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Limits of Cache-Aided Wireless BC: Interplay between
Coded-Caching and CSIT Feedback

Jingjing Zhang and Petros Elia

Abstract

We consider the K-user cache-aided wireless multi-antenna broadcast
channel (BC) with random fading and imperfect feedback, and analyze the
throughput performance as a function of feedback statistics and cache size,
identifying the optimal cache-aided degrees-of-freedom (DoF) performance
within a factor of 2. In our setting where a single transmitter communi-
cates — using non-timely and imperfect-quality channel state information
(CSIT) — to K independent users with pre-filled caches, the work identifies
near-optimal schemes that combine data caching, folding and precoding, to
efficiently utilize caching and feedback resources. Our schemes will reveal
interesting connections between MAT-type schemes and caching. Interest-
ingly in the large K setting, where the schemes are often DoF optimal, the
derived limits reveal the surprising fact that full (perfect) CSIT can be com-
pletely substituted (without performance losses) by combining a vanishingly
small portion of delayed CSIT, with a vanishingly small fraction of the files
content per user’s cache. The key lies in finding the right balance between
cache-induced gains of multicasting common information, and CSIT-induced
gains of broadcasting private information. It also builds on the retrospective
nature shared by both coded caching and (communicating with) non-timely
feedback, where in both cases the transmitter — which has timely knowledge
of the information content — must act retrospectively to compensate for not
knowing the ‘destination’ (channel and user identity) of this content.

Index Terms

Coded caching, CSIT, multiple-input single-output (MISO), CSIT gain,
cache-aided degrees of freedom
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1 Introduction

Our interest here is to explore the idea of coded caching (cf. [1]) in the feedback-
aided multi-antenna wireless BC.

1.1 Caching-aided broadcast channel model

1.1.1 K-user BC with pre-filled caching

In the K-user multiple-input single-output (MISO) broadcast channel (BC) of
interest here, theK-antenna transmitter, communicates toK single-antenna receiv-
ing users. At the transmitter, there is a total ofN ≥ K distinct filesW1,W2, . . . ,WN ,
each of size |Wi| = f bits. Each user k ∈ {1, 2, . . . ,K} has a cache Zk, of size
|Zk| = Mf bits, where naturallyM ≤ N . Communication consists of two distinct
phases; the content placement phase and the delivery phase. During the placement
phase — which usually corresponds to communication during off-peak hours —
the caches Z1, Z2, . . . , ZK are pre-filled with content from the N files {Wi}Ni=1.
The delivery phase commences once each user k requests from the transmitter, any
one file WRk ∈ {Wi}Ni=1, out of the N available files. Upon notification of the
users’ requests, the transmitter aims to deliver the (remaining of the) requested
files, each to their intended receiver, and the challenge is to do so over a limited
(delivery phase) duration T .

For each transmission, the received signals at each user k, will be modeled as

yk = hTk x + zk, k = 1, . . . ,K (1)

where x ∈ CK×1 denotes the transmitted vector satisfying a power constraint
E(||x||2) ≤ P , where hk ∈ CK×1 denotes the channel of user k in the form of the
random vector of fading coefficients that can change in time and space, and where
zk represents unit-power AWGN noise at user k.

1.2 Coded caching and CSIT-type feedback

CSIT is typically of imperfect-quality as it is hard to obtain in a timely and
reliable manner. In the high-SNR (high P ) setting, this current-CSIT quality is
concisely represented in the form of the normalized quality exponent [2] [3]

α := − lim
P→∞

logE[||hk − ĥk||2]

logP
, k ∈ {1, . . . ,K} (2)

where hk − ĥk denotes the estimation error between the current CSIT estimate ĥk
and the estimated channel hk. The range of interest is α ∈ [0, 1] (cf. [4]). We also
assume availability of delayed CSIT ( [5]), where now the delayed estimates of any
channel, can be received without error but with arbitrary delay.

1



In normalizing the caching resources, described by M , we will consider

γ :=
M

N
(3)

as well as the cumulative cache size

γtot :=
KM

N
= Kγ. (4)

1.3 Measures of performance

The general objective here is to identify caching and transmission schemes that
jointly reduce T , under specific constraints on caching size Mf , on N , and under
specific constraints on the CSIT-quality α. Specifically, as in [1], the measure of
performance here is the duration T — in time slots, per file served per user —
needed to complete the delivery process, for any request. The link capabilities, and
the time scale, are normalized such that one time slot corresponds to the optimal
amount of time it would take to communicate a single file to a single receiver, had
their been no caching and no interference. As a result, in the high P setting of
interest — where the capacity of a single-user MISO channel scales as logP —
we proceed to set

f = logP (5)

which guarantees that the two measures of performance, here and in [1], are the
same and can thus be directly compared1.

A simple inversion would lead to an equivalent measure of the cache-aided
degrees of freedom (cache-aided sum DoF)

d(γ, α) =
K

T
(6)

which is a measure of cumulative throughput.
To insightfully measure this synergistic effect of coded-caching and CSIT in

removing interference, we consider

αj(γ, α) := arg min
α′
{α′ : (1− γ)T ∗(γ = 0, α′) ≤ T (γ, α)} (7)

to reflect the boosted CSIT quality αj that would have been needed to reach the
achieved T (γ, α), had there been no coded-caching gain. As K increases, this
measure will increasingly reflect the fraction of interference jointly removed by
CSIT and coded-caching.

1We note that setting f = logP is simply a normalization of choice, and does not carry a ‘forced’
relationship between SNR and file sizes. The essence of the derived results would remain the same
for any other non-trivial normalization.
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1.4 Prior work

Various works, not considering caching, have sought to understand the effect
of feedback on the performance of the networks. This is a massive and active
area of research, which incorporates many facets and considers many settings of
wireless communications. Focusing here just on the broadcast channel and just
on the setting of imperfect and delayed CSIT feedback, a small — and certainly
incomplete — samples of interesting works includes the work by Maddah-Ali and
Tse [5] who considered a simple crisp setting of fast random fading that completely
obsolete CSIT is in fact useful, this is achieved by designing ways to utilize the
interference that was created at the transmitter as a result of this CSIT delay. In
addition to CSIT delays, modern wireless communications must consider CSIT
that is of imperfect quality, i.e., where the transmitter has channel estimates that
come with estimation errors. Different works, such as in [2,3,6–9], have dealt with
this imperfect-quality issue. Specifically, in the BC with perfect delayed CSIT and
current CSIT with quality exponent α, the work by Chen et. al [9] showed that the
inner bound of the sum DoF is K

HK
(1− α) +Kα, which matches the outer bound

from the work of de Kerret et. al [8]. Other related work can be found in [4,10–16].
On the other hand, the benefits of caching on reducing the load on the net-

works, came with the work by Maddah-Ali and Niesen in [1] who considered a
caching system where a server is connected to multiple users through a shared,
error-free link. A novel coded caching approach applied offers a multicast gain by
designing carefully the pre-filled caching content at the receivers to mitigate the
load of the link. Then, they extended their work to decentralized caching in [17]
which achieved a performance close to that of [1] despite the lack of coordination
of the content placement. Another work by Ji et al. in [18] considered a com-
bination caching network in which a source is connected to multiple user nodes
through a layer of relay nodes, such that each user node with caching is connected
to a distinct subset of the relay nodes, and the fundamental limits of this setting
is analyzed. Ghasem et al. mainly focused on the tighter lower bounds on coded
caching in [19].

