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Under-provisioned Backhaul: How Capacity and Topology
Impacts User and Network-wide Performance

Nikolaos Sapountzis, Thrasyvoulos Spyropoulos, Navid Nikaein andr Sadén.

Abstract

Operators, struggling to continuously add capacity andageytheir ar-
chitecture to keep up with data traffic increase, are turttieg attention to
denser deployments that improve spectral efficiency. Dredsployments
make the problem of user association challenging, and much has been
devoted to finding algorithms that strike a tradeoff betwaser quality of
service (QoS), and network-wide performance (load-batayc Neverthe-
less, the majority of these algorithms typically considelyahe radio ac-
cess part, and ignore the backhaul topology and potentaity limita-
tions. Backhaul constraints are emerging as a key perfaenhottleneck
in future heterogeneous networks, partly due to the coatisimprovement
of the radio interface, and partly due to the need for inegjpenbackhaul
links to reduce CAPEX/OPEX. To this end, we propose an aicalyframe-
work for user association that jointly considers radio ascand backhaul
performance. We derive an algorithm that takes into accepattral effi-
ciency, base station load, backhaul link capacities andlogyy, and uplink
and downlink traffic demand, and prove it converges to amugdtsolution.
We then use extensive simulations to study the impact ob@kbaul capac-
ity limitations and (ii) backhaul topology on key perfornta&metrics.

Index Terms

user association, backhaul, queueing theory, uplink, dokrhetnets.
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1 Introduction

Driven by the exponential growth in wireless data traffic, operatorsareas-
ingly considering denser, heterogeneous network (HetNet) deploymeridiet-

Net, a large number of small cells (SC) are deployed along with macrocells to im-
prove spatial reuse [1-3]. The higher the deployment density, the bettehance

that a user equipment (UE) can be associated with a nearby base st&)oni(lB

high signal strength, and the more the options to balance the load. At the same
time, denser deployments experience high spatio-temporal load variatiohisg-a
quire sophisticated user association algorithms. There are two key, oftéict

ing concerns when assigning UEs to a BS: (i) maximizing the spectral efficien
and (ii) ensuring that the load across BSs is balanced to improve the utilization
efficiency, and preempt congestion events. The former is usually a&chivasso-
ciating the UE to the BS with maximum SINR: this association rule was the base
up to LTE-release 8. While this rule also maximizes ih&tantaneousate of a

user (i.e., the best modulation and coding scheme - MCS - supported)edtsefl
user QoS only when the BS is lightly loaded. However, user performamtagms

of per flow delay may be severely affected if the BS offering the best SINR is
congested [4, 5].

As a result, a number of research works have studied the problem roasise
sociation in heterogeneous networks, optimizing user rates [6, 7], adpBS
loads [8], or pursuing a weighted tradeoff of them [9]. For instana#istibuted
user-association algorithm is proposed in [10], where the global optadgability
and the long term rate maximization are well studied, in the context of load bal-
ancing. The authors in [11] propose a framework that studies the inyesplaser
association and resource allocation in future HetNets, by formulating aoorex
optimization problem and deriving performance upper bounds. Raxugasion
techniques, where the SINR of lightly loaded BSs is biased to make them more
attractive to the users are also popular [2, 3]. Finally, a framework tastré+
ceived much attention is [9]. This framework jointly considers a family of objec
tive functions, each of which directs the optimal solution towards diffegeats
(e.g. throughput optimal, delay-optimal, load balancing, etc.), using an vierati
algorithm. [12—-14] extend this framework to further include energy managg
e.g., by switching off under-loaded BSs.

Nevertheless, the majority of these works only consider the radio aceess n
work, namely the user rate on the radio interface and the load of BSs,ngnor
the backhaul (BH) network. While this might be reasonable for legacy -cellu
lar networks, given that the macrocell backhaul is often over-pravégiale.g.,
fiber), this might be quite suboptimal for future cellular networks. The idens
erably higher number of small cells, and related Capital Expenditure (ZAPE

This work was supported by the project "Network-level OptimizationSimall Cell Networks”,
funded by Intel Mobile Communications (IMC).



and Operational Expenditure (OPEX}uggest that backhaul links will mostly be
inexpensive wired or wireless (in licensed or unlicensed bands), aaekprovi-
sioned [16]. Multiple BS might have to share the capacity of a single batkhau
link due to, e.g, point-to-multipoint (PMP) or multi-hop mesh topologies to the
aggregation node(s) [17]. Furthermore, the increased backhaallisig traffic re-
quired for Coordinated Multi-Point (CoMP) [18], as well as upcoming dkiRAN
(C-RAN) [19] technologies, are expected to further stress the batkigawork.
Hence, as the radio access technologies are constantly improving, itiedaitat
the backhaul network will emerge as a major performance bottleneck sancs+
sociation algorithms that ignore the backhaul load and topology can leadto po
performance [20].

As aresult of this increasing focus on the backhaul, some recent Wwavikesap-
peared that attempt to jointly consider radio access and backhaul. Teevestly
concerned with joint scheduling issues (for in-band or PMP backhaks)Iif20,

21], signaling overhead and performance tradeoffs for coopenattiiti-point com-
munication [22], Software-Defined-Networking (SDN)-based implememtdlio-
ibility [19], or propose some simple heuristics to include the impact on the back-
haul of different association schemes [23]. Nevertheless, to otkhew/ledge,
none of these works formally addresses the problem of optimal useariatéso in
future, backaul-limited HetNets.

To this end, in this paper we revisit the problem of optimal user association,
jointly considering the radio access and backhaul networks. Specificatynain
contributions can be summarized as follows:

(1) We use the popular framework e@foptimal user association [9] as our starting
point, and extend it to include backhaul constraints and topology.

(2) We analytically prove an optimal association rule for simple (e.g. star) and
generic (tree) backhaul topologies, and propose an iterative algobigs®d on
penalty functions to converge to the optimal solution.

