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ABSTRACT
Embedded systems are responsible for the security and safety
of modern societies, controlling the correct operation of cars
and airplanes, satellites and medical equipment, military
units and all critical infrastructures. Being integrated in
large and complex environments, embedded systems need
to support several communication protocols to interact with
other devices or with their users. Interestingly, embedded
software often implements protocols that deviate from their
original specifications. Some are extended with additional
features, while others are completely undocumented. Fur-
thermore, embedded parsers often consist of complex C code
which is optimized to improve performance and reduce size.
However, this code is rarely designed with security in mind,
and often lacks proper input validation, making those de-
vices vulnerable to memory corruption attacks. Further-
more, most embedded designs are closed source and third
party security evaluations are only possible by looking at
the binary firmware.

In this paper we propose a methodology to identify parsers
and complex processing logic present in binary code without
access to their source code or documentation. Specifically
we establish and evaluate a heuristic for detecting this type
of code by means of static analysis. Afterwards we demon-
strate the utility of this heuristic to identify firmware com-
ponents treating input, perform reverse engineering to ex-
tract protocols, and discover and analyze bugs on four widely
used devices: a GPS receiver, a power meter, a hard disk
drive (HDD) and a Programmable Logic Controller (PLC).

1. INTRODUCTION
Embedded devices are more and more present in our ev-

eryday lives. While we rely on them for our safety and
security, the frequent vulnerabilities reported in the news
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remind us that many of these devices have been designed
without security in mind. Nowadays, typical PC systems
are hardened against common software vulnerabilities. Un-
fortunately, this is not the case for most embedded sys-
tems. For instance, in a PC, process separation is achieved
through virtual memory, protection against stack and heap
based buffer overflows are commonly inserted by compilers,
and exploit mitigation such as Address Space Layout Ran-
domization (ASLR) is adopted by most operating systems.
In addition, static analysis techniques for executable code
have greatly evolved in the last ten years. For example,
Clang’s [3] static analysis is now able to catch many common
bugs (e.g., some buffer overflows) at compile time. While
not perfect, these countermeasures make traditional systems
more resilient against attacks. Meanwhile, compilers used
to produce software for embedded devices (firmware) often
lack such protection mechanisms. Runtime exploit mitiga-
tion mechanisms such as ASLR or Data Execution Preven-
tion (DEP) are not present or provide only a fraction of
the protection offered by their PC counterparts. Moreover,
many countermeasures are often omitted due to constrained
budgets, limited hardware resources, or lack of incentives.

Nevertheless, these systems are often connected to the In-
ternet and exposed to the same security threats as tradi-
tional server applications [8].

In this paper we focus on locating complex code that is
driven by user input. The most common examples in this
category are parsers, but we generically refer to such code
as PARC3 (PArser-like Routines and Complex Control-flow
Code). In practice, parser components of embedded devices
represent the first line of defense in charge of processing and
decoding external input. The fact that they are directly ex-
posed to possibly malicious or malformed data makes parsers
critical from a security perspective [18, 12]. In addition,
parsers are often implemented using complex routines and
string manipulations that are themselves prone to security
bugs [34].

Complex code and parser definition
In this paper, we refer to input parsers in a loose sense. Dis-
tinguishing between a lexer to separate the input stream in
logical tokens, and a parser to transform the token stream
into an abstract syntax tree, as is customary in compiler
literature is neither relevant nor practical for our purposes.
In the binary the two stages are often inseparable, due to
macro expansion and inlining performed during the compila-
tion process of the firmware. Moreover, there might not have
been separate stages for lexing and parsing in the software’s
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design in the first place. We want to identify PARC3 compo-
nents in firmware, i.e., all the code that processes hardware
input, and takes control flow decisions based on this input.
This includes, drivers, protocol parsers, and string tokeniz-
ers. In case the tokenizer and the actual parser are separated
in the binary form, our approach would identify both as can-
didate parsers. As programs need complex control code that
operates on external data for either activity, identifying such
code implies the discovery of parsing code. For this reason,
we use the more generic term PARC3 rather than parser to
refer to our target functions.