In addition, prior works have also employed caching to different wireless net-
works without utilizing CSIT. The work by Maddah-Ali and Niesen in [20] studied
an interference channel in which each transmitter is equipped with a local cache,
and it shows that three distinct benefits can be obtained from caching, in the sense
that content overlap in the transmitter allows effective interference cancellation.
Another work of Timo and Wigger [21] indicated that the cache-aided system ef-
ficiency was improved by employing unequal cache sizes at the receivers as they
experience different channel qualities over an erasure broadcast channel. Niesen et
al. in [22] derived inner and outer bounds on caching capacity region of a wireless
caching network, where the nodes randomly located on a square and each node in
the network requests a message available at a set of caches. Other related work on
caching can be found in [23–25].
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1.5 Notation and assumptions

We will use the notation Hn :=
∑n

i=1
1
i , to represent the n-th harmonic num-

ber, and we will use εn := Hn− log(n) to represent its logarithmic approximation
error, for some integer n. We remind the reader that εn decreases with n, and that
ε∞ := lim

n→∞
Hn − log n is approximately 0.5772. Z will represent the integers,

Z+ the positive integers, R the real numbers,
(
n
k

)
the n-choose-k operator, and ⊕

the bitwise XOR operation. We will use [K]
∆
= {1, 2, · · · ,K}. If ψ is a set, then

|ψ| will denote its cardinality. Complex vectors will be denoted by lower-case bold
font. We will use ||x||2 to denote the magnitude of a vector x of complex numbers.
For a transmitted vector x, we will use dur(x) to denote the transmission duration
of that vector. For example, saying dur(x) = 1

10T simply means that x uses one
tenth of the delivery phase.

2 Main results

We first lower bound T .

Lemma 1 The optimal T ∗ for the (K,M,N, α) cache-aided K-user MISO BC, is
lower bounded as

T ∗ ≥ max
s∈{1,...,min{b N

M
c,K}}

s

d(γ = 0, α)
(1− M

bNs c
) (8)

≥ max
s∈{1,...,min{b N

M
c,K}}

(
1− α
Hs

+ α)−1(1− M

bNs c
) (9)

where d(γ = 0, α) is the optimal sum-DoF for the corresponding K-user s × 1
MISO BC.

Proof: The proof is presented in Section 5 and it uses that d∗(γ = 0, α = 0) =
s
Hs

from [5], and that d∗(γ = 0, α) = s
Hs

(1 − α) + sα, where the outer bound is
from [26] and the matching inner bound from [27]. �

2.1 BC with caching - Throughput results

We first consider the case where γtot ∈ {1, 2, · · · ,K}, i.e., where M ∈
N
K {0, 1, · · · ,K}. We remind the reader that γ = M

N and γtot = Kγ.

Theorem 1 In the (K,M,N, α) cache-aided MISO BC with N files and K ≤ N
users each with cache of size M ∈ N

K {0, 1, · · · ,K},

T =
(1− γ)(HK −Hγtot)

α(HK −Hγtot) + (1− α)(1− γ)
(10)
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is achievable and has a gap from optimal

T

T ∗
< 2 (11)

that is at most 2, for all α,K, γtot ∈ {1, 2, · · · ,K}.

Proof: The scheme that achieves the above performance is presented in Sec-
tion 3, while the corresponding gap to optimal is bounded in Section 4. �
We also have the following, under the logarithmic approximation Hn ≈ log(n),

for the case of α = 0.

Corollary 1a In the (K,M,N, α = 0) cache-aided MISO BC without current
CSIT,

T = HK −Hγtot (12)

is achievable and has a gap from optimal that is at most 2. Under the logarithmic
approximation, or in the large K regime, the above T takes the form

T = log(
1

γ
). (13)

2.2 Large BC with modest amount of caching - K � 1, γtot � K

The following states that the derived T from Corollary 1a is asymptotically
optimal for K large.

Theorem 2 In the (K,M,N, α) cache-aided MISO BC, in the limit of asymptot-
ically large K and with reduced caching size M << N , the achievable T from
Corollary 1a is asymptotically optimal, and satisfies

lim
K→∞

T

T ∗
= 1, ∀α. (14)

Proof: The proof is found in Section 6, which calculates the gap between T (from
Corollary 1a) to a properly minimized outer bound that derives from Lemma 1. �
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2.3 Translating caching gain to CSIT gain

The following calculates the achievable synergisticαj(γ, α), which nicely takes
the form αj(γ, α) = α+δα(γ, α) for some δα(γ, α) that can be termed as the CSIT
gain due to caching.

Corollary 2a In the (K,M,N, α) cache-aided MISO BC, then

αj(γ, α) = α+
(1− α)(HKγ − γHK)

(HK − 1)(HK −HKγ)
(15)

is achievable.

Proof: The proof is direct from Theorem 1, and then from Lemma 1. �
For the special case when α = 0, we have the following.

Corollary 2b In the (K,M,N, α = 0) cache-aided BC with α = 0, then

αj(γ, α = 0) =
Hγtot − γHK

(HK −Hγtot)(HK − 1)
(16)

is achievable, and the associated gain δα(γ, α) has a gap to the optimal gain, that
is at most 2.

Proof: The proof is direct from Corollary 2b. �

2.4 Cache-aided CSIT gains in the large K regime

The following insightfully differentiates between the fraction of interference
removed by CSIT, and that which is removed by coded caching.

Corollary 2c In the large K regime, the fraction of interference synergistically
removed by CSIT and coded caching

αj(γ, α) = α+ (1− α)
1− γ
log( 1

γ )
(17)

is achievable and at least half the optimal.
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Proof: The proof is direct from the definition of αj(γ, α) and from Lemma 1,
Theorem 1 and Theorem 2. �

The following holds directly from the above.

Corollary 2d In the large K regime, for α = 0,

αj(γ, α = 0) =
1− γ
log( 1

γ )
(18)

is achievable, and has a gap to optimal that is at most 2.

2.5 How much caching is needed to fully substitute CSIT

Let us now put back into the picture the local caching gains, and explore the
amount of caching

γif := arg min
γ′
{γ′ : T (γ

′
, α = 0) ≤ T ∗(γ = 0, α = 1)} (19)

needed to fully substitute CSIT, i.e., explore how much caching is needed for a
system with α = 0, to achieve the interference free performance T ∗(γ = 0, α =
1) = 1. The latter expression derives from the well known optimal sum-DoF
d∗(γ = 0, α = 1) = K of the K-user BC with perfect CSIT. Towards this, we
have the following result.

Corollary 2e In the (K,M,N, α = 0) cache-aided BC with α = 0, to achieve
perfect CSIT performance T ∗ = 1, (and thus to fully substitute perfect CSIT with
caching), it is sufficient to have

γ ≥ γif = e−(1−εK+ε∞). (20)

As K increases, the above converges to

γif = e−1.

Proof: First recall that T (γ, α = 0) = HK − HKγ , then set HK − HKγ = 1,
and then recall that log( 1

γ ) < HK −HKγ ≤ log( 1
γ ) + εK − ε∞. � Similarly we

can consider

γif,G := arg min
γ′
{γ′ : T (γ

′
, α = 0) ≤ G · T ∗(γ = 0, α = 1)} (21)

to describe the γ needed to achieve a certain gapG ≥ 1 from perfect-CSIT optimal
performance, i.e., to achieve a performance GṪ ∗(γ = 0, α = 1) = G, and do so
with α = 0. The following is a small generalization of Corollary 2e.
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Corollary 2f In the (K,M,N, α = 0) cache-aided BC with α = 0, to achieve a
gap of G to perfect CSIT performance, i.e., to achieve T = G, it is sufficient to
have

γ ≥ γif,G = e−(G−εK+ε∞). (22)

As K increases, the above converges to

γif = e−G.

Proof: The proof is direct, after setting HK −HKγ = G. �

It is interesting to see that in a system with α = 0, a reasonable amount of
caching can substantially bridge the gap to optimal, irrespective of K. Had there
been no caching, this gap, would have otherwise been increasing with K, approxi-
mately as log(K).

2.6 Vanishing fraction of delayed CSIT

In the following we will briefly describe how caching allows for a large re-
duction in the cost of supporting communications with delayed CSIT. This will be
done here for the case where α = 0. The analytical details will be presented in the
appendix of Section 7.2.

The MAT-inspired schemes that we use and describe in Section 3, can have up
to K phases of decreasing time duration and of decreasing cost of communicating
CSIT. What we will see is that caching will allow us to bypass the first γtot phases,
which are the longest and most intensive, leaving us with the remaining K − γtot
communication phases that are easier to support with delayed feedback because
they involve fewer transmissions, with fewer transmit antennas and to fewer users,
and thus involving fewer CSIT scalars that must be communicated.