(3) We consider both uplink (UL) and downlink (DL) traffic characteristiand
show that our work fits well with future 5G network features like UL/DL s2#4],
and SDN-based implementations [19].

(4) Based on our framework, we investigate the impact of backhauktprdeisioning,
in different topologies and system performance metrics. Our results iglsignt
some shortcomings of backhaul Layer 2 routing and suggest the nelealyfer 3,
joint radio access and backhaul routing.

The remainder of the paper is organized as follows: Section 2 describes th
proposed analytical framework along with our system model assumptiothslea
rive the optimal user-association rules. We then sketch a practical impldinanta
architecture, based on SDN, in Section 3. In Section 4 we simulate the optimal
association policies and attempt to shed some light on the impact of backinaul co

The dense deployments of SCs with low number of users suggest thaistted their backhaul-
ing becomes a significant part of the total CAPEX/OPEX, and in somes camed exceed the cost
of their equipment [15].



Table 1: Notation
| Downlink | Uplink |

Flow type sub/superscript D U
Traffic arrival rate (flows/sec) at locatian AP (2) MU (z)
Mean flow size 1/pP(x) 1/pv
Maximum rate of the-th BS at location: cP(x) ¥ (x)
Load density of thé-th BS at location: pP () oY (z)
BS i max rate requirement for backhaul P v
Utilization/Load of thei-th BS 0<pP<1l0<pl <1
Congestion indicator at BH link 7P(5) 7Y ()
Capacity of backhaul link CP(j) CcY(4)
Association probability of locatiom to BSi pP () V(x)

straints and topology. Section 5 discusses potential extensions of oevikak,
and Section 6 concludes the paper.

2 User Association Problem

2.1 Model and Assumptions

In the following, we first describe our problem setup and assumptionsvillVe
use a similar problem setup as the one used in a number of related works [9, 1
13, 25], and extend it accordingly. To keep the presentation simplifiegresent
most notation and assumptions in terms of downlink (DL) traffic, denoted with a
"D” sub/superscript. The assumptions for uplink (UL) traffic are in mastes
symmetric, so one can simply replace "D” with "U” in the respective notation.
Specific differences in the uplink traffic model will be elaborated, wheregasary.

In Table 1, we summarize some useful notation we use throughout the paper

(A.1-BS coverage)\Ve assume an ar¢ac R? served by a set of base stations
B, that are either macro BSs (eNBs) or small cells.

(A.2 - Traffic Model) Traffic at locationx € £ consists of file, or more gen-
erally flow requests arriving according to an inhomogeneous Poisson pointgroce
with arrival rate per unit area(z). A new flow can be either DL with probability
2P, or UL with 2¥ = 1 — 2P. Using a Poisson splitting argument [26], it follows
that there are twandependenPoisson arrival processes for DL and UL traffic,
with respective ratea” (z) = zP\(z) and\Y (z) = 2Y\(z). Flow sizes are in-
dependently and generically distributed with méap? (x) (and1/uY (x) in the
uplink.)

(A.3 - Physical Data Rate)Each BSi € B is associated with a transmit
power P; and a total downlink bandwidt”. Based on this, BS can de-
liver a maximumphysical data transmission rate ¢f (z) to a user at location



z (in absense of any other users served), which is given by the Shaapacity
cP(z) = WP logy(1 + SINR;(x)), where

)

Gi(x)P;

SINRi(z) = >4 Gi(@) Py + No @

Ny is the noise power, an@;(x) represents the path loss and shadowing effects
between theé-th BS and the UE located at(as well as antenna and coding gains,
etc.¥. We assume that effects of fast fading are filtered out. Our model assume
that the total intercell interference at locatiois static, and considered as another
noise source, as is previously considered in most aforementioned [9o1i&.

(A.4 - System load density)A system load densipy” (=) at locationz can be

defined as AP ()
”"fj( . )

D
pP@) = 5
HP(2)cP ()
(A.5 - BS load) Each locationz is associated with association probabilities

pP (z) € [0,1], which are the probabilities that a DL flow at locatiorgets asso-

ciated with BSi. We can thus define thetal load p” of BSi as

D _ D) oP (z)dx. 3
Pi /ﬁpz()m() 3)

Similarly to [4, 9], we are interested in ttilew-level dynamicsf this system, and
model the service of downlink flows at each BS as a queueing system with loa
Py

(A.6 - Scheduling) Proportionally fair scheduling is often implemented in
3G/4G networks, due to its good fairness and spectral efficiency iep§27].
This can be modeled as an M/G/1 multi-class processor sharing (PS) sgstem (
e.g., [4,9,12]). Itis multi-class, because each flow might get differatets for
similarly allocated resources, due to different channel quality and modulatio
coding scheme at.

(A.7 - Performance impact of BS load)Given the above scheduling, the sta-

tionary number of flows in BS is known to be equal t&[N;] = 1551-3 [26].

Hence, minimizingoZD minimizesE[N;], and by Little’s law it also minimizes the
per-flow delay for that base station [26]. At the same time, the througlopu f
flow at locationz is equal tocP(z)(1 — pP). This observation is important to
understand how the user’s physical data wgtéx) (related to users at location
x only) and the BS IoaqbZD (related toall users associated with B affect the
optimal user association decision (e.g. in Eq. (7)).

2We use Shannon capacity for clarity of presentation. However, ounapp could be easily
adapted to include modulation and coding schemes (MCS). Furtheroagacity improving tech-
nologies, e.g., the use of MIMO, and modifications to this capacity forratdaothogonal to our
framework.

%In the case of UL, we assume that the Tx power of each uge¥ {$, and slightly abuse notation
for SINR, G, etc., as these don't play a major role in the remaining digmos
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Figure 1: Future HetNet topology.