Analyzing the security of embedded devices
Even though it is typically feasible to extract the firmware
of an embedded system (e.g., from a memory dump or an
update file), it is often very difficult to perform an auto-
mated analysis of its code. First, firmware is almost invari-
ably stripped of debugging symbols, and contain few strings
– as many devices do not even have an interface to out-
put text to users. Second, unlike applications for regular
PCs, firmware images are mostly distributed as flash chip
images. The hardware abstraction, operating system, appli-
cation and data form a unity designed to work exactly on
the hardware platform to which they are deployed. With-
out knowledge of the build process, it is hard for a secu-
rity analyst to even locate functional units inside this blob.
From our experience, even with access to the source code and
knowledge of, say, a crash location inside the firmware, it is
difficult to determine the root cause of the problem. Con-
sequently, an independent security assessment on a binary
firmware image is even more difficult and time-consuming.
Finally, dynamic analysis of a firmware image is hard, as
the dependence on the hardware is extremely tight. Unless
one has a faithful emulator for the entire embedded device
(which is rarely the case), or can debug the firmware on
the device, dynamic analysis is not a feasible option. The
firmware code needs the whole embedded system environ-
ment, consisting of peripherals that can be accessed via I/O
memory regions, as well as hardware interrupts, to exhibit
the same behavior as if it was running on the embedded
device.

Analyzing PARC3 functions in embedded devices
The security of parsers and PARC3 code is a general problem
and some of the techniques we present in this paper are not
limited to embedded systems. However, several factors make
the problem of analyzing PARC3 code more difficult, and
also more interesting, in embedded devices.

• In embedded systems, protocol stacks are often home-
grown as vendors frequently reimplement even well-
known protocols, such as Hypertext Transfer Protocol
(HTTP) and Transmission Control Protocol (TCP),
from scratch. They do so for a variety of reasons, e.g.,
resource constraints, licensing issues, and legacy con-
siderations. Unfortunately, these implementations sel-
dom undergo the same amount of scrutiny and security
analysis as code that has been tried and tested in many
other environments.

• The usage of lower-level programming languages like
C and C++ is frequent in embedded systems. Many
protocols are textual and therefore consist of text pars-
ing, which is, surprisingly perhaps, still one of the most

difficult operations to perform securely in those lan-
guages.

• The lack of clearly defined system APIs or kernel in-
terfaces in embedded devices makes it challenging to
locate the code that actually receives and processes
input values. This is also made harder because of the
lack of documentation and because the firmware is of-
ten monolithic. In a traditional operating system, such
input is often provided by a system call or in an en-
vironment variable. On the contrary, in an embedded
system it is often read from an unknown custom hard-
ware I/O port.

In this work we therefore focus on detecting and analyzing
implementations of such code in embedded systems, without
the availability of the original source code or documentation.

There are many interesting use cases beyond its obvious
offensive applications. For instance, we believe it is impor-
tant to be able to perform third party security evaluations of
embedded systems. However, manufacturers frequently do
not have the incentives and resources to hire a third party.
In many cases software components are integrated in larger
systems (like a car) and a security evaluation may need to
be performed on the code provided by a component supplier,
who may not provide any assistance. Independent security
analysis is also mandatory when the original manufacturer
is not trusted. For example, a code that deals with users’ in-
put is a good place to hide ‘features’, such as undocumented
commands, deviations from the protocol specifications, or
even hard-coded backdoors [14].

To solve these problems, this paper presents a novel tech-
nique to automatically discover and analyze PARC3 code
on embedded devices, with the goal of detecting exploitable
bugs, extract protocol specifications, and find hidden com-
mands. The system we propose, named PIE for Parser-like
code Identification in Embedded Systems, first translates
firmware images from binary code to the Low-Level Virtual
Machine (LLVM) compiler intermediate code. Based on a
classifier for statically extracted features from this interme-
diate code, we can detect functions that contain parser com-
ponents and complex code. The classifier is trained on code
samples with known parser and decision code, e.g., the core-
utils programs and several servers with complex protocols.

