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Abstract—Operators, struggling to continuously add capacity
and upgrade their architecture to keep up with data traffic
increase, are turning their attention to denser deployments
that improve spectral efficiency. Denser deployments make the
problem of user association challenging, and much work has
been devoted to finding algorithms that strike a tradeoff between
user quality of service (QoS), and network-wide performance
(load-balancing). Nevertheless, the majority of these algorithms
typically consider only the radio access part, and ignore the
backhaul topology and potential capacity limitations. Backhaul
constraints are emerging as a key performance bottleneck in
future heterogeneous networks, partly due to the continuous
improvement of the radio interface, and partly due to the need
for inexpensive backhaul links to reduce CAPEX/OPEX. To this
end, we propose an analytical framework for user association
that jointly considers radio access and backhaul performance. We
derive an algorithm that takes into account spectral efficiency,
base station load, backhaul link capacities and topology, and
uplink and downlink traffic demand, and prove it converges to
an optimal solution. We then use extensive simulations to study
the impact of (i) backhaul capacity limitations and (ii) backhaul
topology on key performance metrics.

I. INTRODUCTION

Driven by the exponential growth in wireless data traffic,
operators are increasingly considering denser, heterogeneous
network (HetNet) deployments. In a HetNet, a large number
of small cells (SC) are deployed along with macrocells to
improve spatial reuse [1], [2], [3]. The higher the deployment
density, the better the chance that a user equipment (UE) can
be associated with a nearby base station (BS) with high signal
strength, and the more the options to balance the load. At
the same time, denser deployments experience high spatio-
temporal load variations, and require sophisticated user associ-
ation algorithms. There are two key, often conflicting concerns
when assigning UEs to a BS: (i) maximizing the spectral
efficiency, and (ii) ensuring that the load across BSs is balanced
to improve the utilization efficiency, and preempt congestion
events. The former is usually achieved by associating the UE
to the BS with maximum SINR: this association rule was the
base up to LTE-release 8. While this rule also maximizes the
instantaneous rate of a user (i.e., the best modulation and
coding scheme - MCS - supported), it reflects user QoS only
when the BS is lightly loaded. However, user performance, in
terms of per flow delay, may be severely affected if the BS
offering the best SINR is congested [4], [5].

As a result, a number of research works have studied
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the problem of user association in heterogeneous networks,
optimizing user rates [6], [7], balancing BS loads [8], or
pursuing a weighted tradeoff of them [9]. For instance, a
distributed user-association algorithm is proposed in [10],
where the global outage probability and the long term rate
maximization are well studied, in the context of load balancing.
The authors in [11] propose a framework that studies the
interplay of user association and resource allocation in future
HetNets, by formulating a non-convex optimization problem
and deriving performance upper bounds. Range-expansion
techniques, where the SINR of lightly loaded BSs is biased
to make them more attractive to the users are also popular [2],
[3]. Finally, a framework that has received much attention
is [9]. This framework jointly considers a family of objective
functions, each of which directs the optimal solution towards
different goals (e.g. throughput optimal, delay-optimal, load
balancing, etc.), using an iterative algorithm. [12], [13], [14]
extend this framework to further include energy management,
e.g., by switching off under-loaded BSs.

Nevertheless, the majority of these works only consider
the radio access network, namely the user rate on the radio
interface and the load of BSs, ignoring the backhaul (BH)
network. While this might be reasonable for legacy cellular
networks, given that the macrocell backhaul is often over-
provisioned (e.g., fiber), this might be quite suboptimal for
future cellular networks. The considerably higher number of
small cells, and related Capital Expenditure (CAPEX) and
Operational Expenditure (OPEX) suggest that backhaul links
will mostly be inexpensive wired or wireless (in licensed or
unlicensed bands), and underprovisioned [15]. Multiple BS
might have to share the capacity of a single backhaul link
due to, e.g, point-to-multipoint (PMP) or multi-hop mesh
topologies to the aggregation node(s) [16]. Furthermore, the
increased backhaul signaling traffic required for Coordinated
Multi-Point (CoMP) [17], as well as upcoming cloud-RAN
(C-RAN) [18] technologies, are expected to further stress the
backhaul network. Hence, as the radio access technologies are
constantly improving, it is argued that the backhaul network
will emerge as a major performance bottleneck, and user asso-
ciation algorithms that ignore the backhaul load and topology
can lead to poor performance [19].

As a result of this increasing focus on the backhaul, some
recent works have appeared that attempt to jointly consider ra-
dio access and backhaul. These are mostly concerned with joint
scheduling issues (for in-band or PMP backhaul links) [19],
[20], signaling overhead and performance tradeoffs for co-
operative multi-point communication [21], Software-Defined-
Networking (SDN)-based implementation flexibility [18], or



propose some simple heuristics to include the impact on the
backhaul of different association schemes [22]. Nevertheless,
to our best knowledge, none of these works formally addresses
the problem of optimal user association in future, backaul-
limited HetNets.

To this end, in this paper we revisit the problem of
optimal user association, jointly considering the radio access
and backhaul networks. Specifically, our main contributions
can be summarized as follows:

(1) We use the popular framework of α-optimal user associa-
tion [9] as our starting point, and extend it to include backhaul
constraints and topology.

(2) We analytically prove an optimal association rule for simple
(e.g. star) and generic (tree) backhaul topologies, and propose
an iterative algorithm based on penalty functions to converge
to the optimal solution.

(3) We consider both uplink (UL) and downlink (DL) traffic
characteristics, and show that our work fits well with future
5G network features like UL/DL split [23], and SDN-based
implementations [18].

(4) Based on our framework, we investigate the impact of
backhaul under-provisioning, in different topologies and sys-
tem performance metrics. Our results also highlight some
shortcomings of backhaul Layer 2 routing and suggest the need
for Layer 3, joint radio access and backhaul routing.