(A.8 - Backhaul topology)Each BS is connected to the core network through
the eNB aggregation gateway either directly (“star” topology) or througg ar
more SC aggregation gateways (“tree” topology). Fig. 1 shows sucltkhaal
routing topology. Without loss of generality, we assume that there is a filder lin
from the eNB to the core network, and focus on the set of capacity-limitelchiaail
links (e.g., wireless) connecting SCs to the eNB, denoteijasWe denote as
routing path3, (i) the set of all backhaul linkg € 15;, along which traffic is routed
from BS: to an eNB aggregation point. For example, in Fig53(1) = {1}, and
Bn(3) = {1,2,3}. We further denote a8(j) the set of all BS € B whose traffic
is routed over backhaul link. E.g.,B(1) = {1,2,3,4} andB(2) = {2,3,4} in
Fig. 1. In the case of a star topology, there is exactly one (unique) batkhk
used for each BS (i.e|l,B,(:)|| = ||1B(j)| = 1, Vi, 7). Finally, we assume that the
backhaul route for each BS ggven e.g., calculated in practice as a Layer 2 (L2)
spanning tree, and is an input to our problem. In Section 4, we highlight some
limitations of L2 backhaul routing.

(A.9 - Backhaul load) Each backhaul link € By, is characterized by a down-
link capacityCP (j) bps. Backhaul links usually don’t implement any particular
scheduling algorithm, and can be seen as a data “pipe”. The capacity bl the
and DL might be the same or different (e.g., Frequency-Division Dupgt®d),
or fixed/dynamic Time-Division Duplex (TDD) systems [28]). The load oraels
haul link j € B}, consists of the sum of loads of all BSs using that link:

Z Plp 5?7 (4)

i€B(j)

wherec? is an estimate of the total rate delivered by 8% BS is usually charac-
terized by its “peak” rate (often upper bounded by the maximum MCS avajjable
and a “busy” rate, when a BS serves many users [16]. The latter idlyuguée
smaller than the former, since users near the edge of the cell tend to briag-the
erage rate down. However, the use of channel-based schedulimglatedi multi-
user diversity gains suggest that conservatively se@ihgloser to its nominal
peak value is safer. In practice, a BS could measure this load and usecttydir



Based on the above problem setup, the association policy consists in finding
appropriate values for the routing probabilitjgs(=) andp! (), for DL and UL
traffic, respectively (defined earlier in A.5). That is, for each locatipwe would
like to optimally choose which B$ to route to flows generated from (UL) or
destined to (DL) users in*. Our goals for this association problem are twofold: (i)
ensure that the capacity of no network element (BS or backhaul link) eeebec!;

(if) achieve a good tradeoff between user physical data rates and édagcng.
We will consider two main scenarios:

Link split or DL/UL decoupling:This allows each UE to be associated with
different BSs for its DL and UL traffic, and to optimize UL and DL perforroan
independently [24, 29].

Joint DL/UL: In current networks, a UE must be associated to same base station
for both UL and DL traffic.

2.2 Optimal User Association for Split UL/DL

We will first define the user association problem for the split DL/UL case.
The feasible region for the variable$’ (), p! (z) can first be delimited by the
requirement that the capacity of no BS is exceeded.

Definition 1. (Feasibility): Lety € {U, D}, and lete be an arbitrarily small
positive constant. The s¢t of feasible BS loads¥ = (p¥, p3, . .. ,pﬁB”) is

f4= {py | pf = /Epi’(w)pi’(x)dw,
0<p!/<1l—e¢
5
Zpg('r) =1, ( )
i€B

0<pl(x) <1,VieBVze E}.

Lemma 2.1. The feasible setg”, fU are convex.

Proof. The proof for the feasible DL set” is presented in [9]. It can be easily
adapted for the UL case, as well. Ol

When UL and DL traffic can be routed separately, this implies pidt) and
pY (x) can take different values. Hence, the problem of optimal DL and ULcasso
ation can be decoupled into two independent problems, one for DL arfdiodeé.

In the remainder of this section, we focus on the optimal DL association pnoble
andwe omit the superscriptsD, U} to simplify notation We return to the joint
DL/UL association problem in the next section. To better illustrate our approa

“The use of a probabilistic association rule simplifies solving the problem.wi# turn out, the
optimal values will be eithed or 1, i.e. the optimal association rule will be deterministic.



we first apply this for a simple star BH topology, and then generalize foed3ke
topology.
Optimal User Association for Star BH Topology)

Let Z(5) be an indicator variable, related to backhaul lijhke B;,, such that
Z(j) =0 Whenol?) < 1, andZ(j) = 1 when 2% > 1 (i.e, the offered load
to backhaul linkj exceeds the available capaC|ty) In the following, since for star
topologies there is exactly one backhaul link associated with each B3)(to
simplify notation we can safely assume- j.

Theorem 2.2(User-Association in a star BH topologyJhe optimal user associ-
ation problem with a star backhaul topology is expressecthas, {<I>(p)|p € f},

where )
@(p):Z(l—pz +’YZI (pzcz . > ‘ (6)

ieB €8y

If the feasible domairf of the problem is non-empty, apd = (p7, p5, - - - ,pHBJ‘)
denotes the optimal load vector, the optimal user-association rule at lotati®

arg max clo)(l = pi)° (7)
(3 *\ov . . Z(i i Ci ’
Bty (L-p) & Gy (él() _1>

Proof. We prove here that the above association rule indeed minimizes the cost
function of Eq. (6). This problem is a convex optimization problem. Its féasib
set f is convex, and the objective functiah(p) is also convex (the hessian ma-
trix is positive semi-definite). Lep* be the optimal solution of this minimization
problem. Hence, it is adequate to check the following condition for optimality

(Ve(p™), Ap") 20 (8)

forall p € f, whereAp* = p — p*. Letp(x) andp*(x) be the associated routing
probability vectors fop andp*, respectively. Using the deterministic cell coverage
generated by (7), the optimal association rule is given by:

. 1— pf)e
p?(“’)ﬂ{““gmag{ nLn 'Z?)> } ©)
ey (- a3 (6 1)