Contributions
In this paper we propose a novel analysis methodology to
discover complex code related to parsers in embedded sys-
tems. Our technique is implemented in a prototype tool,
which was successfully tested on several devices. To sum-
marize:

• we present static analysis techniques for firmware, that
relies on reverse-translation to LLVM, to perform generic
detection of PARC3 code,

• we demonstrate the effectiveness of our techniques by
evaluating them on four real world devices, e.g., to ex-
tract all implemented commands from known protocol
parsers (including “hidden” commands not specified in
the manual), and/or detect memory related bugs in
input handling code.

We intend to release all source code of PIE to the pub-
lic, to be available to the research community as a base for
further development.



2. RELATED WORK
In this section we summarize related projects and provide

the basis of the analysis methods we used in our approach.

Static binary analysis and machine code translation
To deal with the complexity of machine instruction sets,
firmware analysis is often performed by translation of the
binary opcodes into a intermediate language which explic-
itly express all side effects of the machine instructions. No-
table binary analysis frameworks are the Binary Analysis
Platfom (BAP) [13] and its predecessor BitBlaze [42]. How-
ever, support for non x86 architectures is limited and fixing
or extending these framework would require a considerable
amount of engineering effort. LLVM has been previously
integrated in cross-platform dynamic analysis systems such
as S2E [21] and Panda [25, 44]. We therefore decided to
translate our program to the LLVM [31] intermediate lan-
guage, on which we then perform our analysis. While LLVM
was designed as a compiler intermediate language, its sim-
plicity and the availability of various transformations makes
it an excellent target for decompilation. For the Intel x86
instruction set, there are several translators to LLVM [20,
10, 7]. Our translator is derived from RevGen [20], which
now has been incorporated into S2E [21]. Various transfor-
mations and analyses have been implemented for the LLVM
intermediate language, including static slicing [41] (intro-
duced by Weiser [43]) and integer range analysis (proposed
by Navas et al. [33]).

Symbolic and concolic exploration of binary code
Symbolic execution is a technique that was first proposed
in 1976 [30]. Since then, many symbolic execution systems
have been developed, including S2E, KLEE, FuzzBALL, and
JPF. However, to the best of our knowledge, S2E is the only
one which can target the ARM architecture.

Selective Symbolic Execution (S2E) is a framework de-
veloped at EPFL that allows symbolic execution of binary
code. It leverages QEMU [9] to translate blocks of binary
instructions to an intermediate language, which in turn are
translated to LLVM [31] instructions. If symbolic values are
touched by the instruction block, KLEE [16] then executes
the LLVM code symbolically. Using the plugin interface of
S2E, one can hook into instruction translation, execution,
memory access and various other events.

Concolic execution [26, 38] is an optimization of symbolic
execution. It uses a pair of a concrete input and a symbolic
variable to represent a concolic value. We use concoilc ex-
ecution instead of taint tracking because concolic execution
has the advantage of tracking the full data-flow history in-
stead of a short summary encapsulated within the tainted
variable. This extra information can be used to make more
precise inference about the tracked data.

Dynamic analysis of embedded devices
Avatar [45] is an open source solution to perform binary
analysis on embedded systems’ firmware. It executes binary
code in an instrumented emulator, but avoids emulating the
whole system by forwarding I/O accesses to the embedded
device, where peripheral accesses are performed. In partic-
ular, the execution of a firmware in an emulator allows us
to trace all executed instructions and memory accesses.

