Analyzing Cacheable Traffic for FTTH Users Using Hadoop

Claudio Imbrenda
Orange Labs Networks
claudio.imbrenda@orange.com

ABSTRACT

We present this year (2015) statistics about cacheable traffic in
the access network of Orange in Paris for about 30,000 customers
served by a fiber to the home subscription. These statistics update
some of the results presented in a recent work, which considered
only 2000 fiber users in 2014. The huge amount of data to be
processed in the new vantage point made necessary the usage of
a hadoop cluster that we have used to process the data and report
new statistics in the present paper. The aggregation level at which
we observe web traffic allows to draw some conclusions about the
feasibility of implementing in-network caching at wire speed.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Opera-
tions—~Network monitoring

Keywords
Network Traffic Measurements; Caching; Big Data

1. INTRODUCTION AND MOTIVATION

One of the fundamental questions about using in-network caches
in the Internet is to show how much data can be really cached, if
such data allows to save significant amount of traffic and if the total
cacheable data requires a memory that can be implemented with
a reasonable cost. The size of that memory would also determine
the technology and then the access speed, which has a direct im-
plication on the location of such memory in the communication
path. Smaller memories can be very fast and installed in the for-
warding engine of a router and accessed at wire speed, while very
large memories are typically implemented with low rate technolo-
gies that can only be installed out of the data path and accessed
at lower rate. The answer to this question depends on many fac-
tors but mostly on the nature of the traffic demand coming from
the end users. It also depends on the network location where such
demand is observed. In this paper we position our vantage point
in the access networks of Orange in Paris to observe about 30 000
customers, served by a GPON (Gigabit Passive Optical Network)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s)
ICN’15, September 30—October 2, 2015, San Francisco, CA, USA.

ACM 978-1-4503-3855-4/15/09

http://dx.doi.org/10.1145/2810156.2812602.

Wuyang Li
Eurecom Institute
wuyang.li@eurecom.fr

191

Luca Muscariello
Orange Labs Networks
luca.muscariello@orange.com

based FTTH (Fiber To The Home) access, with a per user maxi-
mum downlink rate spanning from 300Mbps to 1Gbps. In [3] all
HTTP requests and replies were processed online in the probe it-
self, while the new scale that we face in this work required the use
of a hadoop cluster to compute the relevant statistics online. The
present work takes into account several ameliorations of the mea-
surement methodology employed in [3], as it also takes into ac-
count identification of objects that are retrieved using HTTP chun-
ked transfer encoding and range requests in order to detect partial
data transfers or non overlapping pieces of a same object, that is
identified by the same HTTP URI. Cacheability and traffic reduc-
tion, as introduced in [1, 3], are very important metrics, as pointed
before. In order to quickly and accurately calculate these values, a
log is needed containing all the requested objects, the time of the
request and the real amount of traffic generated. There are already
some tools that perform HTTP traffic analysis[7, 6, 2, 5], some
of which are unavailable. The performance and the accuracy of the
publicly available tools is in general not satisfactory for some kinds
of traffic analysis, especially in relation to cacheability. Tstat[4]
performs a packet-level analysis of HTTP connections, this allows
it to operate quickly and with a reduced memory footprint, but on
the other hand it misses many details.

Only clear-text connections can be analyzed, as obviously no dis-
section of SSL/TLS traffic is possible for us. Although the amount
of HTTPS traffic is rising with time, especially since popular web-
sites like Facebook or YouTube started to push in that direction,
and therefore potentially rendering this approach useless in the long
run, we measured in our observations that, approximately 35% of
the total HTTP traffic is HTTPS.

2. STATISTICS

In addition to the usual statistics collected by other tools, like
for example the client ID, the object ID, the hostname or the User-
Agent string, our tool, called HACkS Aw, also collects many statis-
tics that other tools neglect, like the time between the HTTP re-
quest and the HTTP reply or the first byte of content; the indication
whether cookies or ETAG headers were used, the size of the head-
ers, the byte-range in case of range(partial) request, and the list of
all present headers (without their values). The results collected by
the tool allow to compute aggregate statistics as shown in [3]; those
aggregate statistics are calculated with a non-trivial post-processing
of the output log of the tool, which is in plain text. The relevant
statistics that can be calculated easily are:

Request cacheability (the share of HTTP requests that can poten-
tially be cached in a given timeframe);

Traffic reduction (the percentage of actual traffic potentially saved
assuming all cacheable items are pre-fetched during off-peak hours);
Virtual cache size (the minimum cache size needed to cache all



70%

60%

50%

40%

30%

20%

10%

12 15 18 21 24 27 30 03 06 09 12
June June June June June June June July July July July

