
Int. J. Comput. Sci. Theor. App., 2014, vol. 2, no. 2., p. 23-34

Available online at www.orb-academic.org

International Journal of
Computer Science:

Theory and Application
ISSN: 2336-0984

Towards the Verification and Validation of Software
Security Properties Using Static Code Analysis
Zeineb Zhioua1,?, Stuart Short1, Yves Roudier2

1SAP Labs France.
2EURECOM, Sophia Antipolis, France.
Email: zeineb.zhioua@sap.com, stuart.short@sap.com, yves.roudier@eurecom.fr
?Corresponding author.

ABSTRACT
Developing and delivering secure software is a challenging task, that gets even harder when the developer tries
to adhere to both application and organization-specific security requirements. Different approaches have been
proposed to facilitate this task, such as code analysis that aims at detecting flaws in the developed software
before it is released and deployed to customer. This paper discusses a number of static code analysis approaches
and presents different code analysis tools adopting each a specific analysis technique. These tools are evaluated
against a sample code illustrating different security challenges that can be addressed using an approach that helps
detecting security properties. The latter can be transformed into abstract security policies that can be validated
against explicit security requirements. This would help the developer throughout the software development
lifecycle and to ensure the compliance with security specifications.

KEYWORDS
Static Analysis — Code Analysis Tools — Security Properties — Program Modeling.
c© 2014 by Orb Academic Publisher. All rights reserved.

1. Introduction
1 In the software development lifecyle, flaws and errors can be
introduced during the different phases, from design to develop-
ment. These undetected errors can turn into security vulnerabili-
ties at run-time, and can be exploited by intruders who introduce
serious damages to the software critical resources. Certain flaws
can be detected easily, while others can remain undetected for
different reasons, namely they emerge rarely or never. Unde-
tected flaws ultimately entail maintenance costs, in addition to
losses incurred by potential attacks. The use of code analysis
and security testing techniques are now well established to find
out such flaws.

In the development lifecycle, developers resort to the usage
of static code analysis tools to assist them in avoiding these flaws,
and help them develop and produce secure and safe software.
However, these tools fall short in verifying the adherence of
the developed software to application and organization security
requirements. Retrieving and validating security properties in
software present a challenging problem that different researchers
have tried to tackle based on a variety of security analysis tools.

1This work is an extended version of [54] published in Computer Software
and Applications Conference Workshops (COMPSACW), 2014 IEEE 38th Inter-
national

Each of the tools adopts a specific analysis technique such as
lexical analysis, syntactic and semantic analysis, is focused on
specific security properties and requires human intervention to
different degrees.

Developers may also rely on the dynamic analysis that of-
fers the possibility to take action in the presence of dynamic
input, which constitutes one of the strengths of this approach.
It often considers the program as a black-box, and analyzes
its run-time behavior usually without any access to the source
code. Dynamic analysis reports failures at the instant they occur,
and provides details allowing the developer/tester to make the
required corrections. One of the shortcomings of this approach
is that it requires a sufficient number of test cases and is quite
time-consuming, yet it cannot ensure an automatic verification
or a complete coverage of the test cases space of the analyzed
program.

In comparison, static analysis in all its forms ensures a com-
plete coverage of the program branches [4], used APIs, program
dependencies, or configuration files explored. Static analysis
refers to different methodologies, including model checking
and model provers, to verify the execution paths of a program
without actually executing it [2]. Unlike manual review, which
relies on the tedious examination of sequences of the concrete

23



International Journal of Computer Science: Theory and Application

or symbolic execution of a program, static code analyzers can
capture comprehensive and accurate models of the software, like
for instance an abstract representation of all the execution paths,
which test-case execution falls short to cover.

We present the research methodology we have conducted
with the objective of covering the main topics of our interest.
The starting point was the modeling and derivation of security
properties that different researches have dealt with, and proposed
different approaches to fill the gap in the representation and
validation of security properties. To this aim, they make use of
formal methods, such as static analysis techniques. This led us
to a second topic, that is the static code analysis approaches and
techniques used to securing software. We discuss in this paper
different static analysis approaches and what are the challenges
ahead in order to assess different types of security properties,
notably complex ones defined at the application level in close
relationship with the design.

In order to deepen our analysis, we collected researches and
publications that have dealt with security properties modeling
and validation, and the static analysis approaches used to this
aim. For more concrete results, we selected and tested a number
of static code analysis tools, covering those used to find security
vulnerabilities, as well as those used detect security properties
in the source code. This led us to the comparison between the
selected tools ‘used approaches, with the objective of determin-
ing where major innovations can be achieved; this is depicted in
the proposed approach section.

This paper is organized as follows: Section 2 highlights
common security issues based on a motivating example. Section
3 discusses different definitions of software security properties
that can be found in the literature. Section 4 then briefly surveys
different static code analysis techniques and program representa-
tion models that are used today, while Section 5 provides further
details on a selection of five static code analysis tools represen-
tative of current uses. Section 6 discusses the applicability of
such tools, as well as experimental results with respect to the
motivating example. Finally, section 7 concludes the paper and
discusses future work.

2. Motivating Example

With the objective of illustrating further the concepts discussed
in the previous section, we present a sample code (Figure 1 and
Figure 2) in which we have injected a number of security flaws
and introduced the notion of security properties.

In the first three lines of the sample code (Figure 1), are
declared three variables that are assigned the user’s payment in-
formation provided as input. The credit card number, the 3-digit
cryptogram and the expiry date are then encrypted using a third-
party encryption library. The encrypted data is afterwords stored
in the database (sendUserData method) for different reasons,
such as the payment made.

This may provide assurance about the confidentiality of
these critical data in storage; and here we mean that these sen-
sitive data have to be kept secret when stored and persisted in

Figure 1. Sample code.

Figure 2. SendUserData method.

the database. However, the invocation of the method sendUser-
Data (Figure 2) sends the sensitive information in plain text to

24



International Journal of Computer Science: Theory and Application

an external source (network call: HTTP quey). This is a secu-
rity breach that automated source code vulnerability detection
tools cannot recognize automatically using string-matching, and
independently from the application expected security objectives.

Even though the critical data (the assets) are encrypted, the
program cannot be deemed as secure or, in this case, ensuring
the confidentiality of the payment information on one hand. On
the other hand, the action of sending these sensitive information
in plain text is a severe vulnerability, that violates the security
property “confidentiality in transit”, and hence, violates the
overall security property “confidentiality”.

Integrity and confidentiality of data are classically guar-
anteed by the implementation of access control mechanisms,
assuring that only authorized principals are allowed to access
to the data. If an unauthorized party gets access to the sensi-
tive payment information, the property “confidentiality” is then
breached.

A common use case consists in using logging functionality
for analysis and auditing purposes. As we can see in the sample
code, the encrypted data are logged with the encryption key
(publicKey), and the payment information are then logged in
plain text; this represents a severe security threat, that will only
be detected after the software is released to the customer, or
even worse, after the flaw is exploited by intruders.