Before proceeding to the calculation of the inner product, we analyticdtylede
the derivative of the corresponding cost functid(y), described in Eq. (6). The
derivative is an-th dimensional vector; theth element of which has value:

(=)0, i pici < Cui)
2p; 2 —2¢;Cy, (4) . ~ . (10)

v _{u—m T E g itz O,



To that end, the inner product defined in Eq. (8), becomes:

71208 =Gy
(Vo (o z{ O e (GR)

1 + 271- )( pL )a (Pi Ci *C;CQh('L)) .
= S [ ) (o) - pi (@)
B (1—p;) L

. L+ 29(1 = p)) e (& — L
:/ %Z ( 0 (C @ )> (pi(x) — pi (2)) dz.
L i€B

(@)1 - pi)

Note that,

1+ 29(1 - p})*a 20 ( Z5 )
Z;p"(‘””){ @)1= p)e |

i€

S ){ 14 2v(1 — pi‘)aéici(z) (cpf;?;) B 1) }
pi (x e
ci(x)(1 - pj)

1€B

holds becausg!(z) in (9) is an indicator for the maximizer of clad Ifj)a TV
L2y (1=p)) &g, (- (Cid)_l)
Hence (8) holds. O

We expressed the objective (Eq. (6)) with respect to the variab)der con-
venience. However, these depend on the association probabilities which are
the underlying decision variables, as shown in Definition 1. The first suimeis
standardx-cost function for each B% [9]. Parameter: controls the amount of
load balancing desired. Far = 0, minimizing this function leads to a maximum
SINR user-association rule, maximizing the physical data rate for eactidiloca
¢i(x), and thus the spectral efficiency. As — oo, this cost function aims at
equalizing the BS utilizationg;, i.e. to balance the loatlsThe second sum intro-
duces a penalty for each backhaul linwhose capacity is exceededl() = 1).
This penalty function is quadratic on the amount of excess load (quadest#itp
functions are often considered in convex optimization literature [3PPould be
chosen as a large constant, introducing a “soft” constraint for thehlaatkinks
(i.e., backhaul capacity could be slightly exceeded, if this really improvessac
performance), or be iteratively adapted using increasing values, teccasverge
to a “hard” constraint.

Regarding the optimal association rule of Eq. (7), we note that when tlag-cap
ity constraint for the backhaul linkis not active (i.e.Z(:z) = 0, in provisioned BH
networks), the above theorem states that the optimal association rule igthe sa
as the one found in [9]. However, when the backhaul link ofiRf@ts congested,

a second term is added in the denominator that penalizes that BS making it less

®Note that fora. = 1 the aboven-cost function is not defined, ardg(1 — p;)~! is used in-
stead [9].



preferable to UEs at location even if the offered radio access ratér) is high,
or the radio interface afis not itself congested.
Optimal User Association for Tree BH Topology)

We now consider a more complex backhaul scenario, where a singlasdck
link might route traffic from multiple BSs, and the traffic of a single BS might be
routed over multiple backhaul links (multi-hop path) towards the eNBZI(¢} be
again an indicator variable, related to congestion in backhauljliak5,. Now,

Z(j) needs to consider the load of all the BSs whose traffic it carries (see A.9)

specifically,Z(j) = 0, whenZ=icEn P4 andZ(j) =1, whena%@)’m > 1.

i€
Cn(j)
Theorem 2.3. [User-Association in a tree BH topology] The optimal user associ-
ation problem with a tree backhaul topology can be expresseﬂia,g{ti)(p)\p €

f}, where

(1 p )1—a . %%)pzéz
b(p) — A 2 Ao Y P2 11
(p) % " +7J§h | a7 (11)

If the feasible domairf of the problem is non-empty, the optimal user-association
rule at locationz is now

arg max
i€B

ci(z)(1 = p;)®
] A et 2
L+2y-(1—=pHe-¢ > gh(‘{}) : (keg(cji(j) - 1)
JEB (1)

Proof. The steps of this proof are similar to the star case, so we present here di-
rectly the corresponding inner product.

(V@ (p7),Ap") =

1 N 2okeB(j) PRCE _ & X
:Z{m_‘—z’y E I(‘])[ CKZ((;)Q cl_ch(j)}}(pl_pz)

icB JEBy, (i)

- / pi(@) (pi() — pl (x)) da =
L

> prlk (13)
14 2v(1 — pi)®é () . [ k€BG) 1
_/ /\(:z:)Z Fatee Cje%mc"m < o) >
o ou() B ci(x)(1 — pi)e
“(pi(z) —pi(z))dz >0,
due to the corresponding maximizgi(z) derived from (12). Ol

As one can see, the cost function is similar in nature. The first term pames
ing to the radio access part remains unchanged. The second term dagainées
a penalty for each backhaul link that is congested. However, thera avenber



of interesting differences between the star and tree cases. First, thieygerm in
the denominator of the optimal association rule (Eq. (12)) now considevgibie
backhaul pattB;, (i) that traffic from BS; traverses, and adds a penalty évery
link along that path that is congested (outer sum in the denominator). Thés-obs
vation provides some support for the number of backhaul hops heyistiosed
in [23,31]. However, our analysis also suggests that it can be subdpisre path
with few hops might still include one or more congested links, and provides the
optimal way to weigh in the amount of congestion on each backhaul link.
Second, the actual congestion on each backhauljlisknow not only depen-
dent on the load of the candidate B®ut also on other BSs whose load is routed
over j. Hence, a BS which would otherwise be a good candidate for traffic at
locationz, might still be penalized and not selected, even if it does not impose
itself a large load on a backhaul lipk This is becausether BSs sharing the same
backhaul link might be heavily loaded or congested.
In the case of split UL/DL traffic, the above analysis can be apl@zhrately
on UL and DL traffic, and optimize UL and DL associations independently. Fi-
nally, although we have provided separate solutions for star and treleggm to
better illustrate our approach, the optimal rule for the tree topology is geraexc
includes star topologies as well.