In brief — after normalization to account for the condition that each user re-
ceives a total of logP bits — each phase j = γtot + 1, γtot + 2, . . . ,K will have
a normalized duration Tj = 1

j . During each phase j, we will need to send CSIT
that describes the channel vectors for K − j users, and during this same phase the
transmitted vectors will have support K − j + 1 because only K − j + 1 transmit
antennas will need to be active. Thus during phase j, there will be a need to send
Tj(K − j + 1)(K − j) = 1

j (K − j + 1)(K − j) CSIT scalars, and thus a need to
send CSIT on a total of

L(γtot) =
K∑

j=γtot+1

1

j
(K − j + 1)(K − j)

= (K2 +K)(HK −Hγtot)−
K(1− γ)(3K −Kγ − 1)

2
(23)

8



channel scalars, while in the absence of caching (corresponding to γtot = 0), we
will have to send CSIT on

L(γtot = 0) =
K∑
j=1

1

j
(K − j + 1)(K − j) (24)

= (K2 +K)HK −
3K2

2
+
K

2
(25)

channel scalars.
To reflect the frequency of having to gather CSIT, and to provide a fair com-

parison between different schemes of different performance that manage to convey
different amounts of actual data to the users, we consider the measure Q(γtot) that
normalizes the above number L(γtot) of full CSIT scalars, by the coherence period
Tc and by the total number of full data symbols sent (recall that α = 0). In our
case, under the assumption that each user receives a total of logP bits, the total
number of full data symbols sent is K, and thus we have

Q(γtot) =
L(γtot)

TcK
(26)

=
(K2 +K)(HK −Hγtot)−

K(1−γ)(3K−Kγ−1)
2

TcK
(27)

which means that without caching, we have

Q(γtot = 0) =
L(γtot)

TcK
=

(K + 1)HK − 3
2K + 1

2

Tc
. (28)

Consequently we see that in the large K limit,

Q(γtot)→
K
(
log( 1

γ )− 3
2 + 2γ − 2γ2

)
Tc

(29)

while in the absence of caching

Q(γtot = 0)→ 1

Tc
K log(K) (30)

which implies that

lim
K→∞

Q(γtot)

Q(γtot = 0)
= 0 (31)

which in turn tells us that caching allows for a substantial reduction (down to a
vanishingly small portion) of the cost of delayed CSIT.

This reduction is important because retrospective delayed-feedback methods
suffer from an increased cost of supporting their CSIT requirements (albeit at the
benefit of allowing substantial delays in the feedback mechanisms). To quickly

9



see this, just consider that in the presence of perfect CSIT and zero forcing (no
caching), the same cost is

QZF =
K2

TcK
=
K

Tc
which means that

lim
K→∞

Q(γtot = 0)

QZF
=∞ (32)

which in turn implies that the increase in the cost of supporting the CSIT require-
ments for retrospective delayed-feedback methods, can be unbounded compared to
non-retrospective methods. On the other hand, we see that

lim
K→∞

Q(γtot)

QZF
= log(

1

γ
− 3

2
+ 2γ − 2γ2) (33)

which means that

lim
K→∞

Q(γtot)

QZF
< 1, γ ≥ 1

10
.

One interesting conclusion that comes out of this, is that caching can allow for
full substitution of current CSIT (as we have seen in Section 2.5), with a very
substantial reduction of the cost of delayed CSIT as well.

3 Combining retrospective transmission and retrospective
coded caching

Our schemes will reveal interesting connections between MAT-type schemes
and caching. The caching algorithm (which generally draws from [1]) can be seen
as essentially ‘folding’ the different users’ data into multi-layered blocks, while
the delivery algorithm (which includes a close variant of the last K − γtot levels
of MAT) simply unfolds these - or more correctly, it delivers these layers in a
manner that allows the receivers to unfold them. Another way to visualize the
interesting match of the caching and delivery effort, is to note that the caching
algorithm creates the same multi-destination delivery problem, as do the first γtot
levels of the MAT algorithm. Hence, both of these problems are resolved by the
delivery algorithm here, which is a close variant of the K − γtot levels of the K-
user MAT, and which, fortunately, requires a much reduced delayed-CSIT load
than the full K-user MAT, simply because the transmitted vectors have smaller
support (only a few antennas transmit), and because — in the presence of caching
— they are much more efficient.

3.1 Placement phase

Each of the N files Wn, n = 1, 2, . . . , N in the library, is split into
(
K
γtot

)
disjoint subfiles Wn,τ , τ ∈ Ψγtot , where

Ψγtot := {τ ⊂ [K], |τ | = γtot} (34)

10



and where each cache Zk is filled as

Zk = {Wn,τ}n∈[N ],τ∈Ψ
(k)
γtot

(35)

where

Ψ(k)
γtot := {τ ⊂ [K] : |τ | = γtot, τ 3 k}. (36)

This means that each subfile Wn,τ will be placed in cache Zk of user k, if and only
if k ∈ τ . This in turn means that each subfile Wn,τ will appear in γtot different
caches. We also recall that since each Wn is of size |Wn| = f bits, and since the
subfiles Wn,τ are disjoint, then each subfile Wn,τ is of size |Wn,τ | = f/

(
K
γtot

)
bits.

3.2 Delivery phase: folding

We recall that at this point, the transmitter becomes aware of the file requests
Rk, k = 1, . . . ,K, and thus must deliver each requested file WRk , by delivering
the constituent subfiles {WRk,τ}τ∈Ψγtot

, to the corresponding receiver k. Let us
recall that

1. subfiles {WRk,τ}τ∈Ψ
(k)
γtot

are already in Zk;

2. subfiles {WRk,τ}τ∈Ψγtot\Ψ
(k)
γtot

are directly requested by user k, but are not
already available inside Zk;

3. subfiles Zk\{WRk,τ}τ∈Ψ
(k)
γtot

= Zk\WRk are cached inside Zk, are not di-
rectly requested by user k, but will be useful in removing interference.

The folding part corresponds to creating linear combinations (XORs) of different
subfiles. Assume that we are trying to deliver a subfile WRk,τ /∈ Zk (note that
k /∈ τ ) to user k. Let Pk,k′(τ) be the function that replaces the entry k′ ∈ τ , with
the entry k. Then we see that if we deliver

WRk,τ ⊕ (⊕k′∈τ WR′k,Pk,k′ (τ)︸ ︷︷ ︸
∈Zk

) (37)

the fact that WR′k,Pk,k′ (τ) ∈ Zk, guarantees that receiver k can recover WRk,τ ,
while at the same time similarly guarantees that each other user k′ ∈ τ can recover
its own desired subfile WR′k,Pk,k′ (τ) /∈ Zk′ , ∀k′ ∈ τ . Hence delivery of WRk,τ ⊕
(⊕k′∈τWR′k,Pk,k′ (τ)) which has size |WRk,τ ⊕ (⊕k′∈τWR′k,Pk,k′ (τ))| = f/

(
K
γtot

)
bits, automatically guarantees delivery of WR′k,Pk,k′ (τ) to each user k′ ∈ τ , i.e.,

delivers a total of γtot + 1 distinct subfiles (each of size |WR′k,Pk,k′ (τ)| = f/
(
K
γtot

)
bits) to γtot + 1 distinct users. Hence any

Xψ = ⊕k∈ψWRk,ψ\{k}, ψ ∈ Ψγtot+1
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— referred to here as an order-(γtot + 1) folded file — can similarly deliver to user
k ∈ ψ, her requested file WRk,ψ\k, i.e., each order-(γtot + 1) folded file Xψ can
deliver — with the assistance of the side information in the caches — a distinct,
individually requested subfile, to each of the γtot + 1 users in ψ. Hence to satisfy
all requests {WRk\Zk}Kk=1, one must deliver the following set

XΨ = {Xψ = ⊕k∈ψWRk,ψ\{k}}ψ∈Ψγtot+1 (38)

consisting of |XΨ| =
(

K
γtot+1

)
folded messages of order-(γtot + 1), where each

folded message has size

|Xψ| = f/

(
K

γtot

)
(bits). (39)

3.3 Delivery of folded and private information with imperfect CSIT

The challenge here is to find an efficient method to deliver all the common
(order-γtot + 1) messages from XΨ.

The delivery phase draws from the last K − γtot phases of the MAT algorithm
in [5], where each phase j, j ∈ [γtot + 1,K] ∩ Z aims to deliver order-j folded
messages (cf. (38)) with the help of delayed CSIT. It is shown that the phase j
takes (K − j + 1)

(
K
j

)
common symbols of order j, and creates j

(
K
j+1

)
of order

j + 1. We use Nj to denote the number of order-j messages and Tj to denote the

duration of phase j, and the entire duration is T =
K−γtot∑
j=1

Tj .

