6 to S10 are deemed as
unknown attacks and contained only within the evaluation subset. All audio files
are in PCM format with a 16kHz sampling rate and with a resolution of 16 bits per
sample.

5.2 Feature Extraction

The CQT is applied with a maximum frequency of F,q.. = Fny@ /2, where
Fny is the Nyquist frequency of 8kHz. The minimum frequency is set to Fiy,;, =
Fraz/ 29 ~ 15Hz (9 being the number of octaves). The number of bins per octave
B is set to 96. These parameters result in a time shift or hop of 8ms. Re-sampling
is applied with a sampling period of d = 16. These parameters were all empirically
optimised.

Investigations using three different CQCC features dimensions are reported:
12, 19 and 29 all with appended Cj. The first two dimensions are chosen since they
are common in speech and speaker recognition, respectively. The higher number
is included to determine whether higher order coefficients contain any additional
information useful for the detection of spoofing.

From the static coefficients, dynamic coefficients, namely delta and delta-delta
features are calculated and optionally appended to static coefficients, or used in
isolation. Experiments were performed with all possible combinations of static
and dynamic coefficients.

11



Table 3: System performance, measured in average EER (%), on the development
set, for different feature dimensions and combinations of static and dynamic coef-
ficients. S=static, D=dynamic, A=acceleration.

[ Feawre | 12+ 0y | 194+ 041 | 29+ 0y |

S 0.8452 0.6436 0.5669
D 0.4296 0.1082 0.0461
A 0.2371 0.0602 0.0140
SDA 0.4109 0.1509 0.0962
SD 0.6239 0.3608 0.2566
SA 0.5965 0.2523 0.1315
DA 0.2272 0.0361 0.0154

5.3 C(lassifier

Given the focus on features, all experiments reported in this paper use Gaussian
mixture models (GMMs) in a standard 2-class classifier in which the classes cor-
respond to natural and spoofed speech. The two GMMs are trained on the genuine
and spoofed speech utterances of the ASVspoof training dataset, respectively. We
use 512-component models, trained with EM algorithm with random initialisation.
EM is performed until likelihoods converge.

The score for a given test utterance is computed as the log-likelihood ratio
A(X) =log L(X16,,) —log L(X|6s), where X is a sequence of test utterance fea-
ture vectors, L denotes the likelihood function, and 6,, and 8, represent the GMMs
for natural and spoofed speech, respectively. The use of GMM-based classifiers
has been shown to yield among the best performance in the detection of natural
and spoofed speech [12,13].

6 Experimental results

Presented in the following is an assessment of CQCC features for spoofing
detection. This assessment is performed using the ASVspoof 2015 development
subset. The attention then turns to an assessment of generalisation. Assessment is
performed with the ASVspoof 2015 evaluation subset.

6.1 CQCC features

Reported first is an evaluation of the proposed CQCC features using the ASVspoof
development subset. Table 3 shows performance for different feature dimensions
and 7 different combinations of static (S), delta (D) and acceleration (A) features.
First, no matter that the combination, better performance is achieved with higher

12



Table 4: System performance for known and unknown attacks, measured in average
EER (%), on the evaluation set, for the 4 best system configurations found on the
development set.

#coef. 19 4 Oy 29 + Oy,

Feat. Known ‘ Unknown || Known ‘ Unknown
A 0.0667 0.6525 0.0370 1.0598
DA 0.0334 0.9203 0.0140 1.0454

dimension features, indicating the presence of useful information in the higher or-
der cepstra. Second, dynamic and acceleration coefficients give considerably better
results than static coefficients. Acceleration coefficients give better results that dy-
namic coefficients, though for lower feature dimensions, their combination gives
better performance than either alone.

These observations are otherwise consistent across the different feature dimen-
sions. The fact that dynamic and acceleration coefficients outperform static fea-
tures seems reasonable given that spoofing techniques may not model well the
more dynamic information in natural speech.

6.2 Generalisation

The second goal of this work lies in the assessment of generalisation. This
assessment is performed on the ASVspoof evaluation subset using feature dimen-
sions of 19 and 29 with appended Cj and with A and DA combinations.

