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Abstract e They are computationally efficient, as will be
demonstrated hereunder.

Linear prediction based algorithms have been applied to

the multi-channel FIR identification problem. In [11], it e The weighted LP can be shown to be asymptot-

was shown that oversampled and/or multiple antenna re-  jcally statistically equivalent to Weighted Noise

ceived signals may be modeled as well as low rank MA  Subspace Fitting with proper parameterization (see

processes as low rank AR processes. Indeed, taking FIR companion paper in this conference).

nature and the singularity of the MA process into account

(due to the fact that the number of channels is biggerthan o They are able to identify minimum phase common

the number of sources) leads to a finite order prediction  zeros among the different channels [12].

filter (i.,e. AR(L < oo0) modeling), which is automati-

cally identified by, e.g., a singular multichannel Levinson || these advantages leads us to think that LP meth-

algorithm, and can be shown to be robust to AR ordegds are good candidates for blind channel identification,
overestimation. On the other hand, K.A. Meraim and Agt |east as a startup method.

Gorokhov derive other robustness properties based onthe | p methods consist in two main part, the first one

equations>(z)H(z) = h(0), whereP(z) is the prediction jgentifies the noiseless equivalent AR model, the second
filter H(z) is the channel antl(0) its first coefficient. Al- 541t deduces the channel from the LP filter coefficients.
though usingP(=) of overestimated order, clever use Ofne piceties of LP are that both steps are robust, the first
the previous equations leads to robustness of the estimg-AR model order overestimation and the second to chan-
tion of H(z) to channel length overestimation. This paye| order overestimation. We will first present the differ-
per investigates these robustness issues, comparing ba} approaches to LP for channel estimation, identify the
methods (and derived methods) to order estimation alg@spystness features and then propose a global approach
rithms for, e.g., subspace-fitting methods. An importanjhere the three first cited advantages are combined. The
point developed hereunder is the implicit order estimag st part of the algorithm consists of a multichannel sin-
tion schemes present in linear prediction based methogg|ar | evinson algorithm with AR order estimation and

and their influence on identification performance. Furihe second part of the Weighted LP approach introduced
thermore, we develop a new order estimation method, qu 4.

low computational cost and giving the channel estimate
as a by-product.

2 Data Model

1 Introduction Consider linear digital modulation over a linear channel

Lots of batch multichannel identification algorithmsW'th additive Gaussian noise. Assume that we have

based on Second Order Statistics have been developed f@NSmitters at a certain carrier frequency ancanten-
cently [3, 1]. Among these, the Linear Prediction (LP)'2S €CeVing mixtures of the signals. We shall assume

based algorithms have the following advantages: thatm > p. The received signals can be written in the
baseband as

e They are robust to order overestimation. We will
study the mechanisms which lead to this robustness yi(t) = Zzaj(k)hg(t —kT) + w(t) (1)
k

and to what extent this robustness holds. =
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where thed’ (k) are the transmitted symbols from sourceFrom here on, we will assume white sources with power

J,» T is the common symbol periodi! (¢) is the (over- o2(Raa = o21).

all) channel impulse response from transmiteto re-

ceiver antenna. Assuming the{a’ (k)} and{v;(¢)} to . .

be jointly (wide-sense) stationary, the proces§gst) } 3 FIR Zero-Forcmg Equallzatlon

are (wide-sense) cyclostationary with peribdIf {y;(¢)}

is sampled with period’, the sampled process is (wide-

sense) stationary. Sampling in this way leads to an equi

alent discrete-time representation. We could also Olglomam as

tain multiple channels in the discrete-time domain by 0---1---0 --- 0---0

E);ae[rlsf]mplmg the continuous-time received signals, seeFTp( H)= : : ©6)
We assume the channels to be FIR. In particular, after 0---0 e 010

sampling we assume the (vector) impulse response frog:n | '

sa filter of order L.
sourcej to be of lengthV/. Without loss of generality, we poem '