During phase j, the transmitter sends

xt = xc,t + g1,ηa1,η + · · ·+ gk,tak,t + · · ·+ gK,taK,t (40)

for any time instant t ∈ [
j−1∑
i=1

Ti,
j∑
i=1

Ti], where gk,t are the precoders that are de-

signed to be orthogonal to the channel estimates of all users k′ other than k satis-
fying

ĥ
T

k′,tgk,t = 0, ∀k′ /∈ [K]\{k} (41)

We use the notation

P
(c)
t

∆
= E||xc,t||2, P (ak)

t
∆
= E|ak,t|2 (42)

to denote the power of xc,t and ak,t respectively, and we use r(c)
t and r(ak)

t to denote
the rate of xc,t and ak,t at time t. So the power and rate are formulated as

P
(c)
t =̇ P, P

(ak)
t =̇ Pα,

r
(c)
t = (1− α)f, r

(ak)
t = αf, k = 1, . . . ,K. (43)
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Hence, during phase j, {xc,t}∀t and {ak,t}∀t can deliver (1−α)fTj bits and αfTj

bits respectively, where t ∈ [
j−1∑
i=1

Ti,
j∑
i=1

Ti].

To convey {Xψ}ψ∈Ψγtot
, we split each Xψ into two parts as follows

Xψ = (X
(p)
ψ , X

(c)
ψ ) = (⊕k∈ψW

(p)
Rk,ψ\{k},⊕k∈ψW

(c)
Rk,ψ\{k}).

The delivery of the first part is converted into that of private messages, i.e., ele-
ments {W (p)

Rk,ψ\{k}}ψ∈Ψγtot+1 — private information for user k — are delivered by

{ak,t}Tt=0 through K − γtot phases, The second part {X(c)
ψ }ψ∈Ψγtot

is handled by
xc.

For the first part, each {ak,t}Tt=0 carries equal size information of the desired(
K−1
γtot

)
subfiles {W (p)

Rk,ψ\{k}}ψ∈Ψγtot+1 . In this way, within duration T , each

X
(p)
ψ = ⊕k∈ψW

(p)
Rk,ψ\{k}

can be conveyed by fαT

(K−1
γtot

)
bits.

Now we focus on the second part. {xc,t}Tt=0 takes place over K − γtot phases.
Phase j delivers order-(γtot+ j) symbols— each one of them useful for a subset of
γtot + j users, and generates order-(γtot + j+ 1) symbols. During phase K − γtot,
the transmitter sends the fully common information intended for all receivers and
no more symbols are generated.

phase 1: The information of {Xψ}ψ∈Ψγtot+1 are delivered by {xc,t}T1t=0, de-
scribing a sequential time-sharing transmission of {xψ}∀ψ. Each

xψ = [xψ,1, . . . , xψ,K−γtot , 0, . . . , 0]T (44)

maps the content of X(c)
ψ with θ = f

( K
γtot

)
− fαT

(K−1
γtot

)
bits, where {xψ,i}K−γtoti=1 are

independent scalars. Thus each xψ,i carries equal size of θ
K−γtot bits. Hence the

duration for carrying each xψ is dur(xψ) = θ
(K−γtot)(1−α)f , and consequently,

T1 =

(
K

γtot + 1

)
dur(xψ) =

(
K

γtot+1

)
θ

(K − γtot)(1− α)f
(45)

After overloading {Xψ}ψ∈Ψγtot+1 , each user k receives one observation of
K − γtot symbols xψ,1, xψ,2, . . . , xψ,K−γtot , which is denoted by Lψ,k with size
|Lψ,k| = θ

K−γtot bits. For any receiver in ψ, if the transmitter can somehow send
K−γtot−1 overheard equations received by all the receivers in [K]\ψ with the aid
of delayed CSIT, then receiver k can solve the elements xψ,1, xψ,2, . . . , xψ,K−γtot .
In other words, each overheard equation Lψ,k is simultaneously useful for all the
receivers in ψ and will be somehow sent in phase 2.
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phase 2: We proceed to see how the overheard equations from phase 1 are
delivered during this phase. In the presence of delayed CSIT, these overheard
equations are available to the transmitter after phase 1. Note that

Ψγtot+2 = {ψ ∈ [K], |ψ| = γtot + 2} (46)

For each ψ, xψ = [xψ,1, . . . , xψ,K−γtot−1, 0, . . . , 0]T maps the content of

fi({Lψ\{k},k}k∈ψ), i = 1, . . . , γtot + 1

, where fi is a random linear combination of the γtot + 2 elements {Lψ\{k},k}∀k∈ψ
created by the transmitter and the coefficients are shared with the receivers. The
transmission of the sequences {xψ}∀ψ, described by {xc,t}T1+T2

t=T1
, takes place in

phase 2 using time-sharing. Each xψ,i, i = 1, . . . ,K−γtot−1 carries |Lψ,k|(γtot+1)
K−γtot−1

bits and thus dur(xψ) =
|Lψ,k|(γtot+1)

(K−γtot−1)(1−α)f . We can get duration T2

T2 =

(
K

γtot + 2

)
dur(xψ) = T1

γtot + 1

γtot + 2
(47)

Now, we focus on how the transmission allows the solution of the overheard
equations from phase 1. Consider each ψ, receiver k ∈ ψ is able to remove the
known Lψ\{k},k from fi({Lψ\{k},k}∀k∈ψ), i = 1, . . . , γtot + 1 since it is a re-
ceived signal in phase 1 and obtains γtot + 1 independent linear combinations of
{Lψ\{k′},k′}∀k′∈ψ\{k}, which can be solved easily. Each other user k′ ∈ ψ acts the
same and acquires the desired γtot + 1 observations. It is easy to see that phase 1
creates (γtot + 1)

(
K

γtot+2

)
symbols of the form fi({Lψ\{k},k}k∈ψ),∀i,∀ψ, each is

an order-(γtot + 2) aimed for γtot + 2 receivers in ψ.
After phase 2, we use Lψ,k, ψ ∈ Ψγtot+2 to denote the received signal at re-

ceiver k. Like before, each receiver k, k ∈ ψ needsK−γtot−2 extra observations
of xψ,1, . . . , xψ,K−γtot−1 which will be seen from Lψ,k′ ,∀k′ /∈ ψ, which will come
from order-(γtot + 3) messages that are created by the transmitter and will be sent
in the third phase.

phase j (3 ≤ j ≤ K − γtot): Note that

Ψγtot+j = {ψ ∈ [K], |ψ| = γtot + j}. (48)

Similarly, during phase j, fi({Lψ\{k},k}∀k∈ψ), i = 1, . . . , γtot+j−1 are delivered
by xψ = [xψ,1, . . . , xψ,K−(γtot+j)+1, 0, . . . , 0]T for each ψ. Like before, to solve
xψ,1, . . . , xψ,K−(γtot+j)+1, which can be seen from Lψ,k′ , ∀k′ /∈ ψ, order-(γtot +
j+1) messages are generated and will be sent in the next phase. For the last phase,
fully common messages are sent from the transmitter and no more messages are
created. Finally, the whole transmission is finished. We have

Tj = T1
γtot + 1

γtot + j
, j = 3, 2, · · · ,K − γtot (49)
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3.4 Decoding

After transmission, the received signals yk, k = 1, 2, . . . ,K for each s phase
take the form

yk,t = hTk,txc,t︸ ︷︷ ︸
P

+hTk,tgk,tak,t︸ ︷︷ ︸
Pα

+

K∑
i=1,i 6=k

hTk,tgi,tai,t︸ ︷︷ ︸
p0

+ zk,t︸︷︷︸
P 0

(50)

where we see that, due to the power allocation and CSIT quality, symbols ak,t do
not cause interference to unintended users; at least not above the noise level. At
this point, each user k can decode hTk,txc,t by treating all other signals as noise.
Consequently, user k removes hTk,txc,t, and decodes its private symbol ak,t. Then

it can recover each X(p)
ψ with XOR operation.