The encryption mechanism may guarantee that the data is
kept secret, but can’t provide assurance about where and how
the data will propagate, where it will be stored, or where it
will be sent or processed. This entails the need for control-
ling information flow using static code analysis. This same
idea is emphasized by Andrei Sabelfeld, and Andrew C. Myers
[35], who deem necessary to analyze how the information flows
through the program. According to the authors, a system is
deemed to be secure regarding the property confidentiality, if
the system as a whole ensures this property. If we had a security
policy that expresses the ”confidentiality of user’s payment in-
formation” requirement, current static code analysis tools will
not be able to concretize it or to relate it to the concrete user in-
formation variables in the source code. Hence, the code analysis
tools will not afford to verify the compliance of the developed
program with this security policy. If a known vulnerability is
identified, static code analysis tools will only detect the exact
location where this flaw occurs, that is, in which line of the
source code, but they don’t provide the means to back-track the
vulnerability and identify the source that led to it.

The main issues we raised in this sample code are related to
capabilities of static code analysis tools to:

• define the assets to be protected: we mean by assets the
critical resources/variables in the source code

• represent/concretize abstract security properties with re-
spect to the code: in other words, how to map between
the abstract security policy and the assets to be protected

• detect the presence of the ”confidentiality in storage” of
the assets

• detect the bad programming practice ”send critical data
in plain text”

• back-track the source of the vulnerability: we need to
backtrack the security vulnerability and identify its sources

• establish the mapping between the vulnerability and the
violated security properties: security vulnerability can be
perceived as violation of security property

• detect the bad programming practice ”storage/logging of
the encryption key with the encrypted data in the same
table”

• translate the detected properties into a security policy

3. Security Properties
A number of studies have proposed the use of static code analy-
sis with the objective of establishing the satisfaction of security
properties in software implementations. The objectives of such
analysis vary widely as security properties definitions are not
universal or common, and are understood very diversely as well.

Many authors take it for granted that security properties
can be defined universally. In contrast, some authors contend
that security properties are highly dependent on the level of
abstraction considered and on the application developed. For
instance, [20], Antonio Maña and Gimena Pujol [1] classify
security properties along several dimensions in emerging open
and distributed environments:

Abstract Security Properties (ASP) represent security proper-
ties considered over the initial draft of the software architecture
during application requirements engineering, and can be formal-
ized. Concrete Security Properties (CSP) map ASPs to security
mechanisms or algorithms implemented into software. The
same ASP can be proven by different CSPs. ASPs and CSPs
can be connected by logical relationships, for instance through
the logical implication, and which they term Semantic Security
Properties (SSP).

In contrast, Domain Security Properties (DSP) are specifica-
tions of security properties generic to a given domain.

ASPs are for instance often considered in relationship with
complex access control or usage control model policies intro-
duced into software, especially through language based security
approaches. For instance, the JIF framework [50] relies on the
static analysis of the information flows of a security policy and
the verification of the conformance of the flows implemented
with those specified in that policy. However, application level se-
curity concerns have not really made their way into mainstream
static code analysis techniques, which focus mostly on concrete
security properties, and which is sometimes even restricted to
code safety analysis.

Code safety can be considered as the most concrete level
of abstraction in software for what regards security properties.
Practitioners generally look for the absence of exploitable safety
vulnerabilities in software. Though this is most generally ad-
dressed through security testing, static validation may help. The

25



International Journal of Computer Science: Theory and Application

dual modeling problem introduced by John Wilander et al. [9, 8]
for instance outlined the correlation between security properties
and bad programming practices that may result in safety issues.
Wilander et al. introduce a static analysis methodology based
on the detection of security and insecurity patterns. The anal-
ysis starts by ruling out the presence of an insecurity pattern
in the code. If one such pattern is detected, the analysis then
proceeds to check whether faulty behaviors are prevented by a
security pattern encompassing the insecurity pattern scope. This
means that potential vulnerabilities are foiled by the presence
of appropriate security mechanisms. The analysis relies on the
mapping of functionalities over code snippets. This mapping
may somewhat restrict the expressivity of the analysis in that
only simple functions are likely to be automatically recognized
in a complex source code. The insecurity and security patterns,
together with the mapping between both types of patterns can
be regarded as a security policy.

A number of researchers similarly regards security prop-
erties as classes of good vs. bad programming practices with
respect to a given security policy. For instance, Aris Zakinthinos
and E.S. Lee [19] define security properties as the instantiation
of a security policy that can be satisfied by more than one single
property.

The authors distinguish between security properties regard-
ing high-level (trusted) and low-level (untrusted) users, in such
a way that low-level users are not able to make deductions about
events generated by the high-level users.

In the same definition provided by John Wilander, security
properties can be seen as trace-based properties, that is, the
property is defined as a set of statements or instructions in a
program. The trace-based property holds for a whole system
if it is valid for the set of all individual traces in the program,
and not for one single trace [46]. This argument works only for
trace-based properties.

Another definition [18] considers security properties fol-
lowing a classical IT security policy: such a policy ensures
that software “assets” or resources have CIA (confidentiality,
integrity, availability) properties, and therefore that their confi-
dentiality cannot be violated, and that they cannot be corrupted,
or made unavailable, if so specified. The network security prop-
erties of authorization, message confidentiality and integrity,
non-repudiation of sending or receipt are also used in distributed
software, or in software involving several principals. In the
following section, we will explore more the static code analy-
sis and the capabilities it offers in the aim of identifying and
validating security properties in source code.

4. Static Code Analysis
In the previous section, we presented and discussed different
definitions attributed to security properties in the literature, and
most of them were considered in the modeling and representa-
tion of security properties that source code analysis tools con-
sider in the analysis approach they adopt.

4.1 Static Code Analysis in the Practice of Software
Development

The delivery and deployment of secure software has always been
a challenging issue that software vendors try to achieve. Creat-
ing more secure software can help reduce security related main-
tenance and update costs, given the fact that it helps reducing,
or even eliminating the sources requiring security corrections.

According to Fabian van den Broek [14], static code analysis
can be used in two situations; the first is during testing, and the
second during development and before testing.

Many developers rely on the latter, that is testing, to ensure
the safety of their programs; but this doesn’t guarantee the
security of the developed software, given the fact that it aims
at verifying the compliance with functional requirements [33].
Hence, functional testing falls short in covering the security
aspect of the software under inspection. In addition, it is applied
only to executable and not to source code or byte-code, and takes
place rather late in the software development process. Unlike
testing, static code analysis can be applied to single files or to
entire program code, and doesn’t require the development to
be complete. In the earlier stages of the development process,
developers may make mistakes and programming errors that
can be detected by compilers, that can, in many cases, provide
corrections to the detected flaws, and the development process is
still ongoing. However, this principle is not applicable to most
security vulnerabilities that can remain undetected. The more a
flaw is undiscovered, the greater it costs to fix [5].