In Firmalice [40], Shoshitaishvili et al. use a mixed ap-
proach of static and manual analysis to identify authentica-
tion bypass backdoors in firmware. Points in the control flow

which can only be reached when a user is authenticated are
identified semi-automatically. The framework then assists
the analyst in finding control flows which reach this point
from an unauthenticated state without proper authentica-
tion (i.e., through hidden commands or hard coded creden-
tials). Our work, while using similar techniques, aims at
providing a more automated way of parser detection and
has different goals. We aim to identify code that performs
parsing in general, and not only code that is related with
authentication.

Protocol learning
Polyglot [15] differs from previous work on protocol reverse
engineering in that it proposes a technique called shadowing
to extract protocol specifications from a program binary.
By observing how the program interprets received messages,
the system is able to identify fixed length fields, variable
length fields and keywords. The same approach of white-box
execution analysis is followed by Tupni [23] to reverse binary
file formats. In addition, it can use information from several
example input files to gain more accurate information on file
fields. Prospex [22] identifies similar protocol messages and
clusters them to recover the protocol’s state machine.

Automatic reverse engineering
RevNIC [19] is a tool to automate reverse-engineering of de-
vice drivers. The authors demonstrate on the example of a
Windows network driver that RevNIC can use symbolic ex-
ecution to explore the device driver’s code, slice instructions
related to the driver, and build a synthesized driver from
the extracted hardware model. SymDrive [36] uses a very
similar technique of exercising drivers with symbolic execu-
tion. The focus of this work is to find bugs in operating
system drivers, without the need of the physical device that
the driver is developed for.

Code complexity and embedded parsers
Code complexity metrics have been used by Pan et al. [35]
for bug classification and detection at the source code
level. Cyclomatic complexity is a metric introduced by Mc-
Cabe [32] that measures code complexity. However, Shin
and Williams [39] suggests that the correlation between
source code bugs and cyclomatic complexity is insignificant.
New metrics have to be used if the goal is security. Research
done by Chen et al. [18] shows that implementing embed-
ded interpreters significantly increases the attack surface of
systems. The authors provide a classification of common
bugs occurring in embedded interpreters, which for example
include difficulties to implement interpreters correctly in un-
safe languages, incorrect handling of arithmetic errors, and
preventing resource exhaustion and arbitrary execution.

3. STATIC PROGRAM ANALYSIS
The goal of the static analysis performed by PIE is to

identify PARC3-like parts inside firmware code—i.e., rou-
tines associated with the analysis and parsing of data. The
most interesting examples of such code are parsers. We first
studied parsers to identify common features. As we shall see,
features based not only on control flow, but also on data flow
are stronger to successfully tell such code from other code.

3.1 Identification of parser characteristics
In this paper we use the term PARC3 to describe any piece

of code dedicated to consume external input and either build



an internal data structure for later use, or orchestrate the
execution of the proper functionality based on the input val-
ues. Such code is often referred to simply as a parser and has
been extensively studied in the compiler community [6] as a
way to perform a syntactic analysis of a computer language.
For a deeper understanding, we will now specifically analyze
parsing in a little more detail. In practice, the distinction
between lexing and processing is not always clear and the
general structure of a parser can become quite difficult to
model. For instance, parsers in embedded systems are of-
ten hand-written and do not strictly separate between the
two stages. Even worse, often part of the software behavior
begins execution before the entire input is parsed, leading
to undefined internal states if the remaining input does not
correspond to what was expected [11, 37].

As mentioned earlier, the distinction between lexers and
parsers is not interesting for this paper. Similarly, we are not
interested in the details of the parser algorithms (e.g., top-
down or bottom-up ). As long as they have a token-fetching
loop and an internal state machine, PIE will recognize them.

To get an understanding of what a typical parser looks
like in binary format, we built a dataset containing several
examples of parsers built with LEX and YACC [29], as well as
custom parsers from open-source firmware. We then com-
piled them to ARM machine code, and reverse translated the
ARM instructions into the LLVM intermediate language as
described in Section 3.2. We use an intermediate represen-
tation to perform both control and data flow analysis in a
format independent from the underlying machine language.