2.3 Optimal Joint UL and DL Association

Current cellular networks (e.g. 3G/4G) require that a UE should beemted
to a single BS for both UL and DL traffic [32]. This changes the optimal @aso
tion problem, as one now needgamtly optimize UL and DL traffic performance.
E.g., a user at location might end up being associated with a BS offering subop-
timal performance on both the downlink and uplink, because other BS cedid
offer really bad UL (or really bad DL) performance.

We thus need to modify our framework accordingly. First, we construeia n
feasible set that includes both dimensions as it follows. Later, while extggttten
optimal user-association rules we will also require ffatr) = p¥ (z) Vi € B .

Definition 2. (Feasibility): The sef of feasible BS loads” = (p?, pL’,...) and
oV = (pY, pY, ...) is defined as
F= {p =[PP | pl = /Cp?(w)pi’(x)dx,
0<p! <1—pg,

S pla) =1, .

i€B
0<pl/(x)<LVieBVxeLl,yce {D,U}}.

Lemma 2.4. The feasible sef’ is convex.

10



Proof. Consider two load vectorg!, p> € F,p! # p?. Then, there exist as-
sociatedp' (z) = [p"P(z) ; p"Y( x[} andp( ) = [p*P(z) ; p*Y(x)] such
thatp} = [p;” 5 p"] = fﬁpz (@)pP (z)dz fﬁpZU z)p{ (x)d] and
0t = 107" 5 o] = ([0} (@)pl (w)de fﬁpz (2)p (x)da]. Now, we
make p as a convex combination of! andpz, i.e. forg € |0, 1], p = Op' +
(1 - 9)/)- Thus, itisp; = [pl ;Y] = [sz + (1= 0)p;" szw +
(1= 0)p2") = [ pP @)Opr " (@) + (1= O (@)da s [ o ()80 (@) +
(1— Q)pz Y(x))dz] for all i € B. Letp(x) = [p(x)D ; p(z)Y] be the routing
probability associated with = [p” ; pY]. Thenp(z) = [pP(z) ; pY(z)] =
[0p) " () + (1 — 0)p>P(x) 5 0p;Y (2) + (1 — )p>Y (x)] and it satisfies all the
above constraints of (14). Hengeis feasible, and s@’ is a convex set. Ol

Second, UL and DL performance must now be included in the same cast fun
tion. Specifically, in the part of the cost function corresponding to thie ractess,
the operator may weigh the importance of DL and UL traffic performance with a

parameter- < [0, 1]°:

1—p o’ (1—pf)—=’
=y Tt (1 7)., ifa” " £ L (15)
ieB a” —1

We also need to extend the penalty function to consider both uplink and down-
link capacity being exceeded on the backhaul link. Due to space limitations, we
present our results directly for the general case of tree backhaalbtpp(we re-
mind the reader that this is applicable to star backhaul topologies as well).

Theorem 2.5(Joint UL/DL Association) The optimal association problem with a
generic BH topology can be expressechés,, {@(p)\p = [pP;pY] € F} where

> pick
)=o)+ Y. DTG | p—-1] . 18

ke{D,U} j€By, Cy ()

If the feasible domai#’ of the problem is non-empty, the optimal user-association
rule at locationz is

(L=p?)"" - (1 =) (17)

i(z) = arg max —5

U
€E eP(a) - (1-p")" +eV(z)- (1-p;P)
where ifg? = 7,9V =1 — 7, thenforl € {D,U}:
. . ol 1) ke%() pplel
Z (9 +2y(1-p") jeBthch&q( cl () _1>>

pt(x)ci(x)

bIf o or oV is equal tol, the respective fraction must again be replaced Wwigl{l — p;), as
explained earlier.

el(z) =
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Proof. Similarly with the previous cases, we focus on the tree-topology scenario in
the non-split scenario, and the minimization of the corresponding costidar{t 6).
Let p* = [(pP)*; (pY)*] be the optimal solution of this optimization problem,
that corresponds to the optimal association rule (17), along with the castex
F =[fp; fu].- Inasimilar way, it is adequate to check the following condition
for optimality

(VO (p"), Ap™) > 0 (18)
forall p € F, whereAp* = p — p*. Letp(z) andp*(x) be the associated routing

probability vectors fop andp*, respectively. Using the deterministic cell coverage
generated by (17), the optimal association rule is given by:

Dyl oy el

pi(x) = l{ arg max (1= (i) = (1= (i) = } (19)
B el (z) (1= (pfV)" +eV(z) (1— (o))"

Similarly to the previous case, we calculate the inner product of Eq. (iLi8). |

_ T D ZjeB(l)p;Déij_ P D [ %D
=Y Aagmpe T PO G - gl - e
=T v Za’eBa)P?Ué? R U sUyy
+ieB{(1_(p*U))aU+2’yl§I Ch(l)2 ¢ Ch(l)]}(pi (pi ))_
T P (X e PPl — Cull
S A{a et 20 s L Oy [P @ o) = pita)) dos
i€B z 1EBy,
-7 & (e Ul — Cp(l .
I e S DL B“gj(l) O [ @ 1) i e =
ieB ? leBy
s fe@0 = 0P Fen@ = ()Y
‘/LA(%;{ = (2" (1= (7)) } i) —pie) i
(20)
Note that,
(1= (pP)*” + ep@)(1 = ()"
gf’ { (L= (iP)* (1 = (p;0))" - on

1— *D aP ep(z)(1— ;§<U oV
S s { (@)1 = (pi7))* +ep(x)(1 = (pi”)) }

P (L= (p")" (1 = (p;¥))"

* ol UyyaV
holds b ‘() in (19) is an indicator for the maximizer of 1= (¢1”)" Z(1=(1")) :
olds becausg (x) in (19) is an indicator for emaX|m|zerOEU(x)(li(pzD))aD+eD(w)(17(p:U))aU
Hence (18) holds. O

The penalty function for the backhaul network is simply the sum of the cespe
tive penalty functions for UL and DL, described in Theorem 2.3. Howelespite
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the similarities of the cost functions, as we can see, the resulting associalion p

in the joint UL/DL case is more complex. The main insights are captured in the
following remark.