Some organizations try to overcome this lack of focus on
security by performing Penetration tests [2]. Another approach
consists in detecting the security flaws in the source code of the
developed software before it is released or even tested. This
can be manual, meaning that tests are carried out by human
analyst/developer, or automatic, using a code analysis tool. Note
that manual code review can be much more time-consuming
than automatic code review, specially when the entire source
code is to be analyzed, or the code to inspect is large. [37]

From this perspective, automatic static code analysis can be
integrated and applied regularly to the Software Development
Life cycle. These tools are to be used to complement the manual
code review, and not to totally replace it as precised by Jernej
et al. [38]. Having all this is mind, we can emphasize on the
importance and necessity of the static code analysis in reducing
the sources of security issues in the early stages of the software
development life cycle, and before it is released to customers.

4.2 Techniques for Static Code Analysis

Static code analyzers are used for different purposes, mainly for
bugs and security vulnerabilities detection. They are also used to
verify the preserved security properties and for program under-
standing as well [6]. Control-flow and Data-flow are two of the
commonly adopted formal methods for program representations
and static analysis without executing it.

26



International Journal of Computer Science: Theory and Application

4.2.1 Model Checking
Model checking is one of the formal approaches that was first
introduced by Steffen and Schmidt [53], and is applicable to
programs having finite states, or that can be reduced to finite
state. This technique allows the automatic verification of proper-
ties on finite-state systems, and operates in two steps: it requires
first the model construction, and as a second step the properties
specification and modeling.

The model construction consists in transforming the system
into a formalism (such as the Kripke structure [11]) accepted
by a model checking tool. The modeling may also require
a certain level of abstraction in order to eliminate irrelevant
details. Model checking requires as a second step the definition
and the specification of the properties to be met by the software
model subject of the analysis, and is usually given using logical
formalism, like for instance the temporal logic. However, once
the specification of the requirements is achieved, no human
intervention can be performed on the input specification. Most
of the Model Checking methods are focused on the Temporal
Logic, and were introduced by a number of researches, among
them [22], who proposed a Model Checker allowing to verify
the compliance of finite state systems to a Temporal Logic
specification. The verification is performed by exploring the
state space in order to determine whether the specified properties
are satisfied or not.

4.2.2 Control-flow analysis
Control-flow analysis is one of the common used techniques for
static code analysis. The program control-flow is modeled as a
directed Control Flow Graph (CFG), and was first introduced
by Frances E. Allen [34]. CFG is a directed graph that is used
to represent blocs of code in the the form of nodes, the control
dependencies in the form of directed edges, starting with an
entry node and concluding with the end point of the program.
The CFG construction can be carried out based on an abstract
syntax graph representation such as AST (Abstract Syntax Tree)
to which control flow information are introduced [12] [13]. The
main focus of this technique is to determine how the procedures
in a program call each other, as well as to determine which
functions are effectively called.

4.2.3 Data-flow analysis
Data-flow analysis, on the other hand, is based on the abstract
representation of the analyzed program semantics, and is fo-
cused on the extraction of the possible values of data. It aims at
representing data dependencies in the source code, and allows to
track the effect of input data. It aims also at mapping program’s
statements with the data-flow. The latter gathers information
about the possible set of values [29], and is often performed on
the Control Flow Graph. Data-flow analysis has for objective
to statically predict the the dynamic behavior of the analyzed
program.

4.2.4 Symbolic analysis
Symbolic analysis consists in considering the program variables.
According to Wolfgang Wogerer [30], this approach can be seen

as a compiler that translates the program being analyzed to an
intermediate language, consisting of symbolic expressions and
recurrences. This technique is supported by computer algebra
systems, that adopt simplification methods to ensure the quality
of the output results. The analyzed program consists of three
parts: the state, the state condition and the path condition. As
for the state, it is composed of a (variable, value) pair. State
condition is a logic formula that describes assumptions about
the variables values. The path condition, on the other hand, is a
logic formula that defines the condition for which the program
point is reached. Symbolic analysis is deemed to be useful in
transforming unpredictable loops to predictable sequences, and
is mainly used for code optimization, performed by compilers.

4.2.5 Information-flow analysis
Controlling how information flows through out a program is of
paramount importance when dealing with information security.
Information flow is mainly analyzed using dynamic analysis ap-
proach, however, static code analysis can be used to approximate
the information flow propagation and ensure their security, ac-
cording to Pistoia et al. [4] The main objective of this approach
is to analyze how the information flows through a program [35],
and verify that no sensitive information is leaked. The starting
point in the information flow analysis is to perform a classi-
fication of the variables and method calls in a program with
security levels: H for high level security (secret, private) and L
for low security (public) [45]. This classification makes possible
the verification of non-interference property stating that high
level interactions do not interfere with low level interactions and
observations, meaning that it is impossible for an observer to
draw conclusions about high (secure) information from public
output.

In the information-flow terminology, we distinguish between
direct (explicit) and indirect (implicit) information flow, legal
and illegal information flow. The direct flow arises from direct
data flows, that is explicit data assignments, and the indirect is
induced indirectly by branching control flow [48].

4.3 Program Representation Models
Static code analysis operates on an representation of the pro-
gram to analyze, which is basically an abstraction that exploits
and represents the properties of this program. Different repre-
sentation models have been proposed, and they do depend on
the context and the usage needs behind it.

4.3.1 Abstract Syntax Tree
Abstract syntax tree (AST) is a tree representation of the abstract
syntactic structure of the program source code. Each node of
the tree denotes a construct occurring in the source code. The
syntax is ”abstract”, that is, a number of real syntax details
has been removed. Abstract syntax trees are data structures
widely used in compilers, due to their property of representing
the structure of program code. An AST is usually the result of
the syntax analysis phase of a compiler. Abstract syntax trees
are also used in program analysis and program transformation

27



International Journal of Computer Science: Theory and Application

systems. Expressions in AST may be nested or complex, which
complicates the analysis that may require simpler representation.

4.3.2 Control Flow Graph
Control flow graphs have been the usual program transformation
representing the control flow and easing the determination of
the control constraints on which the operations depend. CFG is
a directed graph that was first introduced by Frances E. Allen
[34], and is used to represent blocs of code in the form of nodes,
the control dependencies in the form of directed edges, starting
with an entry node and augmented with the end point of the
program. In addition to the entry and exit vertices, CFG has
two types of vertices; statement, predicate vertices; the former
has one successor, and the latter has one true-successor and one
false-successor.

The CFG construction can be carried out based on an ab-
stract syntax graph representation such as AST (Abstract Syntax
Tree) to which control flow information are introduced [12]
[13]. The main focus of this technique is to determine how the
procedures in a program call each other, as well as to determine
which functions are effectively called.