The remainder of the paper is organized as follows: Sec-
tion II describes the proposed analytical framework along with
our system model assumptions, and derive the optimal user-
association rules. We then sketch a practical implementation
architecture, based on SDN, in Section III. In Section IV we
simulate the optimal association policies and attempt to shed
some light on the impact of backhaul constraints and topology.
Section V discusses potential extensions of our framework, and
Section VI concludes the paper.

II. USER ASSOCIATION PROBLEM

A. Model and Assumptions

In the following, we first describe our problem setup and
assumptions. We will use a similar problem setup as the one
used in a number of related works [9], [12], [24], [13], and
extend it accordingly. To keep the presentation simplified, we
present most notation and assumptions in terms of downlink
(DL) traffic, denoted with a ”D” sub/superscript. The assump-
tions for uplink (UL) traffic are in most cases symmetric,
so one can simply replace ”D” with ”U” in the respective
notation. Specific differences in the uplink traffic model will
be elaborated, where necessary. In Table I, we summarize some
useful notation we use throughout the paper.

(A.1 - BS coverage) We assume an area L ⊂ R2 served by
a set of base stations B, that are either macro BSs (eNBs) or
small cells.

(A.2 - Traffic Model) Traffic at location x ∈ L consists
of file, or more generally flow requests arriving according to
an inhomogeneous Poisson point process with arrival rate per
unit area λ(x). A new flow can be either DL with probability
zD, or UL with zU = 1 − zD. Using a Poisson splitting

TABLE I. NOTATION

Downlink Uplink

Flow type sub/superscript D U

Traffic arrival rate (flows/sec) at location x λD(x) λU (x)
Mean flow size 1/µD(x) 1/µU

Maximum rate of the i-th BS at location x cDi (x) cUi (x)
Load density of the i-th BS at location x ρD

i (x) ρU
i (x)

BS i max rate requirement for backhaul c̃Di c̃Ui
Utilization/Load of the i-th BS 0 ≤ ρD

i ≤ 1 0 ≤ ρU
i ≤ 1

Congestion indicator at BH link j I
D(j) I

U (j)
Capacity of backhaul link j CD

h (j) CU
h (j)

Association probability of location x to BS i pD
i (x) pU

i (x)

argument [25], it follows that there are two independent
Poisson arrival processes for DL and UL traffic, with respective
rates λD(x) = zDλ(x) and λU(x) = zUλ(x). Flow sizes are
independently and generically distributed with mean 1/µD(x)
(and 1/µU(x) in the uplink.)

(A.3 - Physical Data Rate) Each BS i ∈ B is associated
with a transmit power Pi and a total downlink bandwidth WD

i .
Based on this, BS i can deliver a maximum physical data
transmission rate of cDi (x) to a user at location x (in absense
of any other users served), which is given by the Shannon
capacity1 cDi (x) =WD

i log
2
(1 + SINRi(x)), where

SINRi(x) = Gi(x)Pi

∑j≠iGj(x)Pj +N0

. (1)

N0 is the noise power, and Gi(x) represents the path loss and
shadowing effects between the i-th BS and the UE located
at x (as well as antenna and coding gains, etc.)2. We assume
that effects of fast fading are filtered out. Our model assumes
that the total intercell interference at location x is static, and
considered as another noise source, as is previously considered
in most aforementioned works [9], [12].

(A.4 - System load density) A system load density ρDi (x)
at location x can be defined as

ρDi (x) = λD(x)
µD(x)cDi (x) . (2)

(A.5 - BS load) Each location x is associated with associ-
ation probabilities pDi (x) ∈ [0,1], which are the probabilities
that a DL flow at location x gets associated with BS i. We can
thus define the total load ρDi of BS i as

ρDi = ∫
L

pDi (x)ρDi (x)dx. (3)

Similarly to [4], [9], we are interested in the flow-level dynam-
ics of this system, and model the service of downlink flows at
each BS as a queueing system with load ρDi .

(A.6 - Scheduling) Proportionally fair scheduling is often
implemented in 3G/4G networks, due to its good fairness
and spectral efficiency properties [26]. This can be modeled
as an M/G/1 multi-class processor sharing (PS) system (see,

1We use Shannon capacity for clarity of presentation. However, our ap-
proach could be easily adapted to include modulation and coding schemes
(MCS). Furthermore, capacity improving technologies, e.g., the use of MIMO,
and modifications to this capacity formula are othogonal to our framework.

2In the case of UL, we assume that the Tx power of each user is PUE ,
and slightly abuse notation for SINR, G, etc., as these don’t play a major role
in the remaining discussion.



e.g., [4], [9], [12]). It is multi-class, because each flow might
get different rates for similarly allocated resources, due to
different channel quality and modulation and coding scheme
at x. Channel-based scheduling could also be included in the
model and can be accounted for using a multiplicative factor
in the average service rate [27].

(A.7 - Performance impact of BS load) Given the above
scheduling, the stationary number of flows in BS i is known

to be equal to E[Ni] = ρD
i

1−ρD
i

[25]. Hence, minimizing ρDi
minimizes E[Ni], and by Little’s law it also minimizes the
per-flow delay for that base station [25]. At the same time, the
throughput for a flow at location x is equal to cDi (x)(1−ρDi ).
This observation is important to understand how the user’s
physical data rate cDi (x) (related to users at location x only)
and the BS load ρDi (related to all users associated with BS i)
affect the optimal user association decision (e.g. in Eq. (7)).