Table 4 presents average EERs separately for known and unknown spoofing
attacks together with their average. DA features consistently outperform A features
for known spoofing attacks and both feature dimensions. However, results are
unknown attacks are inconsistent: the best result for a dimension of 19 coefficients
is achieved with only A features, whereas DA features give the best results for a
dimension of 29. The difference is, however, small.

These results show that performance degrades significantly in the face of un-
known attacks. This interpretation would be rather negative, however. Presented
in the following is a comparison of CQCC to other results in the literature. These
show that, even if performance for unknown spoofing attacks is worse than for
known attacks, CQCC features still deliver excellent performance.

6.3 Comparative performance

Table 5 shows the performance of CQCC independently for each of the dif-
ferent spoofing attacks grouped into known and unknown attacks. Results are
presented here for only the 19-th order feature set with A coefficients only. The
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average EER of this system is 0.36%. Also illustrated for comparison is the per-
formance of the four systems described in Section 2.27.

Focusing first on known attacks, all four systems deliver excellent error rates
of below 0.41%. The proposed CQCC features are third in the ranking according
to the average error rate, with an EER of 0.067%. Voice conversion attacks S2 and
S5 seem to be the most difficult to detect. Speech synthesis attacks S3 and S4,
however, are perfectly detected by all systems.

It is for unknown attacks where the difference between systems is greatest.
Whereas attacks S6, S7 and S9 are detected reliably by all systems, there is con-
siderable variation for attacks S8 and S10. In particular, the performance for attack
S10, the only unit-selection-based speech synthesis algorithm, varies considerably;
past results range from 8.2% to 26.1%. Being so much higher than the error rates
for other attacks, the average performance for unknown attacks is dominated by
the performance for S10. Average error rates for past work and unknown attacks
range from 1.7% to 5.2%.

CQCC features compare favourably. While the performance for S6, S7 and S9
is not as good as that of other systems, error rates are still low and below 0.1%.
While the error rate for S8 of 1.8% is considerably higher than for other systems,
it is significantly better than all other systems for attack S10. Here is the error is
reduced to 1.1%. This corresponds to a relative improvement of 86% with regard
to the next best performing system for S10. The average performance of CQCC
features for unknown attacks is 0.7%. This corresponds to a relative improvement
of 61% over the next best system.

The average performance across all 10 spoofing attacks is illustrated in the fi-
nal column of Table 5. The average error rate of 0.360% is significantly better than
those reported in previous work. The picture of generalisation is thus not straight-
forward. While performance for unknown attacks is worse than it is for known at-
tacks, CQCC features nonetheless deliver the most consistent performance across
the 10 different spoofing attacks in the ASVspoof database. Even if it must be
acknowledge that the work reported in this paper was conducted post-evaluation,
to the authors’ best knowledge, CQCC features give the best spoofing detection
performance reported to date.

7 Conclusions

This paper introduces a new feature for the automatic detection of spoofing
attacks which can threaten the reliability of automatic speaker verification. The
new feature is based upon the constant Q transform and is combined with tradi-
tional cepstral analysis. Termed constant Q cepstral coffficients (CFCCs), the new
features provide a variable-resolution, time-frequency representation of the spec-

>Thanks to Md. Shahid Ullah and Tomi Kinnunen from the University of Eastern Findland for
kindly providing individual results on all spoofing attacks.
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trum which captures detailed characteristics which are missed by more classical
approaches to feature extraction.

These characteristics are shown to be informative for spoofing detection. When
coupled with a simple Gaussian mixture model-based classifier and assessed on a
standard database, CQCC features outperform all existing approaches to spoofing
detection. In addition, while there is still a marked discrepancy between perfor-
mance for known and unknown spoofing attacks, CQCC results correspond to a
relative improvements of 61% over the previously best performing system. Fu-
ture work should consider the application of CQCCs for more generalised counter-
measures such as a 1-class classifier. The application of CQCCs in other speaker
recognition and related problems is another obvious direction.
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