4.3.3 Data Flow Graph
Data Flow Graph (DFG) is a directed graph representing the data
dependencies in a program. The nodes have input and output
data ports. The edges of a DFG model the connections between
output ports and input ports; in other words, it point out the
consumption of the input data and produce the output data. This
graph allows the modeling of operations in a functional model,
and doesn’t take into consideration the conditional controls [57].

4.3.4 Program Dependence Graph
PDG is a directed graph, that was first proposed by Ferrante
et al.[58] as a program representation taking into consideration
both control and data relationships in a program. The nodes
are predicates (variable declarations, assignments, control predi-
cates) and edges are data and control dependence representation;
both types are computed using respectively control-flow and
dataflow analysis. PDG is the intra-procedural representation of
a program, and considers the control and data flow dependen-
cies within each procedure. On the other hand, SDG modeling
considers the inter-procedural calls, that is, the control and data
dependencies between procedures in a program.

SDG [21] is an inter-procedural dependence graph represen-
tation, and is an extension to the Program Dependence Graph
(PDG). SDGs were first proposed by the authors of “Interproce-
dural Slicing Using Dependence Graph” [36], and have proved
to be useful in performing deep analysis of programs [59]. They
have been developed over the last two decades, and consist now
a basis to perform the code analysis and proved to be useful in
program optimization, based on different approaches, such as
slicing[36] [44] [49] or Model Checking [39].

PDGs have the ability to represent the information flow in
a program, and have different properties, such as being flow-
sensitive, context-sensitive and object-sensitive [56].

PDGs are flow-sensitive, meaning that the order of state-
ments is taken into account, and only feasible paths (possible
executions) are indicated on the graph. The context-sensitivity
is perceived from the fact that the method calling context is
taken into consideration; different calls to the same method are
considered separately and represented each in a separate node
in the graph. If the PDG was context-insensitive, the different
invocations for the same method would be merged in one single
node on the graph. PDGs are also object-sensitive, that is, the
object which is an instance of a class, is not considered as an
atomic entity, and its attributes are taken into account.

All the sensitivities mentioned above improve the precision
of the analysis that can be performed on the PDG/SDG [56].

In the figure below, is represented the Program Dependence
Graph of the sample code in Figure 1. The construction of
this graph is not trivial, and requires additional details that are
not covered in this paper, such as the exceptions analysis [56],
the multi-threading, the points-to analysis [52] that aims at
determining the set of objects pointed by a reference object or a
reference variable.

5. Static Code Analysis Tools

In order to have more concrete information, we conducted an
analysis on source code analysis tools. The performed research
doesn’t aim at classifying or ranking the tools, but instead, to
allow a deeper understanding of the analysis approach adopted
by these tools, to underline the program modeling scheme they
make use of, as well as the security properties they are able
to detect. Static analysis tools are used mainly to find security
vulnerabilities in the code, so that the developer makes the
needed corrections on the detected security flaws before the
software is released to customer.

We investigated a number of static analysis tools with the
aim of identifying their analysis methodologies, and comparing
their accuracy and performance. The precision of the analysis
performed by the studied tools is estimated regarding the amount
of false positives they report. The main goal behind this analysis
is to underline the shortcomings of the approaches, and to shed
the light on areas where enhancements can be proposed. Some
of the security analysis tools generate an important number of
false positives (false alarm), which reduces the efficiency of
the considered tool [7]. On the other hand, a tool that reduces
both false negatives (flaws that the tool doesn’t report) and false
positives (reported flaws that the program doesn’t contain) is
deemed to be more accurate. Automated tools usually use string
regular expressions they match against source code statements
in order to identify security vulnerabilities [51]. Other elements
are to be taken into consideration when making an investigation
about static analysis tools, namely the considered security prop-
erties, the required human intervention amount, as well as the
output visual aspect and interpretation complexity.

This section presents a research on a number of static anal-
ysis tools. We would consider ones that allow the detection
and evaluation of security properties, as well as tools that are

28



International Journal of Computer Science: Theory and Application

Figure 3. Program Dependence Graph

used to detect security vulnerabilities in the source code. We
will justify the second alternative based on the fact that security
vulnerabilities are violations of security properties. We carried
out experiments on the sample code (Figure 1, Figure 2) using
the presented tools. For some of the considered tools, we had
to translate the sample code to the C programming language, as
these tools only support C.

5.1 MOPS
MOPS (MOdel checking Program for Security Properties) [3]
makes use of the model checking technique to check for vi-
olation of security rules, that are defined as “temporal safety
properties”. It is based on a formal modeling approach for both
the program and the security properties, and proceeds by the
analysis of the implemented models.

As for program representation, MOPS models the program
in the form of Push Down Automaton (PDA), that contains all
the feasible execution paths. Push Down Automata are used
as tools to analyze procedural sequential programs, and more
specifically those having recursive procedures [17]. As for
automata, they are according to Schneider [16] used in the ob-
jective of specifying security policies that can be enforced by
mechanisms. MOPS makes use of this approach to model secu-
rity properties in the form of Finite State Automata (FSA), that
dictate the order of security-relevant operations sequence. The
modularity of security properties was also proposed by MOPS;
this approach allows the decomposition of complex security
properties into simpler and reusable basic security properties,
that are easy to model and to extend (such as role based access).
MOPS verifies that the security properties are properly respected
in all the execution paths of the analyzed program, making use
of the model checking on the PDA, and checks if risky states
are reachable within the PDA.

5.2 SPlint
“Secure Programming LINT” (SPlint) [15] is an annotation-
based data-flow static code analyzer for C for security vulnera-
bilities and programming flaw detection. It makes use of “an-
notations” (semantic comments) entered by the developer. The
annotations serve as specification of the constraints (properties)
about a library, a variable, a function or a type. In other words,
annotations serve as properties specification. SPlint execution
is an iterative process, that helps the developer/analyst to de-
tect vulnerabilities locations, and to eliminate the warnings by
adjusting annotations or modifying the code. SPlint parses the
source code of the program subject to the analysis, and generates
the Abstract Syntax Tree (AST) based on the formal semantics
of the program’s programming language. The annotations en-
tered by the developer serve as specification of the high-level
security properties about an asset. SPlint generates constraints
from the annotations entered by the developer and adds them
to the Abstract Syntax Tree (AST) of the program to analyze.
As for annotations format, they are similar to comments in C: /*
@notnull@ */ and they are syntactically associated to functions
parameters, return values, variables, etc. Annotations allow
expressing intra-procedural pre-conditions and post-conditions
on assets. The developer/analyst can customize the security
properties, and add security patterns to be detected in the AST
according to his needs, which makes SPlint an extensible tool.
If the property expressed by the annotation is violated, SPlint
reports a warning for any return path that fails to satisfy the
property.