(A.8 - Backhaul topology) Each BS is connected to
the core network through the eNB aggregation gateway ei-
ther directly (“star” topology) or through one or more SC
aggregation gateways (“tree” topology). Fig. 1 shows such
a backhaul routing topology. Without loss of generality, we
assume that there is a fiber link from the eNB to the core
network, and focus on the set of capacity-limited backhaul
links (e.g., wireless) connecting SCs to the eNB, denoted as
Bh. We denote as routing path Bh(i) the set of all backhaul
links j ∈ Bh along which traffic is routed from BS i to an
eNB aggregation point. For example, in Fig. 1, Bh(1) = {1},
and Bh(3) = {1,2,3}. We further denote as B(j) the set of
all BS i ∈ B whose traffic is routed over backhaul link j. E.g.,
B(1) = {1,2,3,4} and B(2) = {2,3,4} in Fig. 1. In the case
of a star topology, there is exactly one (unique) backhaul link
used for each BS (i.e., ∥Bh(i)∥ = ∥B(j)∥ = 1,∀i, j). Finally,
we assume that the backhaul route for each BS is given, e.g.,
calculated in practice as a Layer 2 (L2) spanning tree, and is
an input to our problem. In Section IV, we highlight some
limitations of L2 backhaul routing.

(A.9 - Backhaul load) Each backhaul link j ∈ Bh is char-
acterized by a downlink capacity CD

h (j) bps. Backhaul links
usually don’t implement any particular scheduling algorithm,
and can be seen as a data “pipe”. The capacity on the UL and
DL might be the same or different (e.g., Frequency-Division
Duplex (FDD), or fixed/dynamic Time-Division Duplex (TDD)
systems [28]). The load on a backhaul link j ∈ Bh consists of
the sum of loads of all BSs using that link:

∑
i∈B(j)

ρDi c̃Di , (4)

where c̃Di is an estimate of the total rate delivered by BS i.
A BS is usually characterized by its “peak” rate (often upper
bounded by the maximum MCS available), and a “busy” rate,
when a BS serves many users [15]. The latter is usually quite
smaller than the former, since users near the edge of the cell
tend to bring the average rate down. However, the use of
channel-based scheduling and related multi-user diversity gains
suggest that conservatively setting c̃Di closer to its nominal
peak value is safer. In practice, a BS could measure this load
and use it directly.

Based on the above problem setup, the association policy
consists in finding appropriate values for the routing probabil-
ities pDi (x) and pUi (x), for DL and UL traffic, respectively

Fig. 1. Future HetNet topology.

(defined earlier in A.5). That is, for each location x, we would
like to optimally choose which BS i to route to flows generated
from (UL) or destined to (DL) users in x3. Our goals for this
association problem are twofold: (i) ensure that the capacity
of no network element (BS or backhaul link) is exceeded; (ii)
achieve a good tradeoff between user physical data rates and
load balancing. We will consider two main scenarios:

Link split or DL/UL decoupling: This allows each UE to
be associated with different BSs for its DL and UL traffic, and
to optimize UL and DL performance independently [29], [23].

Joint DL/UL: In current networks, a UE must be associated
with the same BS for both UL and DL traffic.

B. Optimal User Association for Split UL/DL

We will first define the user association problem for
the split DL/UL case. The feasible region for the variables
pDi (x), pUi (x) can first be delimited by the requirement that
the capacity of no BS is exceeded.

Definition 1. (Feasibility): Let y ∈ {U,D}, and let ǫ be an
arbitrarily small positive constant. The set fy of feasible BS
loads ρy = (ρy

1
, ρ

y
2
, . . . , ρ

y

∥B∥) is

fy
= {ρy ∣ ρyi = ∫

L

p
y
i (x)ρyi (x)dx,

0 ≤ ρ
y
i ≤ 1 − ǫ,

∑
i∈B

p
y
i (x) = 1,

0 ≤ p
y
i (x) ≤ 1,∀i ∈ B,∀x ∈ L}.

(5)

Lemma 2.1. The feasible sets fD, fU are convex.

Proof: The proof for the feasible DL set fD is presented
in [9]. It can be easily adapted for the UL case, as well.

When UL and DL traffic can be routed separately, this
implies that pDi (x) and pUi (x) can take different values.
Hence, the problem of optimal DL and UL association can
be decoupled into two independent problems, one for DL and
one for UL. In the remainder of this section, we focus on the
optimal DL association problem, and we omit the superscripts{D,U} to simplify notation. We return to the joint DL/UL
association problem in the next section. To better illustrate our

3The use of a probabilistic association rule simplifies solving the problem.
As it will turn out, the optimal values will be either 0 or 1, i.e. the optimal
association rule will be deterministic.



approach, we first apply this for a simple star BH topology,
and then generalize for a tree BH topology.

Optimal User Association for Star BH Topology)

Let I(j) be an indicator variable, related to backhaul link

j ∈ Bh, such that I(j) = 0 when
ρic̃i
Ch(j) < 1, and I(j) = 1 when

ρic̃i
Ch(j) ≥ 1 (i.e, the offered load to backhaul link j exceeds the

available capacity). In the following, since for star topologies
there is exactly one backhaul link (j) associated with each BS
(i), to simplify notation we can safely assume i = j.

Theorem 2.2 (User-Association in a star BH topology). The
optimal user association problem with a star backhaul topol-

ogy is expressed as minρ {Φ(ρ)∣ρ ∈ f}, where

Φ(ρ) =∑
i∈B

(1 − ρi)1−α
α − 1

+ γ ∑
i∈Bh

I(i)( ρic̃i

Ch(i) − 1)
2

. (6)

If the feasible domain f of the problem is non-empty, and
ρ∗ = (ρ∗

1
, ρ∗

2
,⋯, ρ∗∣∣B∣∣) denotes the optimal load vector, the

user-association rule at location x is

argmax
i∈B

ci(x)(1 − ρ∗i )α
1 + 2γ ⋅ (1 − ρ∗i )α ⋅ c̃i ⋅ I(i)Ch(i) ⋅ ( ρ∗

i
c̃i

Ch(i) − 1)
. (7)