After decoding {hTk,txc,t}Tt=0, each receiver k reconstructs the overheard equa-
tions from backwards until phase 2. Then k obtains enough observations to solve
K − γtot symbols xψ,1, xψ,2, . . . , xψ,K−γtot . As a result, X(c)

ψ can be recovered.
Finally, user k can reconstructXψ, and then it can recover {WRk,τ}τ∈Ψγtot ,k /∈τ ,

from which WRk is obtained. All the other users act the same.

3.5 Duration Calculation

Now we focus on the performance of the duration. Based on the above, we get
the entire duration

T =

K−γtot∑
j=1

Tj =

K−γtot∑
i=1

T1
γtot + 1

γtot + i
(51)

For each user k, the total amount of subfiles
⋃

τ∈Ψγtot ,k /∈τ
W

(p)
Rk,τ

is
(
K−1
γtot

)
, thus

each ak carries (Tαf)/
(
K−1
γtot

)
bits of each subfile within T . Therefore, we can

get the equivalent size of each X(p)
ψ . Hence, the total amount of

⋃
ψ∈Ψγtot+1

X
(p)
ψ

that is delivered by ak is Tαf
(

K
γtot+1

)/(
K−1
γtot

)
. It is shown that the second part⋃

ψ∈Ψγtot+1

X
(c)
ψ with θ

(
K

γtot+1

)
bits can be conveyed by xc within T using delayed

CSIT. Consequently, to deliver
⋃

ψ∈Ψγtot+1

Xψ , we have

f
(

K
γtot+1

)(
K
γtot

) −
Tαf

(
K

γtot+1

)(
K−1
γtot

) = θ

(
K

γtot + 1

)
(52)
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From (45), (51) and (52), we obtain

, T =
(1− γ)(HK −Hγtot)

α(HK −Hγtot) + (1− α)(1− γ)
(53)

It is obvious that when γtot = Kγ = K − 1, we have T = 1
K ,∀α, which

also achieves the optimal 1− γ under perfect current CSIT by delivering the fully
common information. At this point, coded caching reduces the need of CSIT.

Specially, for the case of α = 0, β = 1, we have T = HK −Hγtot and achieve
DoF for sending {Xψ}ψ∈Ψγtot+1 as follows

dγtot+1 =
f
(

K
γtot+1

)(
K
γtot

)
Tf

=
K − γtot
γtot + 1

1

HK −Hγtot

(54)

We describe our MAT-caching algorithm as follows. First assume that each
common message generated from caching, e.g. Xψ, ψ ∈ Ψγtot+1, is an order-
j(j ≤ K) message—intended for j users simultaneously, then the scheme com-
prises K − j + 1 phase.

• In phase 1, the order-j(j ≤ K) messages are delivered by the transmitter
from K − j + 1 of the transmit antennas.

• In phase i ∈ {2, . . . ,K − j}, order-(j + i − 1) messages generated from
the previous phase are sent from K − (j + i) + 2 of the transmit antennas.
Note that, in the last phase, fully common messages are sent and no more
messages are created.

Consequently, the corresponding DoF is

dj =
K − j + 1

j

1

HK −Hj−1
(55)

In the scheme we describe above, for xc, j = γtot + 1.
Our method MAT-caching explores the role of delayed CSIT in reducing the

duration of caching-aided MISO BC for any user demand. It is shown that after
phase 1, the scheme jumps to phase j + 1 of MAT scheme directly. Comparing
with MAT scheme, the scheme skips the first j − 1 phases with the assistance of
caching.

4 Bounding the performance gap

4.1 Bounding the performance gap to optimal, for the case of α = 0

We want to prove that
T (α = 0)

T ∗(α = 0)
≤ 2,
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i.e., that the achievable T (α = 0) = HK − HKγ in (12), is within a factor of 2
from the optimal T ∗(α = 0), which was bounded in Lemma 1 as

T ∗ ≥ max
s∈{1,...,min{b N

M
c,K}}

s

d∑ (1− M

bNs c
). (56)

Using the result in [5] that says that for α = 0, the sum-DoF is d∑ = s
Hs

, we see
that the gap is bounded as

T

T ∗
≤

HK −HKγ

max
s∈{1,...,b 1

γ
c}
Hs(1− M

bN
s
c)
. (57)

We will show that this gap is less than 2.
The proof is split into five parts: the first part will focus on the region γ ≤ 1

44 ,
the second part on the region 1

44 ≤ γ ≤ 1
4 , the third part on the region 1

4 ≤ γ ≤ 1
2

and the fourth part on the region 1
2 ≤ γ ≤

K−1
K .

4.1.1 Case 1: Proving that T (α=0)
T ∗(α=0) ≤ 2 for γ ≤ 1

44 and K ≥ 2

First consider γ ≤ 1
44 , and let us focus our attention to the case where K ≥ 5

since when K ≤ 2, there is no value of γ ≤ 1
44 . Then

T

T ∗
≤ max

γ∈[ 1
K
, 1
44

]∩(Z/K)

HK −HKγ

max
s∈[1,K

4
]∩Z

Hs(1− M
bN
s
c)

(58)

≤ max
γ∈[ 1

K
, 1
44

]

HK −HKγ

max
s∈[11,K

4
]∩Z

Hs(1− M
bN
s
c)

(59)

≤ max
γ∈[ 1

K
, 1
44

]

log( 1
γ ) + ε5 − ε∞

max
s∈[11,K

4
]∩Z

(log s+ ε∞)(1− γs5
4)

(60)

where (58) holds because Hs(1 − M
bN
s
c) < 0 when s > b 1

γ c, where (59) holds

to reflect the change of the maximizing regions for γ and s, and where (60) holds
because εK decreases withK and becauseHK− log(K) ≤ ε5, HKγ− log(Kγ) >
ε∞,Hs > log(s)+ε∞, and because (bNs c)/

N
s ≥

4
5 , s ≤

N
4 . Continuing from (60),

we have that

T

T ∗
≤ max

sc∈[11,K
4

]∩Z
max

γ∈[ 1
4sc

, 1
4(sc−1)

]

log( 1
γ ) + ε5 − ε∞

(log sc + ε∞)(1− γsc 5
4)

(61)

because max
s∈[11,K

4
]∩Z

(log s + ε∞)(1 − γs5
4) ≥ (log sc + ε∞)(1 − γsc 5

4) for any γ

and for any sc ∈ [11, K4 ]∩Z, and where the split of the maximization maxγ∈[ 1
K
, 1
44

]
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into the double maximization maxsc∈[11,K
4

]∩Z maxγ∈[ 1
4sc

, 1
4(sc−1)

] reflects the fact

that we heuristically choose s = sc when γ ∈ [ 1
4sc
, 1

4(sc−1) ]. Now we perform a
simple change of variables, introducing s′ such that γ = 1

4s′ . Hence, a γ range of
γ ∈ [ 1

4sc
, 1

4(sc−1) ], corresponds to an s′ range of s′ ∈ [sc − 1, sc].

T

T ∗
≤ max

sc∈[11,K
4

]∩Z
max

s′∈[sc−1,sc]

log(4s′) + ε5 − ε∞
(log sc + ε∞)(1− 5

4
1
4
sc
s′ )

(62)

≤ max
sc∈[11,K

4
]∩Z

log(4sc) + ε5 − ε∞
(log sc + ε∞)(1− 5

16
sc
sc−1)

(63)

≤ 32

21
max

sc∈[11,K
4

]∩Z

log(4sc) + ε5 − ε∞
(log sc + ε∞)

(64)

≤ 32

21
+

32

21
max

sc∈[11,K
4

]∩Z

log(4) + ε5 − 2ε∞
(log(sc) + ε∞)

(65)

=
32

21
+

32

21

log(4) + ε5 − 2ε∞
(log(11) + ε∞)

< 2. (66)

Specifically, if K
4 is not an integer, γ ∈ [ 1

K ,
1

4bK
4
c ] is not considered in the

above and only γ = 1
K is evolved due to the fact that i

K ≥
1

4bK
4
c ,∀i ≥ 2 when

K ≥ 45. For γ = 1
K , we set sc = b 1

4γ c = bK4 c where sc ≥ 11. Based on the
above, we have

T

T ∗
≤ logK + ε44 − ε∞

(log sc + ε∞)(1− γsc 5
4)

(67)

≤ 16

11

log(4sc + 3) + ε44 − ε∞
(log sc + ε∞)

(68)

≤ 16

11

log(4sc) + log(47
44) + ε44 − ε∞

(log sc + ε∞)
(69)

≤ 16

11
+

16

11

log 4 + log(47
44) + ε44 − 2ε∞

(log sc + ε∞)
(70)

< 2, ∀sc ≥ 11 (71)

where (67) holds from (61), where (68) holds becauseK ≤ 4sc+3 when sc = bK4 c
and because γsc ≤ 1

4 , where (69) holds because log(4sc+3)−log(4sc) ≤ log 47−
log 44, ∀sc ≥ 11.

