TREDISEC: Trust-aware REliable and Distributed Information SEcurity in the Cloud

Julien Bringer¹, Beatriz Gallego², Ghassan Karame³, Mathias Kohler⁴, Panos Louridas⁵, Melek Önen⁶, Hubert Ritzdorf⁷, Alessandro Sorniotti⁸, David Vallejo⁹ (in alphabetical order)

> ¹ MORPHO, julien.bringer@morpho.com, ² ATOS, beatriz.gallego-nicasio@atos.net, ³ NEC, Ghassan.Karame@neclab.eu, ⁴ SAP, mathias.kohler@sap.com, ⁵ GRNET, louridas@grnet.gr, ⁶ EURECOM, melek.onen@eurecom.fr, ⁷ ETHZ, rihubert@inf.ethz.ch, ⁸ IBM, aso@zurich.ibm.com, ⁹ ARSYS, dvallejo@arsys.es

Abstract. While the revolutionary cloud computing paradigm offers substantial benefits to businesses, recent data breaches and the lack of dedicated end-to-end security solutions refrain the rapid adoption of this technology. The TREDISEC project aims at increasing trust in cloud computing by designing new security primitives ensuring data security and user privacy and supporting the underlying storage and computation technology at the same time.

Keywords: cloud security, data reduction, privacy, verifiability, multi-tenancy, accesscontrol

1 Introduction

Cloud computing services are increasingly being adopted by individuals and companies thanks to their various advantages such as high storage and computation capacities, reliability and low maintenance costs. Yet, data security and user privacy remain the major concern for cloud customers since by moving their data and their computing tasks into the cloud they inherently lend the control to cloud service providers. Therefore, customers nowadays call for end-to-end security solutions in order to retain full control over their data.

Implementing existing end-to-end security solutions unfortunately cancels out the advantages of the cloud technology such as cost effective storage. For example, cloud storage providers constantly look for techniques aimed to maximize space savings. One of the most popular techniques that has been adopted by many major providers to minimize redundant data is data deduplication. Unfortunately, deduplication and encryption are two conflicting technologies. Two identical data segments become indistinguishable after being encrypted. This means that if data are encrypted by users in a standard way, the cloud storage provider cannot apply deduplication.

In TREDISEC¹⁰, we aim at designing new security primitives that not only ensure data protection and user privacy but also maintain the cost effectiveness of cloud systems. With this goal, we will first identify the functional requirements that are crucial to the cloud business and explore non-functional requirements such as storage efficiency and multi-tenancy. We will further analyze the conflicts between these requirements and security needs in order to develop new solutions that address these shortcomings and enhance security.

In the next section, we review the different TREDISEC challenges.

2 TREDISEC Challenges

The main challenges resulting from the combination of security, functional and non functional requirements, and which TREDISEC aims at resolving thanks to the newly designed primitives, are the following:

2.1 Data confidentiality with data reduction

As already mentioned in the introduction, storage efficiency functions such as deduplication or compression become ineffective when data is encrypted. A technique which has been initially proposed in convergent encryption [] which derives the data encryption key from the data itself, namely by computing the hash of the data segment: whenever a user wishes to encrypt a data segment, it first hashes the data to obtain the encryption key and further encrypts the data with this computed key. Although convergent encryption seems to be a promising solution to achieve deduplication and confidentiality at the same time, existing solutions based on this technique either do not achieve acceptable levels of security [] or rely on the existence of a fully trusted third party []. TREDISEC's new primitives will provide stronger data confidentiality guarantees while benefiting from the various advantages of data reduction techniques in the cloud.

2.2 Secure data processing with multi-tenancy

In order not to cancel out the performance advantages of the cloud, there is a strong need for privacy preserving data processing solutions. Among data processing primitives, word search is one of the most fundamental operation. Classical encryption solutions prevent the cloud from operating over encrypted data. Recent privacy preserving word search solutions [] ensure both the privacy of the data and the query for a user query-ing her personal data. These solutions are not yet directly applicable in real industrial strength use cases. TREDISEC will extend current solutions with advanced features such as the ability to delegate search operations to authorized third parties and consider the multi-tenant environment whereby a large number of tenants outsource their data and computation to the cloud.

¹⁰ http://www.tredisec.eu

2.3 Verifiability with data reduction and multi-tenancy

Since data storage and processing operations are performed remotely by potentially malicious clouds, end-users should receive some guarantees on both the storage and processing of data. Existing storage integrity solutions rely on Proofs of Retrievability (PoR) [] which provide the end-user with the assurance that a data segment is actually stored in the remote storage; these solutions still induce high computational costs and cannot be combined with data reduction techniques. TREDISEC will enable the verification of data retrievability while data is deduplicated or compressed. Furthermore, data reduction techniques usually imply the storage of a single copy of data for several users; in this case, users having already outsourced data should prove their actual ownership. Existing Proof of Ownership (PoW) [] solutions are unfortunately not yet mature enough in terms of both performance and security. TREDISEC will design efficient and secure PoW schemes where deduplication takes place among multiple tenants and over encrypted data. Additionally, TREDISEC will also investigate existing processing verifiability solutions such as probabilistically checkable proofs in order to provide end-users with some cryptographic tools that efficiently verify the correctness of some dedicated functions.

2.4 Distributed enforcement of access control policies for multi-tenancy settings

The security of a multi-tenant system require reliable access control polices and enforcement mechanisms. Current Attribute Based Access Control (ABAC) models fall short in the multi-tenancy settings since users' attributes can be distributed across different trust domains. TREDISEC will extend current ABAC models to govern access control in multi-tenant cloud storage systems. Furthermore, current cloud platforms are agnostic to the concept of shared ownership. TREDISEC will design new cryptographic primitives to enforce distributed usage of data while preventing malicious tenants from combining their credentials and escalating their access rights. TREDISEC will also investigate the problem of secure data deletion: end-users will have cryptographic guarantees on the timely deletion of their data and the back-up copies.

3 Conclusion

The ultimate goal of TREDISEC is to converge to a unified framework where these primitives are integrated and where all objectives are satisfied to the highest extent possible. With this goal, we will explore different architectural models while following the end-to-end security principle as closely as allowed by functional and non-functional requirements. The resulting TREDISEC framework will be evaluated across several different use cases.

Acknowledgments

This work was supported by the TREDISEC project (G.A. no 644412), funded by the European Union (EU) under the Information and Communication Technologies (ICT) theme of the Horizon 2020 (H2020) research and innovation programme.