6) is a system op(N L —1)) equations ir
assume the first non-zero vector impulse response samplﬁk(ngwnS )'I/'he mi?{)ignu;]l)e(ngth ()))f tr?e FIR equaTI’ilzper
to occur at discrete-time zero. Léf = >~/_, N7 and

is such that the system (6) is exactly or under-determined.
1
N' = max;(N7) . The discrete-time recelved signal cang, o

be represented in vector form as

We consider an equalizdr(z) such thatF'(z)H(z) =
9 ag{z~"* ...z~ "»}, which can be written in the time-

LR L>p= AP 7)
y(k) = > W(i)al (k—i) + v(k) S P
e We assume tha# has full rank if N > m, otherwise,
- Z h(i)a(k—i) + v(k) there is lack of channel diversity (space or time diversity
=0 according to the manner the channels were obtained) and

only a subset of the channels is relevant.

j=1
(@ 4 LP and Equalization
y(k) = [of! (B) -yt (0] k
o(k) = [off (k) - vl (k)] - 4.1 Noise-free Linear Prediction
h](k) = [h‘{H'(k) h%}{(l‘f) Consider the problem of predicting k) fromY . (k—1),
H’ = [0/ (NI-1)---RW(0)] ,H=[H"---H], whereY 1, (k — 1) is considered noiseless (in "real life”,
h(k) = [h'(k)---h (k)] HJ = linei of H’ we will use Ryy = Ryy — ¢2I). The prediction error
a(k) = [a'® (k) - a?H (1)]" can be written as
A (k) = [a (k=n+1) -l ()]
H
An(k) = {A}Vf{(k) . Azj)vfﬁ(k’)} YE)ly -1y = yk)—y(k)ly | o1y = PrY L4 (k)

8
with Pr, = [Prr---Pri1 Pro], Pro = In. Mini-
mizing the prediction error variance leads to the following

optimization problem

where superscript! denotes Hermitian transpose. ®)
We consider additive temporally and spatially white
Gaussian circular noise (k) with Ry, (k — i) =
E{v(k)vf (i)} = 021,,0k;. Assume we receivé/ sam-
ples: min PLRnyf = UgyL (9)

Lo=Im
Yu(k) = T (H) Angpu—1)(k+M—1) + V (k)  hence
(4) PrRyy = [0---0 o7 ] (10)
H
where Y y (k) = {YH(/f) . 'YH(k-i-M—l)} and Al this holds for . > L. As a function ofZ, the rank

V (k) is defined similarly wherea®?, (H) is the mul-  profile of o7 ; behaves like
tichannel multiuser convolution matrix off, with M

block lines. Therefore, the structure of the covariance ma- =7p , L>L
trix of the received signat” (k) is rank(o7 ;) § =m-mée€{p+1,....m} , L=L-1
- m L < L—1
Ryy = T8 (H) RaaTh (H) 4+ 021 (5) (11)

wherem = mL—(L+N-1) € {0,1,...,m—1—p}
where Raa = E{AN+p(M_1)(/f)Aﬁ+p(M_1)(k’)}- represents the degree of singularity/fy .



4.2 LP and inverse ofRyy

Note that multichannel linear prediction corresponds to oo
block triangular factorization of (some generalized) in- . :
verse ofRyy . Indeed, ¥k *
[0---0] = QL |1m] x| =[0--0]]]
Ly RyyL¥ =Dp, (Lp)ij = Pic1i-j, :
L Yy Ly, L, ( L) ¥ 1,4—j (12) Rrect
(Dr)ii = 02,4
L r *
wherely is block lower triangular and;, is block diag- ) ) _ _ (15)
onal. (A slight generalization to the singular case of) th@hich, solved in a least-squares manner, gives :
multichannel Levinson algorithm can be used to compute _
0 " Qp = (RrectRige) ™ Rrectr” (16)

the prediction quantities and hence the triangular factor-
ization above in a fast way. In the case thaty L IS Sin- £y ther investigation should lead to a weighted least-
gular, some precaution is necessary in the determlnatuéua]uares solution.