4.1.2 Case 2: Proving that T (α=0)
T ∗(α=0) ≤ 2 for 1

44 ≤ γ ≤
1
4 and K ≥ 2

There are two sections.
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1) For K ≥ 35, we have

T

T ∗
≤

log 1
γ + ε35 − ε∞

max
s∈{1,...,b 1

γ
c}
Hs(1− γs

1− s−1
N

)
(72)

≤
log 1

γ + ε35 − ε∞
max

s∈{1,...,b 1
γ
c}
Hs(1− γs

1− s−1
35

)
(73)

≤ max
sc∈[2,11]∩Z

max
γ∈[ 1

4sc
, 1
4(sc−1)

]

log 1
γ + ε35 − ε∞

Hsc(1−
γsc

1− sc−1
35

)
(74)

=: max
sc∈[2,11]∩Z

max
γ∈[ 1

4sc
, 1
4(sc−1)

]
g(sc, γ) (75)

where (72) holds because HK − log(K) ≤ ε35, HKγ − log(Kγ) > ε∞, ∀K ≥ 35

and because bNs c ≥
N−(s−1)

s , where (73) holds because N ≥ K ≥ 35, where
(74) holds because of the fact that s = sc is chosen when γ ∈ [ 1

4sc
, 1

4(sc−1) ], which
covers the maximization maxγ∈[ 1

44
, 1
4

].
No we focus on g(sc, γ) for each sc. We note that

dg(sc, γ)

dγ
=
(1

γ
(

35γsc
36− sc

− 1) + (log
1

γ
+ ε35)

35sc
36− sc

)
/A

= g′N/A (76)

for someA > 0, where g′N denote the above numerator. To maximize g(sc, γ), first

our task is to find the behavior of dg(sc,γ)
dγ . We can see that dg

′
N
dγ = 1

γ ( 1
γ −

35sc
36−sc ) ≥

0, ∀γ ≤ 36−sc
35sc

. For each sc ∈ [2, 11] ∩ Z, with the γ range [ 1
4sc
, 1

4(sc−1) ], to

guarantee dg′N
dγ ≥ 0, we need to have 36−sc

35sc
≥ 1

4(sc−1) , which can be guaranteed by

direct calculation. Hence, we can get that dg
′
N
dγ ≥ 0, ∀γ ∈ [ 1

44 ,
1
4 ].

Lemma 2 For the function g(γ, s), we use g′N (γ, s) and g′D(γ, s) to denote the
numerator and the denominator of dg(γ,s)

dγ respectively. Having the increasing
g′N (γ, s) in γ and positive g′D(γ, s), within range γ ∈ [γ1, γ2], γ1 ≤ γ2, we ob-
tain

max
γ∈[γ1,γ2]

g(γ, s) = max{g(γ = γ1, s), g(γ = γ2, s)} (77)

Proof: See Section 7.1. �
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From Lemma 2, for K ≥ 35, with dg′N
dγ ≥ 0, we have

T

T ∗
≤ max

sc∈[2,11]∩Z
max

γ∈[ 1
4sc

, 1
4(sc−1)

]
g(sc, γ)

≤ max
sc∈[2,11]∩Z

max{g(sc, γ =
1

4sc
), g(sc, γ =

1

4(sc − 1)
)}

≤ 2 (78)

by direct calculation.
2) For 2 ≤ K ≤ 34 and 1

44 ≤ γ ≤
1
4 , we have

T

T ∗
≤

HK −HKγ

max
s∈{1,...,b 1

γ
c}
Hs(1− γs

1− s−1
N

)
(79)

≤
HK −HKγ

Hsc(1−
γsc

1− sc−1
K

)
(80)

where (79) holds because bNs c ≥
N−(s−1)

s , where (80) holds because N ≥ K

and we set sc =
⌈

1
4γ

⌉
. By directly calculation, it is shown that T

T ∗ ≤ 2,∀γ ∈
[ 1
44 ,

1
4 ] ∩ (Z/K).

4.1.3 Case 3: Proving that T (α=0)
T ∗(α=0) ≤ 2 for 1

4 ≤ γ ≤
1
2 ,K ≥ 2

We choose s = 1 and there are two sections.
1) For K ≥ 5, we have

T

T ∗
≤

log 1
γ + ε5 − ε∞

1− γ
=: f(γ) (81)

where HK − log(K) ≤ ε5, HKγ − log(Kγ) > ε∞,∀K ≥ 5.
Now we focus on f(γ) and we have

df(γ)

dγ
=

1− γ−1 − log γ + ε5 − ε∞
(1− γ)2

=
f ′N (γ, s)

f ′D(γ, s)

Note that f ′D(γ, s) > 0,∀γ < 1. Then

df ′N (γ)

dγ
= γ−2 − γ−1 ≥ 0,∀γ ∈ [

1

4
,
1

2
]

From Lemma 2, we see that

max
γ∈[ 1

4
, 1
2

]
f(γ) = max{f(

1

2
), f(

1

4
)} < 2⇒ T

T ∗
< 2 (82)

2) For K = 2, 3, 4. With s = 1, T
T ∗ ≤

HK−HKγ
1−γ < 2, 1

4 ≤ γ ≤ 1
2 can be seen

from direct calculation.
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4.1.4 Case 4: Proving that T (α=0)
T ∗(α=0) ≤ 2 for 1

2 ≤ γ ≤
K−1
K ,K ≥ 2

We set s = 1. Let γ = K−j
K , where j = 1, 2, . . . , bK2 c since γ ∈ [1

2 ,
K−1
K ].

Therefore,
T

T ∗
≤
HK −HKγ

1− γ
=
HK −H(K−j)

j/K

=
1

j
(

K

K − j + 1
+

K

K − j + 2
+ · · ·+ 1)

=
1

j
(1 +

j − 1

K − (j − 1)
+ 1 +

j − 2

K − (j − 2)
+ · · ·+ 1)

= 1 +
1

j
(

j − 1

K − (j − 1)
+

j − 2

K − (j − 2)
+ · · ·+ 1

K − 1
)

≤ 2 (83)

since j ≤ K
2 .

As a result, we have that for γtot = Kγ ≥ 1, the performance T = HK−HKγ

of the proposed MAT-caching scheme, is within a multiplication factor of 2 from
the optimal, i.e.,

T

T ∗
≤ 2 (84)

∀K,∀N ≥ K,∀γ ∈ { 1
K ,

2
K , . . . ,

K−1
K }. The values of Kγ imply that all the

information from N files is repeated Kγ times in the caches.

4.2 Bounding the performance gap, for the case of α > 0

In this section, we will show that
T (α > 0)

T ∗(α > 0)
≤ 2,

Using that d∑ = s
Hs

(1− α) + sα, we see that the gap is bounded as

T

T ∗
≤

(1−γ)(HK−HKγ)
α(HK−HKγ)+(1−α)(1−γ)

max
s∈{1,...,b N

M
c}

Hs
(1−α)+αHs

(1− M
bN
s
c)

=: g(s, γ) (85)

We will prove that this gap is less than 2.
Before starting the proof, from the previous section, we have already shown

that
HK −HKγ

max
s∈{1,...,b N

M
c}
Hs(1− M

bN
s
c)
≤

HK −HKγ

Hsc(1− M
bN
sc
c)
≤ 2 (86)

where sc is chosen according to different γ ranges, which will be useful for the
proof.