Remark: The above optimal rule suggests that, when jointly considering the po-
tentially conflicting objectives of optimizing both DL and UL performance, it is
optimal to associate a user with the BS that maximizesdrenonic mearof the
individual association rules, when considering each objective aloraxinMzing

the harmonic mean presents a more “fair” way to weigh in different objextive
E.g., assume the following BS options for a user: (BS A) offers 50Mbpsbd.

only 1Mbps UL; (BS B) 200Mbps DL and 0.5Mbps UL; (BS C) 20Mbps Dida
5Mbps UL. If we care about UL and DL performance equally (i-e= 0.5), one
might assume that the BS with the highest sum (or arithmetic average) of rates
should be chosen (i.e. BS B). However, this would lead to rather pooresi p
formance. Maximizing the harmonic mean would lead to choosing BS C instead.
While this simple example captures the main principle, the actual rule is more com-
plex, as it weighs each objective also with a complex faetor) related to both
radio access performance and backhaul penalties. Finally, we notenfiparison
purposes, that in the case of “split” UL/DL split association, covered ati@e?2.2,

DL traffic would be associated with BS B, and UL traffic with BS C. This simple
example demonstrates why split UL/DL may perform considerably better tlean th
joint association. We will further explore this in the simulations.

3 SDN-based Implementation

The above derived association rules tell a UE at some locatiomhere to
associate optimally. However, as the base state loads might not be optimal at the
time (i.e. equal tg;, see proof of Theorem 2.2), this policy represents a gradient
descent algorithm, that needs to be iteratively applied in practice, untiiecges
to the optimal loads. Here, we describe an implementation of such an algorithm
facilitated by an SDN framework that offers a centralized programmabl&aton
for the underlying network. It takes as inputs (i) the overall network stand (ii)
some high level system-parameters (e.g. operator preferences)idikerto the
SDN architecture, we consider four planes, as illustrated in Fig. 2:

(3}
,_0, 0 é« UL HD

Eontroller -
28 plk) ] é @
Figure 2: Applicability to the SDN architecture.

Application tier: The operator determines and advertises to the controller some
system-related parameters (exd’, ™ etc.).
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Controller tier: At each iteration period, the controller receives some network-
related parameters (e.gV, traffic profile, etc.) as well as the 2-dimensional load
vectorp?, pU from the network tier. Then, based on the system-related parameters
directed from the application tier, it determines and advertises to BSs the optimal
associations (Eq. 7,12,17)
Network tier: Eachk-th period, BSs either apply or indicate to users the optimal
rules depending on how the association is managed in the network. At thef end
k, they measure and advertise to the controller their average load leveltheand
network-relater parameters.
User tier: At eachk-th period, a UE at location: is associated or triggers the
association procedure to the new BSs.

This iteration converges to the globally optimal point, requiring a simple mod-
ification to the proof found [9].

4 Simulations

In this section we present some numerical results and discuss underlying in
sights. We consider 2 x 2 km? area. Fig. 3(a) shows a color-coded map of the
heterogeneous traffic deman@r) (flows/hour per unit area) (blue implying low
traffic and red high), with 2 hotspots. We assume that this area is coveitebb
macro BSs (shown with asterisks and numbered from 1-2) and eightsBGwi{
with triangles and numbered from 3-10) as depicted in Fig. 3(b)-3(fe rékio of
the DL flows isz”=0.7, and the average length size§:”(z) = 100K Bytes,
1/pY (z) = 20K Bytes, Vx € L£. We also assume that the maximum transmis-
sion powers of eNB, SC and UE a#8,24 and 18 dBm, whereas the access-
network bandwidtiV” = WY = 10M Hz, Vi € B and the noise power density
No = —174dBm/H z [33]. We finally assume” = oV = 1 (throughput-optimal
values). If not explicitly mentioned we consider the split scheme (Section 2.2)

We remind to the reader that our focus is on the backhaul lrgtaeen the
macro cells and SCéfor simplicity we assume provisioned links between the
macro cells and core network). As already discussed in Assumption (Ae8), w
investigate two different backhaul topology families: (i) “star” topologiesdte-
hop paths), (i) “tree” topologies (with multi-hop paths), along with two back-
haul links types:wired and wireless Our aim is to evaluate the derived asso-
ciation rules described in Section 2 for differamtder-provisionedscenarios, by
assumingfixed backhaul routing paths, pre-established with traditional Layer 2
routing. We assume that the BH capacities on the DL and UL are the same (i.e.

"The controller also handles the penalty factorFor “hard” backhaul constraints, it (i) starts
with a small value, (ii) increases its value at each iteration, according to digaitnde of the main
cost function, to avoid infeasible solutions and steep valleys, as is uswal®yid penalty function
implementations [30].

8Note that copper and fiber access are the key technologies for wicktidod links, and mi-
croWave and millimeter-wave P2P or P2MP access are the counteopdhef wireless backhaul
links [34].
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CP(i) = CY(i) = Cy, Vi € B), and if not explicitly mentioned we assume them
to be equal tot00M bps. We maintain this assumption to facilitate our discus-
sion, although our framework works for heterogeneous backhauldinésJL/DL
capacities as well (Assumption A.9).