of the last block coefficien®, 1, which is not unique (see

[8]). Similar singularities will then arise at higher orger . )
4.4 LP filter as ZF equalizer

Consider the noise-free received signal, which is a singu-

4.3 Other LP algorithms lar multivariate MA process, then far = . we have
L
Rewriting equation (10) at the correct order as y(k) + Zpéyiy(k—i) =y (k) = h(0)a(k) (17)
i=1
H
Ryvr r so that the prediction error is a singular white noise. This
[—Q,|In] = =1[0-- .0|05] (13) means that the noise-free received sigpgt) is also a

singular multivariate AR process. Hence
Pr=[-0Pg], o, =0;,,L>L. (18)

Hence the factoré; and Dy, in the factorization (12) be-
{ ol =ro—r(Ryy,r) 'rt (14) come block Toeplitz aftef lines.
Q; =r(Ryyr)™! For L = L, 02 = o2h™ (0)h(0) allows us to find
B h(0) up to a unitary matrix. We see from (8) and from

In this method, the inverse is replaced by a pseudd/(k)ly ,,, —1) = a(k) that %PA is a zero-
inverse in the overestimated case, which gives slightly ditlelay ZF equalizer. Along with the preceding section, this
ferent results than the singular multichannel Levinson algives us a ZF equalizer of minimum length.
gorithm (this is another choice for the non-unid@(e) in
the case of singular correlation matrix). The drawback of . .
this method is that the pseudo-inverse resorts to comput@  LP and Identification
tionally intensive SVD.

The main advantage of this method, besides its robus$=1 dentifiability
ness to order overestimation, is that it allows the use 6fhe channel can be found from
a correlation of a smoothing window (i.e. a correla-
tion matrix sizeM K x M K) bigger than thar, op- PLE{YLH(k)Yﬁ(k—i—N—l)}
posed to the Levinson method. The correct use of the — S2h(0)[RH(0) - R (N-1)]
pseudo-inverse, as will be shown hereunder, corresponds
to the use of the signal subspace part of it and can Rg from P, (z)H(z) = h(0) = H(z) = P71 (2) h(0)
seen as resorting to the correlation matrix cleaned frofjsing the lattice parameterization oy () obtained with
its noise subspace (the whole algorithm has strong cogxe Levinson algorithm. -
nections with [13]). Consider for a moment that we do not have chan-
To get this averaging effect, but without the cost ohel overestimation problems (and that the singularities ar
the SVD, we propose the following “simplified” method, properly handled), theR(z) is consistently estimated and
which, when the order is correctly estimated, relies on : the fundamental equation is

(19)



Unfortunately, in “practical” situations, simulations
P(z)H(z) = h(0) (20) do not agree with this. Indeed, when overestimating the
channel length{’ > N), the noise power is underesti-

whereh (0) is computed fromv = oh™ (0)R(0) upto -

a unitary matrix (say U). Obviouslf’(z) = H(z)U ful-
fills (20), which is a fundamental limitation of the second

order methods. Identification of the unitary matrix must . mL mL AZ
be done by resorting to higher order statistics, by finding % = doooN< D> N=dlyr (29
the innovations of the AR process and applying a source t=N+L-1 i=N+L-1

separation to these. Taking into account the Whitene%ere/\i are the eigenvalues dfyy , which leads to :
of the sources allows then proper identificationgD).