The proof consists two parts: the first part will focus on the region 1
4 ≤ γ ≤

K−1
K , and the second part on the region 0 ≤ γ ≤ 1

4 .
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4.2.1 Case 1: Proving that T (α>0)
T ∗(α>0) ≤ 2 for 1

4 ≤ γ ≤
K−1
K ,∀K

We set s = 1. From (86), it is shown that HK−HKγ1−γ ≤ 2, ∀γ ∈ [1
4 ,

K−1
K ], ∀K.

Thus we have

T

T ∗
≤
HK −HKγ

1− γ
≤ 2 (87)

since T (α > 0) ≤ T (α = 0) = HK −HKγ .

4.2.2 Case 2: Proving that T (α>0)
T ∗(α>0) ≤ 2 for 0 ≤ γ ≤ 1

4 , ∀K

We can see that

g(sc, γ) ≤
HK −HKγ

Hsc(1− M
bN
s
c)
⇒ Hsc ≤

HK −HKγ

1− γ
(88)

is a sufficient condition to guarantee T
T ∗ ≤ 2, ∀γ ∈ [0, 1

4 ]. If (88) works, we can
get that

log(sc) ≤
log(γ)

γ − 1
− ε2, ε2 = H2 − log 2. (89)

is a sufficient condition since Hsc ≤ log(sc) + ε2, ∀sc ≥ 2,∀γ ∈ [0, 1
4 ],∀K. Since

γ ∈ [ 1
4sc
, 1

4(sc−1) ], so sc ≤ 1
4γ + 1, then we only need to guarantee

log(
1

4γ
+ 1) ≤ log(γ)

γ − 1
− ε2. (90)

If (90) holds, then

log(
1

4γ
) + log 2 ≤ log(γ)

γ − 1
− ε2 (91)

is a sufficient condition. We set f = log( 1
4γ ) + log 2− log(γ)

γ−1 + ε2 and we use

df(γ)

dγ
=

1 + log(γ)− γ
(1− γ)2

≤ 0

to get

max
γ∈[0, 1

4
]
f = f(γ =

1

4
) = log 2− 4

3
log 4 + ε2 ≤ 0

which proves (91) and then (88), (89) and (90) hold, i,e., T
T ∗ ≤ 2.
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5 Appendix - Lower bound on T ∗

Let us first create the outer (lower) bound on T , using basic cut-set bound argu-
ments. Consider a simplified setting, where there are s users (s ∈ {1, . . . , bNM c}).
During the placement phase, the users’ corresponding caches Z1, . . . , Zs are filled,
while during the delivery phase, each of the s users makes bNs c sequential requests,
corresponding to a total of sbNs c requested filesW1, . . . ,WsbN

s
c by all the users to-

gether. Note that for integer Ns , these requests span all N files. We now consider a
total of bNs c sequential transmissions X1, . . . , XbN

s
c, such that X1 and Z1, . . . , Zs

can reconstructW1, . . . ,Ws, such that similarlyX2 andZ1, . . . , Zs can reconstruct
Ws+1, . . . ,W2s, and so on, until we have that X1, . . . , XbN

s
c and Z1, . . . , Zs can

reconstruct all the requested files W1, . . . ,WsbN
s
c.

To apply the cut-set bound, we place the bNs c broadcasting signalsX1, . . . , XbN
s
c,

each of duration T , on one side of the cut, together with all the caches Z1, . . . , Zs,
and then on the other side of the cut, we place all the requests of s users for a total
of sbNs c files, each of size f . Hence it follows that

bN
s
cd∑T + sM ≥ H(Z1, . . . , Zs, X1, . . . , XbN

s
c)

≥ H(Z1, . . . , Zs, X1, . . . , XbN
s
c|W1, . . . ,WsbN

s
c) + sbN

s
c(1− εf )

≥ sbN
s
c(1− εf ) (92)

where we have used that the K × s interference-free MIMO channel provides d∑
degrees of freedom as a result of a certain of CSIT quality (this is in the limit of
f →∞), and where we have used Fano’s inequality. In the same limit of f →∞,
we have that εf → 0. Thus solving for T , and optimizing over all possible choices
of s, we obtain

T ≥ max
s∈{1,...,b N

M
c}

s

d∑ (1− M

bNs c
) (93)

proving the theorem.

6 Appendix - Proof of the asymptotic optimality

We first focus on the optimality of the schemes having α = 0. First set γtot =
Kϕ, where ϕ < 1. We have

HK −HKγ ≤ logK + ε2 − log(Kγ) ≤ log
1

γ
+ ε2
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Hence, for both cases, T ≤ log 1
γ + ε2, ∀γtot ≥ 0. Then,

T

T ∗
≤ lim

K→∞

log 1
γ + ε2

max
s∈{1,...,min{K,b N

M
}}
Hs(1− M

bN
s
c)

≤ lim
K→∞

log 1
γ + ε2

Hsc(1− M
bN
sc
c)

(94)

We choose sc = 1
γL , where L is a large but finite positive real chosen such that

sc ∈ Z+. Then we have

sc =
K

γtotL
=
K1−ϕ

L
� 1 (95)

therefore, N ≥ K = γtotLsc � sc. As a result, b
N
s
c

N
s

→ 1. Consequently, from

(94), for both cases, we have

T

T ∗
≤ lim

K→∞

log 1
γ + ε2

log sc(1− γsc)
= lim

K→∞

logL+ log sc

log sc(1− 1
L)
→ 1 (96)

implying that the schemes are asymptotically optimal.

7 Appendix - Additional proofs

7.1 Proof of Lemma 2
dg′N (γ,s)

dγ ≥ 0 means that g′N (γ, s) is increasing in γ. Additionally, g′D(γ, s)
is non-negative, within range γ ∈ [γ1, γ2], γ1 ≤ γ2. At this point, there are three
cases.

Consider case 1. If g′N (γ1, s) ≥ 0 ⇒ g′N (γ, s) ≥ 0, ∀γ ∈ [γ1, γ2]. Hence, we

have dg(γ,s)
dγ =

g′N (γ,s)

g′D(γ,s)
≥ 0,∀γ ∈ [γ1, γ2]. Consequently,

max
γ∈[γ1,γ2]

g(γ, s) = g(γ = γ2, s)

Consider case 2. If g′N (γ1, s) < 0 & g′N (γ2, s) ≤ 0 ⇒ g′N (γ, s) ≤ 0, ∀γ ∈
[γ1, γ2]. Hence, we have dg(γ,s)

dγ ≤ 0,∀γ ∈ [γ1, γ2]. Consequently,

max
γ∈[γ1,γ2]

g(γ, s) = g(γ = γ1, s)

Consider case 3. If g′N (γ1, s) < 0 & g′N (γ2, s) > 0 ⇒ ∃ a unique γ′ ∈
[γ1, γ2] s.t., g′N (γ′, s) = 0. Hence, we have dg(γ,s)

dγ ≤ 0, ∀γ ∈ [γ1, γ
′] & dg(γ,s)

dγ ≥
0,∀γ ∈ [γ′, γ2]. Consequently,

max
γ∈[γ1,γ2]

g(γ, s) = max{g(γ = γ1, s), g(γ = γ2, s)}
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As a result, the above three cases yield the identity

max
γ∈[γ1,γ2]

g(γ, s) = max{g(γ = γ1, s), g(γ = γ2, s)} (97)

7.2 Proof of vanishing fraction of delayed CSIT cost due to caching
from Section 2.6

The MAT-caching scheme has K − γtot phase, where each phase j, j ∈ [γtot +
1,K] ∩ Z transmits order-j messages in the presence of delayed CSIT. It is shown
that the phase j takes (K − j + 1)

(
K
j

)
common symbols of order j, and creates

j
(
K
j+1

)
of order j + 1. We use Nj to denote the number of order-j messages and

Tj to denote the duration of phase j. Towards this, first we have

Nj+1 = Nj

j
(
K
j+1

)
(K − j + 1)

(
K
j

) = Nj
j(K − j)

(j + 1)(K − j + 1)
(98)

which implies that

Nj = Nj−1
(j − 1)(K − j + 1)

j(K − j + 2)
, . . . , N2 = N1

K − 1

2K
(99)

Hence, we can get

Nj = N1
K − j + 1

Kj
, j = 1, 2, . . . ,K (100)

The order-j symbols generated from phase j − 1 will be sent in phase j from
K − j + 1 transmit antennas. At this point, we can get the duration of each phase,

Tj =
Nj

K − j + 1
=
N1

Kj
(101)

Towards this, we can see that for phase j, to let the transmitter construct K − j
received signals that are not desired by the receiving users, (K − j + 1)(K − j)
supports every coherence time should be sent back after phase j.