Before proceeding, we discuss how different backhaul technoladfiest the
backhaul capacities, and setup a metric to evaluate the utilization efficiernasé
of wired backhaul links, we assume that the peak backhaul cap@gitg always
guaranteed. Fawirelessbackhaul links we adopt a simple model associating peak
backhaul capacity to distance: if the length of tk link is r;, the peak capacity
drops as:

d(?“,) _ { 1, r; S 7“0-

(2o)™,  otherwise,

Ti

(22)

whererg is some threshold range within which the maximal rate is obtained (e.g.
Line-of-Sight), andh is the attenuation factor. Hence, the available capacity drops
to d(r;)Chr(j) (£ Cr(7)). For our simulations, we assumed that= 200m, and

n = 3. While the above model is perhaps oversimplifying, our main goal is to
simply include the propagation related impact on wireless backhaul, compared
wired, without getting into the details of specific backhaul implementations. Fur-
thermore, to evaluate the DL utilization efficiency we introduce the Mean 8duar
Error (MSED), between the DL utilization of different BSs, normalized to 1:

1
MSE” = o~ > > (0! —p})%, 23)
i g

whereh = |[4§] x [4] is the normalizing factor, andV the total number of
BSs (similarA/ SEY for UL). We define the DL/UL utilization efficiency to be

1 - MSEP and1 — MSEY, respectively, that increase on the amount of load
balancing.

Coverage SnapshotBig. 3(b)-3(c) depict the optimal DL and UL associations,
with respect to the traffic arrival rates shown in Fig. 3(a), by ignorindotiekhaul
network (or assuming it's over-provisioned). In the DL, most useratiaehed to
the macro BSs due to their high transmission power, whereas in the UL eaxch us
is mainly attached to the nearest BS [23]. In the following, we focus onrdiite
under-provisionedbackhaul scenarios, and study the DL associations. In Fig. 3(d)
we adopt awvired-starbackhaul topology, where SCs shrink their coverage areas,
by handing-over users to other BSs, in order to offload the correlsppiiunder-
provisioned) backhaul links; this phenomenon becomes more intense indtie “h
spot” areas (i.e. BS4 and BS7 have vastly decreased their coverea® due
to the higher traffic demand. Similarly, in Fig. 3(e), we assumeiraless-star
backhaul topology, where SCs further decrease their coverags, atee to the
higher backhaul capacity loss caused from the long wireless links (s€22).

%We should note that different load balancing metrics could have beeh @se themaximum,
median and minimuBS load; however, we chose to use MSE since it facilitates the visualization of
the network efficiency.
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(e) DL assoc. (BH: Wirelesqf) DL assoc. (BH: Wireless-
Star). Tree).

Figure 3: Coverage snapshots with optimal associations in differerdisosn

In Fig. 3(f) we adopt avireless-treg¢opology, where some SCs are required to
carry also traffic of other SCs, and end up more congested. As a nesst,SCs
further decrease their coverage area, compared to the star-wirgleksgy How-
ever, BS7 and BS10 enlarge their coverage areas, compared to thassaiThis
occurs because these SCs are far from the eNB, and multi-hop topdlogyg a
them to route their traffic over shorter wireless links with smaller capacity $psse
compared to the star case (Fig. 3(e)). Hence, there are two main faifemting
the coverage areas (and potentially, the system performance) in sebbssiback-
haul networks: topology multi-hop backhauling might reduce the available BH
capacity for an SC, because of other loaded SCs sharing links with ittilogghe
higher then,r, the worse the capacity loss over a dedicated, direct backhaul link.

Finally, in Fig. 4(a), 4(b), 4(c) we depict the optimal UL user-association
the corresponding under-provisioned scenarios. We notice similarioefze in
the DL.
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(a) UL assoc. (BH: Wired-StarYb) UL assoc. (BH: Wireless-
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Figure 4: Coverage snapshots with optimal associations in the UL scenarios

As backhaul networks become increasingly complex, e.g. “mesh” topslogie
each BS hamultiplepossible routing paths to follow, beyond what is shown in the
figures (we remind the reader that the above shown topologies are simgjiyeine
spanning routing trees). The above observations thus underline titeashimgs
of predetermined, Layer 2 (L2) backhaul routing mechanisms, andaradljbint
optimization of user-association on the radio access network along withrigna
Layer 3 (L3) backhaul routing (see Section 5).

_15 3.5 o
[%] n 2]
g g | ot
2 PR T s =3 /s
5 10} ¢ oo =
>
=3 2 =3 “a
E? o %;2'5 < 3
S 5/ <x°” [=Wired-Star 3 ° = Wired-Star
F e ~<Wired-Tree £ 2 ~Wired-Tree
a |4 < Wireless-Treg 8 < Wireless-Treg
o o Wireless—Star 31 a Wireless-Star
gO 300 500 'EO 300 500
Ch (Mbps) C, (Mbps)

(a) DL (global) user throughputb) UL (global) user throughput.
Figure 5: Mean throughputs overall all users in the network.

User performancekig. 5(a), 5(b) depict thaverageDL and UL user through-
puts, as a function of the backhaul capacity constri@jnton different scenarios.
Generally, ag’}, drops, the mean throughputs are decreased, since users are handed
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over to (potentially far-away) macro BSs, causing performance datioad Inter-
estingly, the slope of the dropping rate becomes more steep for lower values of
C}, due to the logarithimic capacity formula chosen in assumption (A.3). Also,
as (), increases, the average throughputs “converge” to the value condisg

to a provisioned backhaul network. Note that the average UL througigmver-
gences more quickly, compared to the DL. This happens due to the asymmetry
between the DL and UL traffic demand on the radio access network: then®L o
that is much lower, mainly due to the asymmetry between the transmission powers
of BSs and UEs, as well as different file sizes assumed in each direBgyond

this point, the UL backhaul resources will be underutilized. This calls flaxéble

TDD duplexing scheme, that will dynamically distribute the backhaul ressurc
accordingly, for example by giving more backhaul resources to DLrvthe UL
demand is already satisfied (e.g. the eIMTA scheme [35]). Finally, in thedwire
backhaul links case, star topology is always slightly better than the tresreagh

in the wireless the opposite, as explained earlier.

Table 2: Mean throughp. for handed-over users (in Mbps).