Proof: We prove here that the above association rule
indeed minimizes the cost function of Eq. (6). This problem is
a convex optimization problem. Its feasible set f is convex, and
the objective function Φ(ρ) is also convex (the hessian matrix
is positive semi-definite). Let ρ∗ be the optimal solution of
this minimization problem. Hence, it is adequate to check the
following condition for optimality

⟨∇Φ(ρ∗),∆ρ∗⟩ ≥ 0 (8)

for all ρ ∈ f , where ∆ρ∗ = ρ − ρ∗. Let p(x) and p∗(x)
be the associated routing probability vectors for ρ and ρ∗,
respectively. Using the deterministic cell coverage generated
by (7), the optimal association rule is given by:

p∗i (x) = 1{i = argmax
i∈B

ci(x)(1 − ρ∗i )α
1 + 2γ ⋅ (1 − ρ∗

i
)α ⋅ c̃i ⋅ I(i)Ch(i)

⋅ ( ρ∗
i
c̃i

Ch(i)
− 1)}.

(9)

Before proceeding to the calculation of the inner product, we
analytically calculate the derivative of the corresponding cost
function Φ(ρ), described in Eq. (6). The derivative is an i-th
dimensional vector; the i-th element of which has value:

∇Φ(ρi) =
⎧⎪⎪⎨⎪⎪⎩

(1 − ρi)−α, if ρic̃i ≤ Ch(i)
(1 − ρi)−α + γI(i)2ρic̃

2

i−2c̃iCh(i)
Ch(i)2 , if ρic̃i ≥ Ch(i).

(10)
To that end, the inner product defined in Eq. (8), becomes:

⟨∇Φ (ρ∗) ,∆ρ∗⟩ = ∑
i∈B

{ 1

(1 − ρ∗
i
)α + γI(i)

2ρ∗i c̃
2

i − 2c̃iCh(i)
Ch(i)2 }(ρi − ρ∗i )

= ∑
i∈B

1 + 2γI(i)(1 − ρ∗i )α (ρ∗i c̃2i−c̃iCh(i))

Ch(i)
2

(1 − ρ∗
i
)α ∫

L

ρi(x) (pi(x) − p∗i (x))dx

= ∫
L

λ(x)
µ(x) ∑i∈B

⎛⎜⎜⎜⎝
1 + 2γ(1 − ρ∗i )αc̃i I(i)Ch(i)

( ρ∗i c̃i
Ch(i)

− 1)
ci(x)(1 − ρ∗i )α

⎞⎟⎟⎟⎠
(pi(x) − p∗i (x))dx.

Note that,

∑
i∈B

pi(x){1 + 2γ(1 − ρ
∗

i )αc̃i I(i)Ch(i) ( ρ∗i c̃i
Ch(i) − 1)

ci(x)(1 − ρ∗i )α } ≥

∑
i∈B

p∗i (x){1 + 2γ(1 − ρ
∗

i )αc̃i I(i)Ch(i) ( ρ∗i c̃i
Ch(i) − 1)

ci(x)(1 − ρ∗i )α }
holds because p∗i (x) in (9) is an indicator for the maximizer

of
ci(x)(1−ρ∗i )α

1+2γ⋅(1−ρ∗
i
)α⋅c̃i⋅ I(i)Ch(i)

⋅( ρ∗
i
c̃i

Ch(i)
−1)

. Hence (8) holds.

We expressed the objective (Eq. (6)) with respect to the
variables ρi, for convenience. However, these depend on the
association probabilities pi(x), which are the underlying de-
cision variables, as shown in Definition 1. The first sum is
the standard α-cost function for each BS i [9]. Parameter α
controls the amount of load balancing desired. For α = 0,
minimizing this function leads to a maximum SINR user-
association rule, maximizing the physical data rate for each
location ci(x), and thus the spectral efficiency. As α → ∞,
this cost function aims at equalizing the BS utilizations ρi, i.e.
to balance the loads4. The second sum introduces a penalty for
each backhaul link i whose capacity is exceeded (I(i) = 1).
This penalty function is quadratic on the amount of excess load
(quadratic penalty functions are often considered in convex
optimization literature [30]). γ could be chosen as a large
constant, introducing a “soft” constraint for the backhaul links
(i.e., backhaul capacity could be slightly exceeded, if this really
improves access performance), or be iteratively adapted using
increasing values, so as to converge to a “hard” constraint.

Regarding the optimal association rule of Eq. (7), we note
that when the capacity constraint for the backhaul link i is not
active (i.e., I(i) = 0, in provisioned BH networks), the above
theorem states that the optimal association rule is the same as
the one found in [9]. However, when the backhaul link of BS i
gets congested, a second term is added in the denominator that
penalizes that BS making it less preferable to UEs at location
i, even if the offered radio access rate ci(x) is high, or the
radio interface of i is not itself congested.

Optimal User Association for Tree BH Topology)

We now consider a more complex backhaul scenario, where
a single backhaul link might route traffic from multiple BSs,
and the traffic of a single BS might be routed over multiple
backhaul links (multi-hop path) towards the eNB. Let I(j) be
again an indicator variable, related to congestion in backhaul
link j ∈ Bh. Now, I(j) needs to consider the load of all the
BSs whose traffic it carries (see A.9): specifically, I(j) = 0,

when
∑i∈B(j) ρic̃i

Ch(j) < 1 and I(j) = 1, when
∑i∈B(j) ρic̃i

Ch(j) ≥ 1.

Theorem 2.3. [User-Association in a tree BH topology]
The optimal user association problem with a tree backhaul

topology can be expressed as minρ {Φ(ρ)∣ρ ∈ f}, where

Φ(ρ) =∑
i∈B

(1 − ρi)1−α
α − 1

+ γ ∑
j∈Bh

I(j)
⎛⎜⎜⎝
∑

i∈B(j)
ρic̃i

Ch(j) − 1
⎞⎟⎟⎠

2

.