Some refinements appear when the orders of the channels

of the different users are different [4]. P.=P4+P + AGT+ O(\/Lf) P~ Ryy =0 (26)
5.2 Weighted Linear Prediction Hence
Alternatively, givenh(0) and P, we can solve for the 62 = o2 (0)h(0) + AZrrH (27)

channel impulse respongé€ from P(z)H(z) = h(0), us-
ing a weighted least squares procedure [4] : which will introduce an estimation error dia(0). This
error is a function of the channel itself viaand can be

- . , hardly specified statistically. Moreover, the error on the

H = arg nﬁn”W"”(TtH(P)H — [R(O)7,0---0]")|I"  prediction filter will also affect the channel estimate via
(21) the WLS estimator.

We retain here the “practical” algorithm proposed by the

this author, where the weighting matrix is : 6.2 “Levinson” method

W=l (&5 620, (22) In the Levin_sgn method, in a.noiseless context, the pre-
diction coefficients of overestimated order become zero.
which is some weighting between the signal innovationgjithout going into the details of the algorithm, the cal-
subspace, which would be sufficient if the order wergulations rely on the backward and forward prediction er-
known and the noise innovations subspace, which yle'dér powers (this |latter Correspondingdé)' and on some
some robustness through the regularization of the Lgseudo-inverse and the rank of these powers. To get the
equations system. correct prediction filter, detection of this rank is neces-
sary, even if the type of pseudo-inverse is of no influ-
ence on the prediction error variances’ values. When this
rank is not correctly estimated, there is no result as in the
. “pseudo-inverse” method (one can consider that the use of
6.1 “Pseudo-inverse” method the “Levinson” method leads to a minimum length gener-
alized inverse, while the “pseudo-inverse” method leads
to a minimum norm generalized inverse, which has more
ol =ro—r(Ryy,r) #r¥ ’3 robustness virtues). Nevertheless, the values of the pre-
{ Q= r(Ryv,o)¥ (23)  giction error variances will give us a good method for de-
N termination of the AR order.

6 LP Order overestimation

In this method, equation (14) becomes :

where# denotes the Moore-Penrose pseudo-inverse.
This pseudo-inverse relies on the correct separati . .
of the signal and noise subspaces of the correlation mO?- Order estimation
trix. When working with the true value of the noise power . .
(or the ML estimate, which can be computed as the meafrl ~ Channel order estimation based on;

value of the noise singular values), simulations and somg 5 g hspace fitting algorithm, it is natural to try to esti-
theoretical considerations (e.g. appendix F of [4]) Show,4te the order by examining the eigenvalues of the corre-
that incorrect separation of this signals do not worsen thgiqn matrix. In the Direction of Arrival context, Wax de-
performance of the channel estimation. More preciselyq|oned a method described in [14] and based on Informa-
this is due to the following conjecture : tion Theoretic criterions. Unfortunately, this method goe
not apply here. He further worked out a general method
1 ~ in [15], but this method resorts to non linear minimization

Po=P+P"+ O(_L) P Ryy =0 (24)  andits complexity does not suit our purposes.



7.2 AR order estimation The ultimate choice will depend on the price we are will-

o ing to pay for estimation accuracy.
Order estimation for vector AR( < oo) processes are glopay 4

usually based either on test statistics of the ideally zero

prediction coefficients or the prediction error variances.

Another class of estimation procedures rely on InforQ  Simulations
mation Theoretic considerations and were initiated by

Akaike, Rissanen, Hannan and Quinn (see [9] and rej- . .
erences therein). These methods use the prediction erl?)Tl Channel estimation

variances. We will use these latter results and adapt them .
to the singular case. In order to characterize the robustness of the WLP to

: . o . channel length overestimation, we made various simula-
The classical Infomation Theoretic Criteriatry to min- _ . .
tions illustrating the different effects of channel lenght

imize : L .
timation errors and of the overall algorithm.
The performance measure is the Normalized Root
2km? ichi
AIC log |05 4+ m MSE (NRMSE) which is computed over 100 Monte Carlo
7 2km? loglog L runs as
HQ log|o2,| + —— 8982 (28)
km?log L 1 Loo
2
MDL loglog il + ——7—— NRMSE = | 7+ ZhHPﬁ‘(,)h/HhH?
i=1

wherek are the candidate orders ahpdenotes the deter-
minant. _ o whereh P=h = min, ||ah — h||?>. We use the real

These expression are based on the maximized Iogﬁannelh Y
likelihood of the prediction error, with different bias eor .
rection terms based on the number of free paramete'l% [2].