To serve each user a single file with logP bits, which means N1 = K, so we
get Tj = 1

j implying that the total duration is
∑K

j=1
1
j = HK , and (K−j+1)(K−

j) supports every coherence time are needed. Hence, The total number of scalars S
of logP bits for each user every coherence time that are needed at the transmitter
are

S =

K∑
j=γtot+1

Tj(K − j + 1)(K − j)

= (K2 +K)(HK −Hγtot)−
K(1− γ)(3K −Kγ − 1)

2
(102)
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Similarly, for MAT scheme, γtot = 0, we have

S′=
K∑
j=1

Tj(K − j + 1)(K − j)=(K2 +K)HK−
3K2

2
+
K

2
(103)

When K goes to large, we have lim
K→∞

S = K2(log 1
γ −

3
2), and lim

K→∞
S′ =

K2 logK, then we have

S

S′
≈

log 1
γ −

3
2

logK
(104)

For a finite and fixed γ, the ratio goes to 0. Hence, we can see that caching al-
gorithm requires a much reduced delayed-CSIT load than the full K-user MAT
algorithm.

We can see that, for the optimal performance, the transmitter needs K2 sup-
ports of the channel information using zero-forcing. The area under the line rep-
resents the total supports that each scheme requires. Our MAT-caching needs a
fraction of retrospective knowledge of the channel. With γ increasing, the need of
channel information is even less than the zero-forcing scheme.

References

[1] M. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” Information
Theory, IEEE Transactions on, vol. 60, no. 5, pp. 2856–2867, May 2014.

[2] S. Yang, M. Kobayashi, D. Gesbert, and X. Yi, “Degrees of freedom of time
correlated MISO broadcast channel with delayed CSIT,” IEEE Trans. Inf.
Theory, vol. 59, no. 1, pp. 315–328, Jan. 2013.

[3] J. Chen and P. Elia, “Toward the performance versus feedback tradeoff for the
two-user miso broadcast channel,” IEEE Trans. Inf. Theory, vol. 59, no. 12,
pp. 8336–8356, Dec. 2013.

[4] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran, “Multiuser MIMO
achievable rates with downlink training and channel state feedback,” IEEE
Trans. Inf. Theory, vol. 56, no. 6, pp. 2845 – 2866, Jun. 2010.

[5] M. A. Maddah-Ali and D. N. C. Tse, “Completely stale transmitter channel
state information is still very useful,” IEEE Trans. Inf. Theory, vol. 58, no. 7,
pp. 4418 – 4431, Jul. 2012.

[6] T. Gou and S. Jafar, “Optimal use of current and outdated channel state in-
formation: Degrees of freedom of the MISO BC with mixed CSIT,” IEEE
Communications Letters, vol. 16, no. 7, pp. 1084 – 1087, Jul. 2012.

26



[7] J. Chen and P. Elia, “Degrees-of-freedom region of the MISO broadcast chan-
nel with general mixed-CSIT,” in Proc. Information Theory and Applications
Workshop (ITA), Feb. 2013.

[8] P. de Kerret, X. Yi, and D. Gesbert, “On the degrees of freedom of the
k-user time correlated broadcast channel with delayed CSIT,” CoRR, vol.
abs/1301.2138, 2013. [Online]. Available: http://arxiv.org/abs/1301.2138

[9] J. Chen, S. Yang, and P. Elia, “On the fundamental feedback-vs-performance
tradeoff over the MISO-BC with imperfect and delayed CSIT,” CoRR, vol.
abs/1302.0806, 2013. [Online]. Available: http://arxiv.org/abs/1302.0806

[10] N. Jindal, “MIMO broadcast channels with finite-rate feedback,” IEEE Trans.
Inf. Theory, vol. 52, no. 11, pp. 5045 – 5060, Nov. 2006.

[11] G. Caire and S. Shamai, “On the achievable throughput of a multiantenna
Gaussian broadcast channel,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp.
1691 – 1706, Jul. 2003.

[12] C. Vaze and M. Varanasi, “The degree-of-freedom regions of MIMO broad-
cast, interference, and cognitive radio channels with no CSIT,” IEEE Trans.
Inf. Theory, vol. 58, no. 8, pp. 5254 – 5374, Aug. 2012.

[13] R. Tandon, S. A. Jafar, S. Shamai, and H. V. Poor, “On the synergistic benefits
of alternating CSIT for the MISO BC,” Aug. 2012, to appear in IEEE Trans.
Inform. Theory, available on arXiv:1208.5071.

[14] N. Lee and R. W. Heath Jr., “Not too delayed CSIT achieves the optimal
degrees of freedom,” in Proc. Allerton Conf. Communication, Control and
Computing, Oct. 2012.

[15] C. Hao and B. Clerckx, “Imperfect and unmatched CSIT is still useful for
the frequency correlated MISO broadcast channel,” Feb. 2013, to appear in
ICC13, available on arXiv:1302.6521.

[16] G. Caire, N. Jindal, and S. Shamai, “On the required accuracy of transmitter
channel state information in multiple antenna broadcast channels,” in Signals,
Systems and Computers, 2007. ACSSC 2007. Conference Record of the Forty-
First Asilomar Conference on, Nov 2007, pp. 287–291.

[17] M. A. Maddah-Ali and U. Niesen, “Decentralized caching attains order-
optimal memory-rate tradeoff,” CoRR, vol. abs/1301.5848, 2013. [Online].
Available: http://arxiv.org/abs/1301.5848

[18] M. Ji, M. F. Wong, A. Tulino, J. Llorca, G. Caire, M. Effros, and M. Langberg,
“On the fundamental limits of caching in combination networks,” in Signal
Processing Advances in Wireless Communications (SPAWC), 2015 IEEE 16th
International Workshop on, June 2015, pp. 695–699.

27



[19] H. Ghasemi and A. Ramamoorthy, “Improved lower bounds for coded
caching,” CoRR, vol. abs/1501.06003, 2015. [Online]. Available: http:
//arxiv.org/abs/1501.06003

[20] M. A. Maddah-Ali and U. Niesen, “Cache-aided interference channels,” in
Proceedings of the IEEE International Symposium on Information Theory
(ISIT’2015), Hong-Kong, China, 2015.

[21] R. Timo and M. A. Wigger, “Joint cache-channel coding over erasure
broadcast channels,” CoRR, vol. abs/1505.01016, 2015. [Online]. Available:
http://arxiv.org/abs/1505.01016

[22] U. Niesen, D. Shah, and G. W. Wornell, “Caching in wireless networks,”
Information Theory, IEEE Transactions on, vol. 58, no. 10, pp. 6524–6540,
Oct 2012.

[23] A. F. Molisch, G. Caire, D. Ott, J. R. Foerster, D. Bethanabhotla,
and M. Ji, “Caching eliminates the wireless bottleneck in video-aware
wireless networks,” CoRR, vol. abs/1405.5864, 2014. [Online]. Available:
http://arxiv.org/abs/1405.5864

[24] J. Hachem, N. Karamchandani, and S. N. Diggavi, “Coded caching
for heterogeneous wireless networks with multi-level access,” CoRR, vol.
abs/1404.6560, 2014. [Online]. Available: http://arxiv.org/abs/1404.6560

[25] J. Hachem, N. Karamchandani, and S. Diggavi, “Effect of number of users in
multi-level coded caching,” in Proceedings of the IEEE International Sympo-
sium on Information Theory (ISIT’2015), Hong-Kong, China, 2015.

[26] P. de Kerret, X. Yi, and D. Gesbert, “On the degrees of freedom of the K-user
time correlated broadcast channel with delayed CSIT,” Jan. 2013, available
on arXiv:1301.2138.

[27] J. Chen, S. Yang, and P. Elia, “On the fundamental feedback-vs-performance
tradeoff over the MISO-BC with imperfect and delayed CSIT,” Feb. 2013, to
appear in ISIT13, available on arXiv:1302.0806.

28