(11)

4Note that for α = 1 the above α-cost function is not defined, and log(1−
ρi)−1 is used instead [9].



If the feasible domain f of the problem is non-empty, the
optimal user-association rule at location x is now

argmax
i∈B

ci(x)(1 − ρ∗i )α
1 + 2γ ⋅ (1 − ρ∗i )α ⋅ c̃i ∑

j∈Bh(i)
I(j)
Ch(j) ⋅ (

⋅

k∈B(j)
∑ρ∗

k
c̃k

Ch(j) − 1)
.

(12)

Proof: The steps of this proof are similar to the star case,
so we present here directly the corresponding inner product.

⟨∇Φ (ρ∗) ,∆ρ∗⟩ =
= ∑

i∈B

{ 1

(1 − ρ∗
i
)α + 2γ ∑

j∈Bh(i)

I(j)[∑k∈B(j) ρ
∗

k
c̃k

Ch(j)2 c̃i −
c̃i

Ch(j) ]}(ρi − ρ
∗

i )
⋅ ∫
L

ρi(x) (pi(x) − p∗i (x))dx =

= ∫
L

λ(x)
µ(x) ∑i∈B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 2γ(1 − ρ∗i )αc̃i ∑
j∈Bh(i)

I(j)

Ch(j)
⋅

⎛⎜⎝
∑

k∈B(j)

ρ∗
k
c̃k

Ch(j)
− 1
⎞⎟⎠

ci(x)(1 − ρ∗i )α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⋅

⋅ (pi(x) − p∗i (x))dx ≥ 0,
(13)

due to the corresponding maximizer p∗i (x) derived from (12).

As one can see, the cost function is similar in nature.
The first term corresponding to the radio access part remains
unchanged. The second term again introduces a penalty for
each backhaul link that is congested. However, there are a
number of interesting differences between the star and tree
cases. First, the penalty term in the denominator of the optimal
association rule (Eq. (12)) now considers the whole backhaul
path Bh(i) that traffic from BS i traverses, and adds a penalty
for every link along that path that is congested (outer sum in
the denominator). This observation provides some support for
the number of backhaul hops heuristic proposed in [31], [22].
However, our analysis also suggests that it can be suboptimal,
as a path with few hops might still include one or more
congested links, and provides the optimal way to weigh in
the amount of congestion on each backhaul link.

Second, the actual congestion on each backhaul link j is
now not only dependent on the load of the candidate BS i,
but also on other BSs whose load is routed over j. Hence, a
BS i which would otherwise be a good candidate for traffic at
location x, might still be penalized and not selected, even if it
does not impose itself a large load on a backhaul link j. This
is because other BSs sharing the same backhaul link might be
heavily loaded or congested.

In the case of split UL/DL traffic, the above analysis can
be applied separately on UL and DL traffic, and optimize
UL and DL associations independently. Finally, although we
have provided separate solutions for star and tree topologies,
to better illustrate our approach, the optimal rule for the tree
topology is generic, and includes star topologies as well.

C. Optimal Joint UL and DL Association

Current cellular networks (e.g. 3G/4G) require that a UE
should be connected to a single BS for both UL and DL
traffic [32]. This changes the optimal association problem,
as one now needs to jointly optimize UL and DL traffic

performance. E.g., a user at location x might end up being
associated with a BS offering suboptimal performance on both
the downlink and uplink, because other BS candidates offer
really bad UL (or really bad DL) performance.

We thus need to modify our framework accordingly. First,
while deriving the association rules we will have to require
pDi (x) = pUi (x) ∀i ∈ B . Second, UL and DL performance
must now be included in the same cost function. Specifically, in
the part of the cost function corresponding to the radio access,
the operator may weigh the importance of DL and UL traffic
performance with a parameter τ ∈ [0,1]5. If ρ = [ρD;ρU ] with
corresponding feasible convex set F6, our objective now is

φ(ρ) = ∑
i∈B

τ
(1 − ρDi )1−αD

αD − 1
+ (1 − τ) (1 − ρUi )1−α

U

αU − 1
, if αD, αU

≠ 1.

(14)

We also need to extend the penalty function to consider
both uplink and downlink capacity being exceeded on the
backhaul link. Here, we present our results directly for the
general case of tree backhaul topology, and we remind the
reader that this is applicable to star backhaul topologies as
well.

Theorem 2.4 (Joint UL/DL Association). The optimal asso-
ciation problem with a generic BH topology can be expressed

as minρ {Φ(ρ)∣ρ = [ρD;ρU] ∈ F}, where

Φ(ρ) = φ(ρ) + γ ∑
k∈{D,U}

∑
j∈Bh

I
k(j)
⎛⎜⎜⎝
∑

i∈B(j)
ρki c̃

k
i

Ck
h
(j) − 1

⎞⎟⎟⎠

2

. (15)

If the feasible domain F of the problem is non-empty, the
optimal user-association rule at location x is

i(x) = argmax
i∈B

(1 − ρ∗Di )αD

⋅ (1 − ρ∗Ui )αU

eD(x) ⋅ (1 − ρ∗Ui )αU

+ eU(x) ⋅ (1 − ρ∗Di )αD
,

(16)
where if gD = τ, gU = 1 − τ , then for l ∈ {D,U}:

el(x) =
zl
⎛⎜⎝g

l
+ 2γ (1 − ρ∗li )αl

∑
j∈Bh(i)

I
l
(j)

Cl
h
(j)

⎛⎜⎝
∑

k∈B(j)

ρ∗l
k

c̃lk

Cl
h
(j)

− 1
⎞⎟⎠
⎞⎟⎠

µl(x)cl
i
(x) .