(km?) and the length of the data burst usdd.( Rissa- The symbols are i.i.d. QPSK, and the data length is
nen’s MDL (Minimum Description Length) and Hannan’ = 250. The SNR is defined aglhl|*oz)/(mMay).

and Quinn’s HQ criteria give strongly consistent estimates The eigenvalues profile of the correlation matrix is re-
for true AR(L) processes and Akaike’s AIC criterion hasproduced hereunder, which gives an idea of how easy it
a tendency to overestimate the order. As we will use should be to determine order at the different SNR's.
subsequent procedure which is robust to order overesti-

mation, we will use the latter in the simulations. Eigenvalues of the R, ,

In the singular case, using classic results concernin
singular normal multivariate distributions, these ciger  °r
extend to our case, but gave poor results, so we propo: s
the following modification.

Remind thatj(n) = h(0)a(n) whereR,, = 021,,.
This mean that we can reason on the equivalent lower d
mensionh™ (0)y(n) = k" (0)h(0)a(n) and its predic- 8-}
tion error. Since the sources have been considered uncc _|
related, we can further consider the uncorrelated predic
tion error powers, the total prediction pozer being the sun
of the single prediction error powers, i.e. the trace of this |

=6, m = 4andp = 1 which was used

ok

N

matrix. Hence, th¢w? , | by tracdo ). a0/

More involved and heavier related methods are pre ‘ ‘
sented (for the non-singular case) in [5]. ’ ° e ® *
8 OQverall algorithm Figure 1: Eigenvalues ofRyy .

The overall algorithm(s) proposed simply use the AR or-

der selection + inspection of the eigenvalues of the nexise ofs? ,,,  The simulations agree with the conjecture
to Iastag to get a channel length estimate. Once we havhat, using the ML estimate of the noise power, there is no
these order estimates, we proceed with the various clagss of performance due to overestimation of the channel
sical WLP algorithms where the prediction coefficientdength. The smoothing window & = 6 (i.e. Ryy of

are estimated according to the various methods describaizem K’ x mK).



WLP Estimation Performance with ML estimation for noise power
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Figure 4: WLP without order estimation or

knowledge, K = N
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Use of the prior order estimation This final figure
compares the different practical WLP algorithms, namely
the WLP without order estimation, WLP with AR order
estimation, WLP with channel order estimation followed
by a 'pseudo-inverse’ LP modeling method or a 'Levin-

son’ LP modeling method. In this latter case, we use
a two-step procedure where the first step consists of the
Here, the simulations show clearly the influ-channel length estimation and the second step is again LP

Use ofc?

ence ofAs2, mostly at high SNR, where order estimationmodeling by Levinson, based on the covariance matrix of
is the easiest to perform. We first show the results witminimum size Ryy 1) ande? = Apin(Ryv,.) The re-

the minimum smoothing window and then for a smoothsults agree with what we expected, namely the channel
ing window K = N. Comparison of these clearly favor order estimation greatly improve the performance and the
'pseudo-inverse’LP method is far better then the Levinson

non-minimum smoothing window.

WLP Performance estimation : minimum window size

0 T T T

-5

-10 order overestimation 0..5

NRMS in dB

0 : SSF performance

_35 L L L L L
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Figure 3: WLP without order estimation or
knowledge, minimum &’

25

meth

od on the raw correlation matrix.

WLP Performance : various algorithms
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Only AR order est.
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Figure 5: WLP with order estimation

LP order estimation
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Hereunder, we reproduce the tests for a channel with
m = 4 sub-channels, one user and length= 6, leading



to an AR of true order 2. The results are rather convinc-|| MDL || SNR ||

ing for relatively low SNR. The noise power is computed
under the assumption that we have an AR(6) process.