5.3 GraphMatch
GraphMatch is a code analysis tool/prototype for security policy
violation detection [9]. For the program modeling, GraphMatch
makes use of a widely used tool called CodeSurfer2 [31] that

2http://hiper.cis.udel.edu/lp/lib/exe/fetch.php/
courses/cisc879/codesurfer-demo.pdf

29

http://hiper.cis.udel.edu/lp/lib/exe/fetch.php/courses/cisc879/codesurfer-demo.pdf
http://hiper.cis.udel.edu/lp/lib/exe/fetch.php/courses/cisc879/codesurfer-demo.pdf


International Journal of Computer Science: Theory and Application

generates the System Dependence Graph (SDG) from the source
code provided as input. SDG [21] is an inter-procedural depen-
dence graph representation, and is an extension to the Program
Dependence Graph (PDG). SDGs were first proposed by the
authors of ”Interprocedural Slicing Using Dependence Graph”
[36], and have proved to be useful in performing deep analysis
of programs [32]. They have been developed over the last two
decades, and consist now a basis to perform the code analysis,
based on different approaches, such as slicing [36] [44] [49] or
Model Checking [39]
As for the PDG, it is a directed graph whose nodes are pred-
icates (variable declarations, assignments, control predicates)
and edges are data and control dependence representation; both
types are computed using respectively control-flow and data-
flow analysis. PDG is the intra-procedural representation of a
program, and considers the control and data flow dependencies
within a procedure. On the other hand, SDG modeling considers
the inter-procedural calls, that is, the control and data depen-
dencies between procedures in a program. Given the fact that
the generated SDG is in a proprietary file format, the authors
have deemed necessary to transform the generated SDG into the
GraphMatch’s file format [10]. GraphMatch allows the users
to customize the positive and negative security patterns that
the program will be analyzed against, as well as to define the
relationships between positive and negative security properties.
John Wilander [8] has considered examples of security prop-
erties covering both positive and negative ones, that according
to the author meet good and bad programming practices.[8].
GraphMatch traverses the generated SDG with the objective of
finding security pattern matching. For a security property viola-
tion to be raised, GraphMatch proceeds in two steps: verification
of the negative pattern matching first, followed by a verification
of the embedding positive security pattern. If negative security
patterns are found, the tool doesn’t report a violation immedi-
ately, but proceeds to the verification of the embedding security
property. If it corresponds to a positive security pattern, then
GraphMatch doesn’t raise a warning. However, if the embed-
ding security pattern match is not found, GraphMatch raises a
warning and reports a security property violation.

5.4 Fortify

Fortify [28] is a static analysis tool that processes the source
code in a way similar to a code compiler. It has the ability to
detect and fix vulnerabilities in the source code and to be run on
multiple environments (Windows, Linux, Mac). Fortify takes
as input the source code of a single file or an entire application
composed of many files, and conducts a semantic analysis ap-
proach; it represents semantically the control flow and the data
flow of the code. The tool is able to map the execution and
the data flow and can for example recognize that input data are
left untested or invalidated before being passed to a function
or component. Fortify performs an inter-procedural analysis
in the objective of making the analysis as accurate as possible.

3 The tool detects four types of issues: Semantic, Data Flow,
Control Flow, Configuration and Structural. The Semantic Ana-
lyzer detects potentially dangerous uses of functions and APIs
at the intra-procedural level. Basically a smart GREP 4. The
Data Flow analyzer detects potential vulnerabilities that involve
tainted data (user-controlled input) put to potentially danger-
ous use. The data flow analyzer uses global, inter-procedural
taint propagation analysis to detect the flow of data between a
source (site of user input) and a sink (tainted data, or danger-
ous function call or operation) The Structural Analyzer detects
flaws in the structure or the definition of the program. As for
the Configuration Analyzer, it looks for dangerous flaws in the
application deployment configuration files. The Control Flow
Analyzer detects potentially dangerous sequences of operations.
By analyzing control flow paths in a program, the control flow
analyzer determines whether a set of operations are executed in
a certain order.

The generated file is then processed by the Audit Workbench
Tool that presents the results in a user-friendly format [27]. The
Audit Workbench tool is customizable and enables the user to
configure the custom rules (from the rules packs) for audit; the
user selects the types of issues he wants to be warned about.
The Workbench tool flags the detected vulnerabilities, provides
the problem description and how it might be fixed.

5.5 Joana
Joana [47] is a framework that statically analyzes Java programs
for the security properties confidentiality and integrity. The
tool first generates from the program source a SDG (System
Dependence Graph), which constitutes an over-approximation of
the information flow in the program subject to the analysis. The
SDG contains apart from the nodes representing the statements
and the variable declarations in the program, contains also edges
referring to control and data dependencies between nodes. The
dependencies represent direct (explicit) dependencies as well as
indirect and transitive dependencies (implicit), which allows to
represent on the SDG only feasible paths.

The user annotates the generated SDG with security lev-
els: high for secret variables, and low for public variables or
method invocations. Joana then performs the analysis taking
into account the annotations provided by the user and aims at
detecting illegal information flows, that is, flows that violate the
non-interference property between two security levels a and b
stating that no information with security level a could influence
information with security level b [55].

6. Evaluation and Discussion
In this section, we will reflect more upon the outcome of the
static code analysis tools investigation, and will illustrate the
results in a summary table, containing the main points of our

3http://stackoverflow.com/questions/13051974/
how-does-fortify-software-work

4http://blog.linuxacademy.com/linux/
grep-tutorial-searching-file-contents/

30

http://stackoverflow.com/questions/13051974/how-does-fortify-software-work
http://stackoverflow.com/questions/13051974/how-does-fortify-software-work
http://blog.linuxacademy.com/linux/grep-tutorial-searching-file-contents/
http://blog.linuxacademy.com/linux/grep-tutorial-searching-file-contents/


International Journal of Computer Science: Theory and Application

work. We focus on the program modeling approach that exploits
the source code properties, and represents the program in a
faithful model.

Different criteria are to be taken into account for evaluating
a static code analysis tool, such as the security properties repre-
sentation model, and which analysis approach is used to validate
these security properties. The ability of the tool in modeling and
detecting specified security properties is highly dependent on
the abstraction level of the program modeling.
Another criterion is the soundness of the analysis tool. It can be
evaluated taking into account the type of security vulnerabilities
the tool is able to detect, as well as the amount of false positives
and false negatives it produces. Reporting an important amount
of false alarms can be misleading to the users, who will get
discouraged of using that tool [40]. The soundness and accuracy
of the tool’s performed analysis is highly dependent on the pre-
cision of the code representation [41]; false alarms can emanate
from an incorrect modeling of the system.

We are also interested in the mapping between detected
vulnerabilities and the violated security properties, which is not
covered by most of the studied static analysis tools.

The tools usability is one of our points of interest. A tool is
deemed to be usable if its generated results are understandable to
an average developer, meaning not having advanced knowledge
in security. The usability can also emanate from the quality of
its output and how it is presented to the user.