Proof: The proof follows similar steps as for the split
scenario, but is more involved and is omitted due to space
limitations. We refer the interested reader to [33].

The penalty function for the backhaul network is simply
the sum of the respective penalty functions for UL and DL,
described in Theorem 2.3. However, despite the similarities
of the cost functions, as we can see, the resulting association
policy in the joint UL/DL case is more complex. The main
insights are captured in the following remark.

Remark: The above optimal rule suggests that, when jointly
considering the potentially conflicting objectives of optimizing
both DL and UL performance, it is optimal to associate a
user with the BS that maximizes the harmonic mean of the

5If αD or αU is equal to 1, the respective fraction must again be replaced
with log(1 − ρi), as explained earlier.

6Due to space limitations we skip the analytical definition and proof of
convexity for F ; we refer the interested reader to [33].



individual association rules, when considering each objective
alone. Maximizing the harmonic mean presents a more “fair”
way to weigh in different objectives. E.g., assume the following
BS options for a user: (BS A) offers 50Mbps DL and only
1Mbps UL; (BS B) 200Mbps DL and 0.5Mbps UL; (BS C)
20Mbps DL and 5Mbps UL. If we care about UL and DL
performance equally (i.e. τ = 0.5), one might assume that
the BS with the highest sum (or arithmetic average) of rates
should be chosen (i.e. BS B). However, this would lead to
rather poor UL performance. Maximizing the harmonic mean
would lead to choosing BS C instead. While this simple
example captures the main principle, the actual rule is more
complex, as it weighs each objective also with a complex
factor el(x) related to both radio access performance and
backhaul penalties. Finally, we note, for comparison purposes,
that in the case of “split” UL/DL split association, covered in
Section II-B, DL traffic would be associated with BS B, and
UL traffic with BS C. This simple example demonstrates why
split UL/DL may perform considerably better than the joint
association. We will further explore this in the simulations.

III. SDN-BASED IMPLEMENTATION

The above derived association rules tell a UE at some
location x, where to associate optimally. However, as the BS
loads might not be optimal at the time (i.e. equal to ρ∗i , see
proof of Theorem 2.2), this policy represents a gradient descent
algorithm, that needs to be iteratively applied in practice,
until it converges to the optimal loads. Here, we describe
an implementation of such an algorithm facilitated by an
SDN framework that offers a centralized programmable control
for the underlying network. It takes as inputs (i) the overall
network status, and (ii) some high level system-parameters
(e.g. operator preferences). According to the SDN architecture,
we consider four planes, as illustrated in Fig. 2:

Fig. 2. Applicability to the SDN architecture.

Application tier: The operator determines and advertises to
the controller some system-related parameters (e.g. αD, τ etc.).
Controller tier: At each iteration period k, the controller
receives some network-related parameters (e.g. zU , traffic
profile, etc.) as well as the 2-dimensional load vector ρD, ρU

from the network tier. Then, based on the system-related
parameters directed from the application tier, it determines and
advertises to BSs the optimal associations (Eq. 7,12,16)7.
Network tier: Each k-th period, BSs either apply or indicate
to users the optimal rules depending on how the association is
managed in the network. At the end of k, they measure and
advertise to the controller their average load levels, and the
network-relater parameters.

7The controller also handles the penalty factor γ. For “hard” backhaul
constraints, it (i) starts with a small value, (ii) increases its value at each
iteration, according to the magnitude of the main cost function, to avoid
infeasible solutions and steep valleys, as is usually done in penalty function
implementations [30].

User tier: At each k-th period, a UE at location x is associated
or triggers the association procedure to the new BSs.

This iteration converges to the globally optimal point,
requiring a simple modification to the proof found [9].

IV. SIMULATIONS

In this section we present some numerical results and
discuss underlying insights. We consider a 2 × 2 km2 area.
Fig. 3(a) shows a color-coded map of the heterogeneous traffic
demand λ(x) (flows/hour per unit area) (blue implying low
traffic and red high), with 2 hotspots. We assume that this
area is covered by two macro BSs (shown with asterisks and
numbered from 1-2) and eight SCs (shown with triangles
and numbered from 3-10) as depicted in Fig. 3(b)-3(f). The
ratio of the DL flows is zD=0.7, and the average length sizes
1/µD(x) = 100KBytes, 1/µU(x) = 20KBytes, ∀x ∈ L. We
also assume that the maximum transmission powers of eNB,
SC and UE are 43,24 and 18 dBm, whereas the access-network
bandwidth WD

i = WU
i = 10MHz, ∀i ∈ B and the noise

power density N0 = −174dBm/Hz [34]. We finally assume
αD
= αU

= 1 (throughput-optimal values). If not explicitly
mentioned we consider the split scheme (Section II-B).

We remind to the reader that our focus is on the back-
haul links between the macro cells and SCs (for simplicity
we assume provisioned links between the macro cells and
core network). As already discussed in Assumption (A.8),
we investigate two different backhaul topology families: (i)
“star” topologies (single-hop paths), (ii) “tree” topologies (with
multi-hop paths), along with two backhaul links types: wired
and wireless8. Our aim is to evaluate the derived association
rules described in Section II for different under-provisioned
scenarios, by assuming fixed backhaul routing paths, pre-
established with traditional Layer 2 routing. We assume that
the BH capacities on the DL and UL are the same (i.e.
CD

h (i) = CU
h (i) = Ch, ∀i ∈ B), and if not explicitly

mentioned we assume them to be equal to 400Mbps. We
maintain this assumption to facilitate our discussion, although
our framework works for heterogeneous backhaul links and
UL/DL capacities as well (Assumption A.9).