] Topology | Cn=50 Cr, =250  Cj, = 500(Mbps) |
DL and UL thr.: Star-Wired| 1.1 and 0.2 3.1and 1.6 4.1 and X
DL and UL thr.: Tree-Wired| 0.6 and 0.1 2.4and 0.7 3.2and X

DL and UL thr.: Tree-Wirel.| 0.2 and 0.03 1.7 and 0.07 2.1and 0.15
DL and UL thr.: Star-Wirel.| 0.1 and 0.001 1.4 and 0.05 1.7 and 0.02

One could notice that user throughputs drop slightly ondheonstraint, e.g.
in a wired-star topology i}, drops500 — 50 Mbps (10 times), the mean user
throughput only dropd5 — 6 Mbps (~ 3 times). This is due to the fact that,
under-provisioned backhaul links do not affect the whole netwouk,specific
groups of users associated to the cells that suffer from low backhaatiy. To
better illustrate this, in Table 2 we show the average throughput ¢fahded-over
users as a function of”},. Indeed, their performance is severely affected: for the
same scenario, their DL throughput drops all the way.toMbps (~ 15 times).
(In scenarios with no handovers, we mark the respective table entry mvith)a

Network PerformanceTurning out attention to network-related performance,
Fig. 6(a) considers spectral efficiendjt(/s/H =), normalizedby the maximum
corresponding value when the network is provisioned. Load-balarfdiitdiza-
tion”) efficiency is further considered in Fig. 6(b) in terms of the MSE metric,
described earlier. Both efficiencies convergé s the network gets provisioned.
Low C}, values will push users to handover to far-away BSs, and this will po-
tentially decrease the8 1N R (spectral efficiency decrease), and create steep dif-
ferences between BSs loads, e.g. by congesting macro BSs andutilidierg
the SCs (utilization efficiency decrease). Note that, the joint degradatitresé
performances also impacts user performance negatively (e.g. useghipid), as
explained in assumption (A.7). Regarding spectral efficiency, more spalyifi
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Figure 6: Downlink Network Efficiencies.

although in the wired scenario, star topology is always better comparedti@éhe

in the wireless scenario this is not the case. For low valués,othe star topology

is worse, due to the higher capacity loss of the long and direct links. Howeve

C}, is increased, and some links start becoming provisioned in the star topology,
the capacity loss cost due to the long wireless links in a star topology, is dochinate
from the capacity cost due to multi-sharing links of the tree topology, by making
tree worse. We highlight that this trade-off can suggest differeniogyes as opti-

mal in different under-provisioned scenarios, and can affectrdifteperformance
metrics.

Table 3: Split Vs. Non-Split Improvements
] Performance | 7=0 =05 =1 |
DL and UL Throughput| 6% and 32% 4% and 35% 0% and 37%

DL and UL Spectr. Eff.| 4% and 29% 3% and 31% 0% and 33%
DL and UL Uiliz. Eff. | 7% and 34% 4% and 38% 0% and 41%

Split and non-split impactJoint DL/UL association or “non-split” (described
in Section 2.3) is incapable of achieving optimal DL and UL performanitelta-
neously as DL/UL splitis; using < 7 < 1 we can trade-off which carries more
importance, though. Hence, we focus on comparing the split and non siie 3
illustrates the potentigderformance improvemerntsat UL/DL split promises over
the non-split, in terms of various metrics, for variousindeed, the higher the
for the non-split scenario, the higher the emphasis on the DL (and less aiLh
and so the higher the gain over the UL performance that split promises ydraén
holds for lowr). We remark that split enhances UL performance considerably, e.g.
the average UL throughput is increased up to 37%. This is due tWeppendency
that split generates between the DL and UL associations in the accesskehab
often makes the DL the bottleneck (due to aforementioned asymmetry between the
peak rates). Thus, DL will often "preempt” the backhaul constraint pententially
(i) leave some UL resources unused, (ii) degrade UL performance.
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5 Discussion and Future work

In this section, we briefly discuss potential limitations of our framework, and
how to possibly extend it to address them.

Additional flow-types.In our framework, we assumed all flows to be best-
effort. Modern cellular networks will need to also considedicatedlows that are
subject to admission control, i.e., require resources for exclusiveeygay) The
user QoS related to such flows is often captured with a blocking probabihighw
could captured by a k-loss queueing system [26, 36]. The blockinigapitity
in such a system again depends on the channel quality (gince this decides
how many resources must be allocated to satisfy a given performandeeragnt)
and the load of that BS (this decides the total resources remaining unasexg
showed in [37]. Hence, one could introduce an additional term in the thlgec
related to dedicated flow performance, and attempt to derive an optimal gadicy
takes both best effort and dedicated flows, as well as related actdésekhaul
resources into account.

Dynamic TDD schemeln our simulations we assume that the backhaul re-
sources are fixed, and equally distributed between the downlink and @ik
sumption A.9). Interestingly, we showed that this scheme can result in sather
optimal performance, and waste backhaul resources. The desigmaifeaflexi-
ble TDD scheme, that distributelynamicallythe backhaul resources between the
downlink and uplink dimension, can enhance the system performance.

Joint radio and L3 backhaul routingesh backhaul topologies with multiple
available routing paths are expected to be the rule, rather than the excieption
future networks. Our assumption of fixed, L2 backhaul routing is resteicand
as we saw in the simulations also penalizes performance. It would be intgrigstin
consider choosing both the BS to associate to, as well as how traffic fierB$h
is routed towards an aggregation point (L3 routing).

6 Conclusion

In this paper, we propose a user-association framework for futuriehbal-
limited HetNets. We showed how different backhaul topologies and cagdanity
itations affect the user and network performance, when one jointly censsitle
access and backhaul resources. Initial simulation results corrolibeat®rrect-
ness of our framework, and reveal interesting tradeoffs mostly relatedder-
provisioned backhaul resources.
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