We focus also on the ability of the tool to allow users define
their own rules against which the program will be evaluated. We
consider the latter of paramount importance when dealing with
static code analysis; most of the analyzed tools have their set of
predefined rules. From this perspective, the tool will not detect
a flaw if the corresponding pattern is not predefined.

We consider also the extensibility of the tool, that is, the
integration possibilities it offers. A good tool has to be efficient
and scalable enough to perform the analysis on complex or
large programs, taking into account the dependencies between
components without impacting the speed of its execution.

SPlint is able to detect not only security-related vulnerabil-
ities, but also coding errors that may affect the quality of the
code [6]. However, SPlint doesn’t handle multiple programming
languages, and is only limited to C programs. Regarding its
accuracy, SPlint produces an important number of false posi-
tives that lead to confusion when interpreting the results. In
addition, it performs only intra-procedural data flow analysis;
the control-flow and the inter-procedural data-flow analysis it
performs are very limited. SPlint relies on annotations added
by developers in their source code, in other words, a number of
vulnerabilities will remain undetected if specific annotations are
not added.

MOPS is control-flow sensitive, and doesn’t consider data-
flow dependence, that according to the others limits its scalabil-
ity. Other shortcomings of MOPS are its incapability to analyze
multi-threaded programs or dynamic methods invocation. The
experiment on our sample code translated in C programming

Table 1. Evaluation of Static Code Analysis Tools.

MOPS SPlint GraphMatch Fortify JOANA

Program
model

PDA CFG SDG semantic
DFG and
CFG

SDG

Security
properties
model

FSA Constraint-
based

positive
security
pattern
(PDG)

NA Non-
interference
properties

Security
vulner-
abilities
model

NA NA PDG Signature-
based
patterns

NA

Static analy-
sis method

Intra-
procedural
Control
Flow,
Inter-
procedural
Control
Flow and
Model-
checking

Intra-
procedural
Control
Flow,
Intra-
procedural
Data
Flow

Security
pattern
matching

Inter-
procedural
semantic,
Data Flow,
Control Flow
configura-
tion and
structural
analysis

Information
flow anal-
ysis

Customizable
security
properties

yes yes yes yes 5 yes

Extensibility NA NA No public
API

Commercial
tool

Open
source

Output Text Text Text HTML or
XML file
[60]

Text

Supported
program-
ming
languages

C C C C#, ABAP,
C, C++,
COBOL,
Java, PHP,
Python,
Visual Basic,
JavaScript,
VB Script,
etc. [28]

Java
(source
and
bytecode)

Analysis re-
sult

No
violation
reported

No
violation
reported

NA Privacy vio-
lation

Illegal
informa-
tion flows
detected

language, detected no violation for both SPlint and MOPS.
As for GraphMatch tool, it proceeds by model checking

using the dependence graph, which combines both the program
data and control dependencies, and proceeds by positive and
negative security patterns. The tool doesn’t scale to the analysis
of distributed systems, but only considers a single source code
file. Another issue with this tool is its non-scalability [9]. In
addition, the graph matching performed by this tool has high
complexity, which can impact the performance of the analysis.
The tool is more focused on the liveness and safety properties,
such as integer input validation and the double free() flaw where
the free() method is called twice attempting to free the same
memory allocated using the malloc() method. GraphMatch is
mainly focused on the order and sequence of instructions, but
doesn’t cover high level security properties such as confidential-
ity. We couldn’t carry out the experiment on our sample code,
as GraphMatch was not available.

As for Fortify, this tool is scalable, and doesn’t have restric-
tions on the size of the program to analyze. The performed

31



International Journal of Computer Science: Theory and Application

analysis on our sample code produced as output a critical issue
”Privacy violation”, accompanied with explanation about the
vulnerability (private user information enters the program, the
data is written to an external location), its location, and rec-
ommendations on how to avoid it. However, it produces false
positives. [6]

To have a basis for the information flow analysis it performs,
the Joana tool requires annotations on the SDG (System Depen-
dence Graph) it first generates. The user/developer needs as a
first step to specify sources and sinks of the flows to analyze. In
our sample code, we annotated the sensitive information (vari-
ables creditCardNumber, expiryDate and cryptogram) as High
sources, the logging statement and the sendUserData method
invocations as Low sinks.

As shown in the motivating example presented in section
2, static analysis tools allow only the detection of security vul-
nerabilities, but are unable to identify the security properties
that might be affected by this vulnerability. Such identifica-
tion can be realized by exploiting the vulnerabilities knowledge
base (such as NVD). On the other hand, where no security vul-
nerability is detected, can one deem the analyzed program as
secure? Going beyond the detection of security vulnerabilities,
and tackling the problem of retrieving security properties using
static code analysis is not trivial. Besides, the used encryption
mechanism doesn’t provide assurance about the security prop-
erty ”confidentiality”, that is highly dependent on the flow of
the critical data through the program model, which has to be
accurate, and has to exploit the source code properties, meaning
the control and data dependencies. Besides, the model needs
to have a certain level of abstraction and exploit as much as
possible the program properties.

PDGs are considered a standard tool that allows the mod-
eling of information flow through a program [42], and their
strength consists in considering the order of sequences in the
program. Hence, they provide an over-approximation of the
analyzed program possible behaviors at run-time [43]. SDG
modeling, which is an extension to the PDG, considers the
inter-procedural calls, that is, the control and data dependencies
between procedures in a program. From this perspective, we
foresee the use of SDG as a program modeling approach, for
its accuracy and its capability in modeling information-flow
through a program.

7. Conclusion and Future Work
In this paper, we conducted an assessment on the selected static
code analysis approaches and tools, with the objective of identi-
fying the main shortcomings where major innovations can be
performed. We outlined the main issues that consist in retriev-
ing preserved security properties in the source code using code
analysis, mapping the security vulnerabilities with the violated
security properties, as well as the verification of the security
properties when no vulnerability is detected. Static code analy-
sis here consists in mapping security vulnerabilities to a program
abstraction model. We presented how verification of simple se-

curity properties in the source code took place with different
such representation models.

One of the main issues we are trying to tackle is how to trans-
late the detected security properties enforced by mechanisms,
into a concrete security policy, that can be afterwords validated
against the security requirements expressed in the specification
of the program. At this level, we have to be specific when dis-
cussing the security requirements that can be classified in levels,
such as general security requirements, meaning the security re-
quirements of the organization, and application-specific security
requirements, meaning those that are defined in the context of
that specific application.
Running a code analysis tool allows to detect the vulnerability
in the exact location, but sometimes, programmers and code
reviewers need to identify the source of that vulnerability [43],
and hence to back-track the statements that led to that incorrect
state[44].

Back-tracking vulnerabilities can be performed through the
traversal of the program [44] regarding a variable of interest
and the statement of the incorrect state. Weiser proposed the
”Program Slicing” technique [49] that was afterwords adopted
in a number of researches [36] [32].