Before proceeding, we discuss how different backhaul
technologies affect the backhaul capacities, and setup a metric
to evaluate the utilization efficiency. In case of wired backhaul
links, we assume that the peak backhaul capacity Ch is always
guaranteed. For wireless backhaul links we adopt a simple
model associating peak backhaul capacity to distance: if the
length of the i-th link is ri, the peak capacity drops as:

d(ri) = { 1, ri ≤ r0( r0
ri
)n, otherwise,

(17)

where r0 is some threshold range within which the maximal
rate is obtained (e.g. Line-of-Sight), and n is the attenuation
factor. Hence, the available capacity drops to d(ri)Ch(j)
(≤ Ch(j)). For our simulations, we assumed that r0 = 200m,
and n = 3. While the above model is perhaps oversimplifying,
our main goal is to simply include the propagation related
impact on wireless backhaul, compared to wired, without

8Note that copper and fiber access are the key technologies for wired
backhaul links, and microWave and millimeter-wave P2P or P2MP access
are the counterpart for the wireless backhaul links [35].



getting into the details of specific backhaul implementations.
Furthermore, to evaluate the DL utilization efficiency we
introduce the Mean Squared Error (MSED), between the DL
utilization of different BSs, normalized to 1:

MSED
=

1

2 ∗ h
∑
i

∑
j

(ρDi − ρDj )2, (18)

where h = ⌊N
2
⌋ × ⌈N

2
⌉ is the normalizing factor, and N the

total number of BSs (similar MSEU for UL). We define the
DL/UL utilization efficiency to be 1−MSED and 1−MSEU ,
respectively, that increase on the amount of load balancing9.

(a) Traffic Arrival Rate.
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Fig. 3. Coverage snapshots with optimal associations in different scenarios.

Coverage Snapshots. Fig. 3(b)-3(c) depict the optimal DL
and UL associations, with respect to the traffic arrival rates
shown in Fig. 3(a), by ignoring the backhaul network (or
assuming it’s over-provisioned). In the DL, most users are
attached to the macro BSs due to their high transmission
power, whereas in the UL each user is mainly attached to the
nearest BS [22]. In the following, we focus on different under-
provisioned backhaul scenarios, and study the DL associations
(similar behavior in the UL; we refer the interested reader
to [33] for them). In Fig. 3(d) we adopt a wired-star backhaul
topology, where SCs shrink their coverage areas, by handing-
over users to other BSs, in order to offload the corresponding
(under-provisioned) backhaul links; this phenomenon becomes

9We should note that different load balancing metrics could have been used,
e.g. the maximum, median and minimum BS load; however, we chose to use
MSE since it facilitates the visualization of the network efficiency.

more intense in the “hot-spot” areas (i.e. BS4 and BS7 have
vastly decreased their coverage areas) due to the higher traffic
demand. Similarly, in Fig. 3(e), we assume a wireless-star
backhaul topology, where SCs further decrease their coverage
areas, due to the higher backhaul capacity loss caused from
the long wireless links (see Eq.(17)).

In Fig. 3(f) we adopt a wireless-tree topology, where
some SCs are required to carry also traffic of other SCs,
and end up more congested. As a result, most SCs further
decrease their coverage area, compared to the star-wireless
topology. However, BS7 and BS10 enlarge their coverage
areas, compared to the star case. This occurs because these
SCs are far from the eNB, and multi-hop topology allows
them to route their traffic over shorter wireless links with
smaller capacity losses, compared to the star case (Fig. 3(e)).
Hence, there are two main factors affecting the coverage areas
in such wireless backhaul networks: (topology) each BS-load
might traverse through multi-hop backhaul paths, by “wasting”
resources from more than one backaul links (drawback for
tree topologies); (location) the higher the η,r0 the worse the
capacity loss “wastage” over a dedicated direct backhaul link
(drawback for star topologies that require longer links).

As backhaul networks become increasingly complex, e.g.
“mesh” topologies, each BS has multiple possible routing paths
to follow, beyond what is shown in the figures (we remind the
reader that the above shown topologies are simply the given
spanning routing trees). The above observations thus underline
the shortcomings of predetermined, Layer 2 (L2) backhaul
routing mechanisms, and call for a joint optimization of user-
association on the radio access network along with dynamic,
Layer 3 (L3) backhaul routing (see Section V).
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Fig. 4. Mean throughputs overall all users in the network.

User performance. Fig. 4(a), 4(b) depict the average DL
and UL user throughputs, as a function of the backhaul
capacity constraint Ch, on different scenarios. Generally, as
Ch drops, the mean throughputs are decreased, since users
are handed over to (potentially far-away) macro BSs, causing
performance degradation. Interestingly, the slope of the drop-
ping rate becomes more steep for lower values of Ch, due
to the logarithimic capacity formula chosen in Assumption
(A.3). Also, as Ch increases, the average throughputs “con-
verge” to the value corresponding to a provisioned backhaul
network. Note that the average UL throughput convergences
more quickly, compared to the DL. This happens due to the
asymmetry between the DL and UL traffic demand on the radio
access network: the UL one is much lower, mainly due to the
asymmetry between the transmission powers of BSs and UEs,



as well as different file sizes assumed in each direction. Beyond
this point, the UL backhaul resources will be underutilized.
This calls for a flexible TDD duplexing scheme, that will
dynamically distribute the backhaul resources accordingly, for
example by giving more backhaul resources to DL when the
UL demand is already satisfied (e.g. the eIMTA scheme [36]).
Finally, in the wired backhaul links case, star topology is
always slightly better than the tree, whereas in the wireless
the opposite, as explained earlier.

TABLE II. MEAN THROUGHP. FOR HANDED-OVER USERS (IN MBPS).