[ AIC | SNR |
od. [25]20[15]10[ 5] 0 [ -5
1 oloJo]o]o]1]69
2 9999 |82| 11| 2 | 23] 15
3 0| 0|18|87|86|61| 3
4 ojlo|lojo|1]|2]0
5 ojlo|o|O|1|1]2
6 1 /1|02 |10]12]11

[ MDL | SNR |

ord. 25| 20 1510/ 5] 0 | -5

1 0 0 o |o|lo]2]99

2 100 | 100 | 100| 56 | 33| 79| 1

3 0 0 0 |44|67|19] 0

4 0 0 O |o0|loO|O]O

5 0 0 O |o0|loO|O]O

6 0 0 O |o0|loO|O]O

[ HQ | SNR I

od.|| 25| 20 ] 15| 10] 5] 0 | -5

1 0 0 0 |o]o0]|17] 100

2 100| 100 | 100| 86| 78| 81| O

3 0 0 0 |14|22| 2| 0

4 0 0 o|lo|lo|O]| O

5 0 0 o|lo|lo|O]| O

6 0 0 o|lo|lo|O]| O

ord 25| 20 | 15 | 10| 5 0 -5
1 0 0 0O | 0|30 100]| 100
2 0 0 0O |0|0] O 0
3 0 0 0O | 0|18 O 0
4 0 0 0 | 3|49 O 0
5 100| 100| 100| 97| 3 0 0
6 0 0 0O |0|0] O 0
7 0 0 0O |0|0] O 0
8 0 0 0O |0|0] O 0
9 0 0 0O |0|0] O 0
10 0 0 0O |0|0] O 0
1 HQ ] SNR |
od.|| 25 | 20 | 15 | 10| 5 0 -5
1 0 0 0 3 |92 100 | 100
2 0 0 0 0|0 0 0
3 0 0 0 0| 6 0 0
4 0 0 0 [17) 2 0 0
5 100 100|100 72| O 0 0
6 0 0 0 0|0 0 0
7 0 0 0 0|0 0 0
8 0 0 0 0|0 0 0
9 0 0 0 0|0 0 0
10 0 0 0 0|0 0 0

10 Conclusions

We have investigated Linear Prediction robustness char-
acteristics, comparing various methods yielding the pre-
diction coefficients of a singular AR( < oo) process.
The “pseudo-inverse” method is robust, but its perfor-
mance critically relies on the noise power estimation and
on the use of a big enough smoothing window. The

These are the results of the tests for a channel witlLevinson” method needs to perform order estimation

m = 4 sub-channels, 2 users and length= 12, leading

to prove robust. This led to the development of perfor-

to an AR of true order 5. The results are rather convincinghant order estimation algorithms at almost no cost, and
for high to moderate SNR. The noise power is computeglielding the prediction coefficients as a by-product. Al-
under the assumption that we have an AR(10) process. though computationally far less demanding than the first

[ AIC | SNR |
od. | 25|20 15 | 10| 5| 0| -5
1 0] 0] O 0 0 | 70| 100
2 0] 0] O 0 0|1 0
3 00| O 0 119 0
4 0] 0] O 0O |57|20| O
5 87| 97|100| 100| 39| O 0
6 13| 3 0 0 0|0 0
7 0] 0] O 0 0|0 0
8 00| O 0 0|0 0
9 00| O 0 0|0 0
10 0] 0] O 0 3|10 0

method, it does not use a non-minimum smoothing win-
dow, yielding poorer channel estimates. In order to con-
jugate low computational complexity and better perfor-

mance, we propose a solution where a bigger smooth-
ing window is used but without the need of an SVD, this

method should be further refined with the use of a weight-
ing matrix and thus attain comparable performance to the
best method.
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