In relation to the paper’s motivating example we have also
showed that the static code analysis tools discussed are not
able to cover all the outlined issues. We plan to extend one
of these tools in order to accommodate more complex security
properties that may be derived from the code, even when no
security vulnerability or threat is detected (e.g., confidentiality
in storage). In order to overcome these challenges, we plan to
address a few fundamental problems in coming work, namely:

• One such key question will be how to translate detected
security properties enforced by mechanisms into a secu-
rity policy that can be afterwards validated against the
security requirements expressed in the specification of the
program? Making the result of such an analysis easy to
understand and to interpret for a developer will also be
critical.

• A second critical question related to the determination of
the scope of a vulnerability. How to detect the source of a
vulnerability must be addressed in relationship with the
type of static analysis selected? Running a code analysis
tool allows the detection of a vulnerability in the exact
code location, but sometimes, programmers and code
reviewers need to identify the source of that vulnerability
[43], and hence to back-track the analysis that led to
such an incorrect state[44]. A related concern is how to
determine which security property is under threat when a
vulnerability is detected.

Acknowledgment
This work was partly supported by the EU-funded project OPTET
[grant no. 317631].

32



International Journal of Computer Science: Theory and Application

References
[1] MAÑA, Antonio et PUJOL, Gimena. Towards formal spec-

ification of abstract security properties. In : Availability,
Reliability and Security, 2008. ARES 08. Third International
Conference on. IEEE, 2008. p. 80-87.

[2] CHESS, Brian et MCGRAW, Gary. Static analysis for secu-
rity. IEEE Security & Privacy, 2004, vol. 2, no 6, p. 76-79.

[3] CHEN, Hao et WAGNER, David. MOPS: an infrastructure
for examining security properties of software. In : Proceed-
ings of the 9th ACM conference on Computer and communi-
cations security. ACM, 2002. p. 235-244.

[4] PISTOIA, Marco, CHANDRA, Satish, FINK, Stephen J.,
et al. A survey of static analysis methods for identifying
security vulnerabilities in software systems. IBM Systems
Journal, 2007, vol. 46, no 2, p. 265-288.

[5] CHESS, Brian et WEST, Jacob. Secure Programming with
Static Analysis, Software Security Series edition.

[6] HELLSTRÖM, Patrik. Tools for static code analysis: A
survey. 2009.

[7] MICHAEL, C.C., et LAVENHAR, Steven. Source Code
Analysis Tools - Overview., Cigital, Inc. 2005-2007 (n.d.).

[8] WILANDER, John. Modeling and visualizing security prop-
erties of code using dependence graphs. In : Proceedings of
the 5th Conference on Software Engineering Research and
Practice in Sweden. 2005. p. 65-74.

[9] WILANDER, John, et al. Pattern matching security proper-
ties of code using dependence graphs. In : IN Proceeding of
the First International Workshop on Code Based Software
Security Assessments. 2005.

[10] WILANDER, John. Contributions to Specification, Imple-
mentation, and Execution of Secure Software. 2013.

[11] HUTH, Michael. Model checking modal transition systems
using Kripke structures. In : Verification, Model Check-
ing, and Abstract Interpretation. Springer Berlin Heidelberg,
2002. p. 302-316.

[12] SÖDERBERG, Emma, EKMAN, Torbjörn, HEDIN, Görel,
et al. Extensible intraprocedural flow analysis at the abstract
syntax tree level. Science of Computer Programming, 2013,
vol. 78, no 10, p. 1809-1827.

[13] SMELIK, Ruben, RENSINK, Arend, et KASTENBERG,
Harmen. Specification and construction of control flow se-
mantics. In : Visual Languages and Human-Centric Comput-
ing, 2006. VL/HCC 2006. IEEE Symposium on. IEEE, 2006.
p. 65-72.

[14] Fabian van den Broek, Static Code Analysis in Java
[15] Splint Manual, http://www.splint.org/manual/

manual.pdf
[16] SCHNEIDER, Fred B. Enforceable security policies. ACM

Transactions on Information and System Security (TISSEC),
2000, vol. 3, no 1, p. 30-50.

[17] BURKART, Olaf et STEFFEN, Bernhard. Composition,
decomposition and model checking of pushdown processes.
Nordic Journal of Computing, 1995, vol. 2, no 2, p. 89-125.

[18] ARM Security Technology, (n.d.).
[19] ZAKINTHINOS, Aris et LEE, E. Stewart. A general the-

ory of security properties. In : Security and Privacy, 1997.
Proceedings., 1997 IEEE Symposium on. IEEE, 1997. p.
94-102.

[20] ANISETTI, Marco, ARDAGNA, Claudio A., DAMIANI,
Ernesto, et al. Web service assurance: The notion and the
issues. Future Internet, 2012, vol. 4, no 1, p. 92-109.

[21] SINHA, Saurabh, HARROLD, Mary Jean, et ROTHER-
MEL, Gregg. System-dependence-graph-based slicing of
programs with arbitrary interprocedural control flow. In :
Software Engineering, 1999. Proceedings of the 1999 Inter-
national Conference on. IEEE, 1999. p. 432-441.

[22] CLARKE, Edmund M. et EMERSON, E. Allen. Design
and synthesis of synchronization skeletons using branching
time temporal logic. Springer Berlin Heidelberg, 1982.

[23] Checkmarx Vulnerability Coverage, n.d.
[24] http://www.checkmarx.com/technology/

application-security-testing/

[25] Checkmarx, http://www.checkmarx.com/
technology/static-code-analysis-sca/

[26] Checkmarx CxEnterprise CxQuery API Guide V7.1.4
[27] Hyunji Kim, Fortify Source Code Analaysis Tools, n.d.
[28] HP Fortify Software Security Center v3.60, System Re-

quirements
[29] GANESAN, Aarthi et BODDUPALLI, Aparna. Static Anal-

ysis by Abstract Interpretations: For detection of security
vulnerabilities.

[30] WÖGERER, Wolfgang. A survey of static program analysis
techniques. Vienna University of Technology, 2005.

[31] http://www.grammatech.com/research/technologies/codesurfer
[32] Code Surfer, Dependence Graphs and Program Slicing
[33] BACA, Dejan. Automated static code analysis: a tool for

early vulnerability detection. 2009.
[34] ALLEN, Frances E. Control flow analysis. In : ACM Sig-

plan Notices. ACM, 1970. p. 1-19.
[35] SABELFELD, Andrei et MYERS, Andrew C. Language-

based information-flow security. Selected Areas in Commu-
nications, IEEE Journal on, 2003, vol. 21, no 1, p. 5-19.

[36] HORWITZ, Susan, REPS, Thomas, et BINKLEY, David.
Interprocedural slicing using dependence graphs. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 1990, vol. 12, no 1, p. 26-60.

[37] BOEHM, Barry W. Software engineering economics. 1981.