Topology Ch = 50 Ch = 250 Ch = 500(Mbps)

DL and UL thr.: Star-Wired 1.1 and 0.2 3.1 and 1.6 4.1 and X

DL and UL thr.: Tree-Wired 0.6 and 0.1 2.4 and 0.7 3.2 and X

DL and UL thr.: Tree-Wirel. 0.2 and 0.03 1.7 and 0.07 2.1 and 0.15

DL and UL thr.: Star-Wirel. 0.1 and 0.001 1.4 and 0.05 1.7 and 0.02

One could notice that user throughputs drop slightly on the
Ch constraint, e.g. in a wired-star topology if Ch drops 500→
50 Mbps (10 times), the mean user throughput only drops
15 → 6 Mbps (∼ 3 times). This is due to the fact that, under-
provisioned backhaul links do not affect the whole network,
but specific groups of users associated with the cells that suffer
from low backhaul capacity. To better illustrate this, in Table II
we show the average throughput of the handed-over users, as a
function of Ch. Indeed, their performance is severely affected:
for the same scenario, their DL throughput drops all the way
to 1.1 Mbps (∼ 15 times). (In scenarios with no handovers, we
mark the respective table entry with an X .)
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Fig. 5. Downlink Network Efficiencies.

Network Performance. Turning our attention to network-
related performance, Fig. 5(a) considers spectral efficiency
(bit/s/Hz), normalized by the maximum corresponding value
when the network is provisioned. Load-balancing (“Utiliza-
tion”) efficiency is further considered in Fig. 5(b) in terms
of the MSE metric, described earlier. Both efficiencies con-
verge to 1 as the network gets provisioned. Low Ch values
will push users to handover to far-away BSs, and this will
potentially decrease their SINR (spectral efficiency decrease),
and create steep differences between BSs loads, e.g. by con-
gesting macro BSs and under-utilizing the SCs (utilization
efficiency decrease). Note that, the joint degradation of these
performances also impacts user performance negatively (e.g.
user throughput), as explained in Assumption (A.7). Regarding
spectral efficiency, more specifically, although in the wired
scenario, star topology is always better compared to the tree,
in the wireless scenario this is not the case. For low values of
Ch, the star topology is worse, due to the higher capacity loss

of the long and direct links. However, as Ch is increased, and
some links start becoming provisioned in the star topology,
the capacity loss cost due to the long wireless links in the
star topology, is dominated from the capacity loss cost due to
multi-hop sharing links of the tree topology, by making tree
a worse choice. We highlight that this trade-off can suggest
different topologies as optimal in different under-provisioned
scenarios, and can affect different performance metrics.

TABLE III. SPLIT VS. NON-SPLIT IMPROVEMENTS

Performance τ = 0 τ = 0.5 τ = 1

DL and UL Throughput 6% and 32% 4% and 35% 0% and 37%

DL and UL Spectr. Eff. 4% and 29% 3% and 31% 0% and 33%

DL and UL Uiliz. Eff. 7% and 34% 4% and 38% 0% and 41%

Split and non-split impact. As discussed earlier, UL/DL
split (described in Section II-B) is able to optimize the DL
and UL performance, simultaneously. Joint UL/DL association
or “non-split” (Section II-C) is incapable of these parallel
optimizations; however, using 0 ≤ τ ≤ 1 we can trade-off which
dimension carries more importance. One would ask, what’s the
enhancement that split offers, given a non-split scenario with
parameter τ? Table III illustrates the performance improve-
ments that split promises over the non-split, in terms of various
metrics, for various τ . Indeed, the higher the τ , the higher the
emphasis on the DL (and less on the UL), and so the higher
the gain over the UL performance that split guarantees (the
inverse also holds for low τ ). We remark that split enhances the
UL performance considerably, e.g. the average UL throughput
is increased up to 37%. This is due to the dependency that
non-split generates between the DL and UL associations in
the access network, that often makes the DL the bottleneck in
the backhaul (due to aforementioned asymmetry between the
peak access rates). Thus, DL will often “preempt” the backhaul
constraint, and potentially (i) leave some UL resources unused,
(ii) cause UL performance degradation.

V. DISCUSSION AND FUTURE WORK

In this section, we briefly discuss potential limitations of
our framework, and how to possibly extend it to address them.

Additional flow-types. In our framework, we assumed all
flows to be best-effort. Modern cellular networks will need
to also consider dedicated flows that are subject to admission
control, i.e., require resources for exclusive usage [26]. The
user QoS related to such flows is often captured with a block-
ing probability, which could captured by a k-loss queueing
system [25], [37]. The blocking probability in such a system
again depends on the channel quality to x (since this decides
how many resources must be allocated to satisfy a given
performance requirement) and the load of that BS (this decides
the total resources remaining unused), as we showed in [38].
Hence, one could introduce an additional term in the objective
related to dedicated flow performance, and attempt to derive an
optimal policy that takes both best effort and dedicated flows,
as well as related access and backhaul resources into account.

Dynamic TDD scheme. In our simulations we assume
that the backhaul resources are fixed, and equally distributed
between the downlink and uplink (Assumption A.9). Inter-
estingly, we showed that this scheme can result in rather
suboptimal performance, and waste backhaul resources. The



design of a more flexible TDD scheme, that distributes dy-
namically the backhaul resources between the downlink and
uplink dimension, can enhance the system performance.

Joint radio and L3 backhaul routing. Mesh backhaul
topologies with multiple available routing paths are expected
to be the rule, rather than the exception in future networks. Our
assumption of fixed, L2 backhaul routing is restrictive, and as
we saw in the simulations also penalizes performance. It would
be interesting to consider choosing both the BS to associate
to, as well as how traffic from this BS is routed towards an
aggregation point (L3 routing).

VI. CONCLUSION

In this paper, we propose a user-association framework
for future backhaul-limited HetNets. We showed how different
backhaul topologies and capacity limitations affect the user and
network performance, with joint consideration of the access/
backhaul resources. Initial simulation results corroborate the
correctness of our framework, and reveal interesting tradeoffs
for different under-provisioned networks, as well as potential
drawbacks of schemes operated in the backhaul, currently.
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