(a)

10 TB
1TB | .
100 GB I
10GB |
24h
1h
1GB :

12 15 18 21 24 27 30 03 06 09 12
June June June June June June June July July July July

(b)

Figure 1: Cacheability, traffic reduction; (a) virtual cache size over 1h and 24h during a month from June July 2015.

cacheable content, assuming perfect “oracle” replacement);
Share of requests with cookies and/or ETAG (ETAG headers po-
tentially indicate different content for the same URL; the presence
of cookies generally hinders cacheability);

Average throughput and latency of requests (time between the
first and the last byte of content, and between start of the HTTP
request and the first byte of content, respectively);

Share of HTTPS connections (percentage of HTTPS connections
and traffic over the total of web traffic).

3. HADOOP FRAMEWORK

Since the amount of data generated by HACkSAw can be huge
(200GB per day for an average 10Gbps of traffic), the amount of
time and memory needed to compute it on any single system is pro-
hibitive. Hence our decision to use a Hadoop cluster. In average, on
a daily basis, we use 398 maps and 60 reduce tasks which read and
write 93GB and 0.8GB of data respectively. The hadoop framework
employs 3.5 hours of CPU time and requires 505GB of memory.
The real time processing takes only 2.4 minutes which constitutes
a speedup factor of 87.5 times. The current setup involves an au-
tomatic script on the probe that compresses and sends the hourly
logs towards the hadoop cluster, where they are uncompressed and
injected in the HDFS (Hadoop Distributed File System). At regular
intervals, a script on the hadoop cluster performs all the calcula-
tions for cacheability, traffic reduction and virtual cache size; the
results are then exported to a web interface.

One important process on the data is the reaggregation of chun-
ked objects, in order to avoid miscomputing their real hit ratio and
size. Due to the complexity of the task, including the chunk reag-
gregation, the process uses two map-reduce steps: (i) the first step
takes in the raw files produced by the probe; the map phase filters
out the unused columns from the rows and the reduce phase aggre-
gates all the records by object ID and time slot, and it merges all
the object slices from range requests, using the Content-Range
data, and finally it computes intermediate statistics. (ii) the sec-
ond job takes in the intermediate results obtained in the first job;
little processing is done in the map stage, while the reduce phase
aggregates all records by time slot and calculates the final statistics.

4. DISCUSSION

We have reported a month of on-line statistics on a hourly and
daily basis in Fig.1 that allows to draw some conclusions. Today,
one third of the traffic is encrypted and politics will tell if this num-

ber will increase or not. We know, however, that a significant por-
tion of such traffic comes from Google caches which gives a rough
estimation of the hit ratio in such equipment (no statistics reported
here though). Two third of the traffic in non encrypted and fine
grained statistics are reported here. Almost half of the requests are
cacheable and about one third of the traffic could be reduced. On a
daily basis 1.2TB is roughly the size of an ideal memory installed
at the vantage point to cache such data. However hourly statistics
reveal that no more than 200GB would suffice. The gap between
these two numbers proves that time locality is a very strong com-
ponent of Internet traffic. These statistics suggest that in-network
storage could be implemented in router memories and serve users’
requests at wire speed. An ICN architecture would help optimizing
traffic engineering by also using in-network caching in the access
without having to give up content encryption, if required.

Acknowledgments

This research work has been partially funded by the Technological
Research Institute SystemX, within the project on Network Archi-
tectures ARE.

S. REFERENCES

[1] B. Ager, F. Schneider, J. Kim, and A. Feldmann. Revisiting
cacheability in times of user generated content. In /EEE
INFOCOM, pages 1-6, March 2010.

[2] A.Finamore, M. Mellia, M. Meo, M. Munafo, and D. Rossi.
Experiences of internet traffic monitoring with tstat. /[EEE
Network Magazine, May 2011.

[3] C.Imbrenda, L. Muscariello, and D. Rossi. Analyzing
Cacheable Traffic in ISP Access Networks for Micro CDN
Applications via Content-centric Networking. In Proc. ACM
ICN, 2014.

[4] M. Mellia and al. http://tstat.tlc.polito.it.

[5] V.Paxson. http://www.bro.org.

[6] B. Ramanan, L. Drabeck, M. Haner, N. Nithi, T. Klein, and

C. Sawkar. Cacheability analysis of HTTP traffic in an

operational LTE network. In In Proc. of WTS, 2013.

S. Woo, E. Jeong, S. Park, J. Lee, S. Ihm, and K. Park.

Comparison of caching strategies in modern cellular backhaul

networks. In Proc. of ACM MobiSys, 2013.

[7

—

192