33

http://www.splint.org/manual/manual.pdf
http://www.splint.org/manual/manual.pdf
http://www.checkmarx.com/technology/application-security-testing/
http://www.checkmarx.com/technology/application-security-testing/
http://www.checkmarx.com/technology/static-code-analysis-sca/
http://www.checkmarx.com/technology/static-code-analysis-sca/


International Journal of Computer Science: Theory and Application

[38] NOVAK, Jernej, KRAJNC, Andrej, et ZONTAR, R. Tax-
onomy of static code analysis tools. In : MIPRO, 2010 Pro-
ceedings of the 33rd International Convention. IEEE, 2010.
p. 418-422.

[39] MATSUBARA, Masahiro, SAKURAI, Kohei, NARI-
SAWA, Fumio, et al. Model Checking with Program Slic-
ing Based on Variable Dependence Graphs. arXiv preprint
arXiv:1301.0041, 2013.

[40] GOMES, Ivo, MORGADO, Pedro, GOMES, Tiago, et al.
An overview on the static code analysis approach in software
development. Faculdade de Engenharia da Universidade do
Porto, Portugal, 2009.

[41] KONG, Deguang, ZHENG, Quan, CHEN, Chao, et al. Isa:
a source code static vulnerability detection system based
on data fusion. In : Proceedings of the 2nd international
conference on Scalable information systems. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering), 2007. p. 55.

[42] HAMMER, Christian, KRINKE, Jens, et SNELTING, Gre-
gor. Information flow control for java based on path condi-
tions in dependence graphs. In : IEEE International Sympo-
sium on Secure Software Engineering. 2006. p. 87-96.

[43] DENG, Fang et JONES, James A. Weighted system depen-
dence graph. In : Software Testing, Verification and Valida-
tion (ICST), 2012 IEEE Fifth International Conference on.
IEEE, 2012. p. 380-389.

[44] WEISER, Mark. Programmers use slices when debugging.
Communications of the ACM, 1982, vol. 25, no 7, p. 446-
452.

[45] SMITH, Geoffrey. Principles of secure information flow
analysis. In : Malware Detection. Springer US, 2007. p.
291-307.

[46] ROY, Arnab, DATTA, Anupam, DEREK, Ante, et al. Induc-
tive trace properties for computational security. Journal of
Computer Security, 2010, vol. 18, no 6, p. 1035-1073.

[47] GRAF, Jürgen, HECKER, Martin, et MOHR, Martin. Using
JOANA for Information Flow Control in Java Programs-A
Practical Guide. In : Software Engineering (Workshops).
2013. p. 123-138.

[48] SHROFF, Paritosh, SMITH, Scott, et THOBER, Mark. Dy-
namic dependency monitoring to secure information flow. In
: Computer Security Foundations Symposium, 2007. CSF’07.
20th IEEE. IEEE, 2007. p. 203-217.

[49] WEISER, Mark. Program slicing. In : Proceedings of the
5th international conference on Software engineering. IEEE
Press, 1981. p. 439-449.

[50] HICKS, Boniface, RUEDA, Sandra, JAEGER, Trent, et al.
From Trusted to Secure: Building and Executing Applica-
tions That Enforce System Security. In : USENIX Annual
Technical Conference. 2007. p. 34.

[51] CLARKE, Justin, ALVAREZ, Rodrigo Marcos
et al. SQL Injection Attacks and Defense, n.d.
http://adrem.ua.ac.be/sites/adrem.ua.
ac.be/files/sqlinjbook.pdf

[52] ROUNTEV, Atanas, MILANOVA, Ana, et RYDER, Bar-
bara G. Points-to analysis for Java using annotated con-
straints. In : ACM SIGPLAN Notices. ACM, 2001. p. 43-55.

[53] SCHMIDT, David et STEFFEN, Bernhard. Program analy-
sis as model checking of abstract interpretations. In : Static
Analysis. Springer Berlin Heidelberg, 1998. p. 351-380.

[54] ZHIOUA, Zeineb, SHORT, Stuart et ROUDIER, Yves.
Static Code Analysis for Software Security: Problems and
Approaches. In : Computer Software and Applications Con-
ference Workshops (COMPSACW), 2014 IEEE 38th Interna-
tional, 2014. p. 102-109.

[55] GOGUEN, Joseph A. et MESEGUER, José. Security poli-
cies and security models. In : 2012 IEEE Symposium on
Security and Privacy. IEEE Computer Society, 1982. p. 11-
11.

[56] HAMMER, Christian et SNELTING, Gregor. Flow-
sensitive, context-sensitive, and object-sensitive information
flow control based on program dependence graphs. Interna-
tional Journal of Information Security, 2009, vol. 8, no 6, p.
399-422.

[57] QUAN, Gang. Data Flow Graphs Intro. http:
//web.cecs.pdx.edu/˜mperkows/temp/JULY/
data-flow-graph.pdf.

[58] Jeanne Ferrante, KARL J. OTTENSTEIN, and JOE D.
WARREN, The Program Dependence Graph and Its Use in
Optimization

[59] Dependence Graphs and Program Slicing ,n.d,
http://www.grammatech.com/images/pdf/
dependence-graphs-and-program-slicing.
pdf.

[60] http://143.132.8.23/cms/tues/docs/
CSC450-Sp2012/4-FortifySCAtools.pdf

34

http://adrem.ua.ac.be/sites/adrem.ua.ac.be/files/sqlinjbook.pdf
http://adrem.ua.ac.be/sites/adrem.ua.ac.be/files/sqlinjbook.pdf
http://web.cecs.pdx.edu/~mperkows/temp/JULY/data-flow-graph.pdf
http://web.cecs.pdx.edu/~mperkows/temp/JULY/data-flow-graph.pdf
http://web.cecs.pdx.edu/~mperkows/temp/JULY/data-flow-graph.pdf
http://www.grammatech.com/images/pdf/dependence-graphs-and-program-slicing.pdf
http://www.grammatech.com/images/pdf/dependence-graphs-and-program-slicing.pdf
http://www.grammatech.com/images/pdf/dependence-graphs-and-program-slicing.pdf
http://143.132.8.23/cms/tues/docs/CSC450-Sp2012/4-FortifySCAtools.pdf
http://143.132.8.23/cms/tues/docs/CSC450-Sp2012/4-FortifySCAtools.pdf

	Introduction
	Motivating Example
	Security Properties
	Static Code Analysis
	Static Code Analysis in the Practice of Software Development
	Techniques for Static Code Analysis
	Model Checking
	Control-flow analysis
	Data-flow analysis
	Symbolic analysis
	Information-flow analysis

	Program Representation Models
	Abstract Syntax Tree
	Control Flow Graph
	Data Flow Graph
	Program Dependence Graph


	Static Code Analysis Tools
	MOPS
	SPlint
	GraphMatch
	Fortify
	Joana

	Evaluation and Discussion
	Conclusion and Future Work
	References