A common characteristic we noticed in these examples was
the presence of two distinct patterns. The first pattern con-
sists of the loop where the input data is fetched (e.g., by pro-
cessing characters of a string or retrieving stream data from
a device). The second recurrent pattern comprises the deci-
sion code, which often contains many conditional branches
that depend on input values. Unfortunately, it is hard to
generalize these findings. Also, not all the parsers expressed
these two patterns clearly. For example, a parser might be
event-driven and called by an interrupt handler to process
the next character, or the decision control flow might be
spread over several functions—making it difficult to detect
in an automated fashion.

Since it is hard to propose general rules, we decided to ex-
tract a number of simple features and use machine learning
to identify code that likely belongs to parsing routines. Each
feature measures certain aspects of the code. For PARC3

code, we are interested in code complexity, as well as in the
way in which certain values influence control flow. These
features are weighted and then combined to a single scalar
value, which is an indicator of the function’s likeliness to
contain a parser.

3.2 Lifting to an intermediate language
Direct static analysis of assembler code is hard because in-

structions tend to have side-effects. Thus tracking data flow
across assembler instructions is non-trivial. For this reason,
we chose to translate the machine code to an intermediate
language where instructions are side-effect free.

The LLVM intermediate language is well-suited for our
purpose as data and control flow are easy to extract from
its Static Single Assignment (SSA) representation. Fur-
ther, using a common intermediate language instead of a
particular machine language makes it easier to reuse de-

veloped techniques across different instruction set architec-
tures. State of the art frameworks for translating machine
code to LLVM did not fit our purpose as they either do not
support ARM [10, 24] or have only partial support for it [17].

Because S2E uses LLVM internally and is able to run
ARM code, we chose it to perform the translation from ma-
chine code to LLVM. Since S2E is originally implemented
as a dynamic analysis framework, which translates code on
the fly, our plugin had to significantly alter the operating
principle of S2E. Our solution was to use the translation
functionality to progressively translate the binary, one ba-
sic block at a time, without executing the resulting code.
By analyzing the recovered code, we can discover new ba-
sic blocks, similar to the process performed by a recursive
disassembler.

Because the generated LLVM code still retains many of
the constructs of the original machine language, we apply
a set of transformations to normalize the results, bringing
it closer to a compile-time representation. The following
transformations are implemented partly as passes which are
run using LLVM’s “opt” utility, and partly as python scripts
using llvmpy [4] to inspect and manipulate LLVM code.

Control Flow Normalization. To obtain a useful control
flow representation, a function recovery pass connects trans-
lated LLVM basic blocks and groups them into functions.
Functions are detected based on call and return patterns.
Further, jump table patterns are detected and transformed
to switch statements. This transformation is very impor-
tant, as switch statements are recurring patterns in state
machine implementations, which are often used in parsers.
Optionally, in this step, we make use of information provided
by external dissasemblers.

Data Flow Normalization. Data flow in SSA form is con-
siderably easier to programmatically follow than data stored
in global values or stack memory. This is why we wanted to
convert accesses to the assembler stack and global variables
to SSA form whenever possible. In a first step, we replace
accesses to Qemu’s internal representation of program mem-
ory to normal LLVM load and store instructions. A second
pass detects memory accesses relative to the assembler stack
pointer and transforms them to SSA. This pass first ana-
lyzes the assembler stack usage (by tracking the value of the
stack pointer across the function), and then creates new SSA
variables for every stack location referenced with a constant
offset from the stack pointer inside the function.

Finally, we apply the scalarrepl standard LLVM pass,
which breaks the structure data type created for the stack
frame into individual variables, and the mem2reg pass, which
transforms local variables to SSA form.

3.3 Features of PARC3 components
For the actual detection of complex and parsing code in a

firmware, we extracted a set of features from the control flow
graph (CFG) and data flow graph (DFG) of each function.

Looped switch statement (switch_loop)
Sequential parsers are typically implemented as a state ma-
chine. New tokens are fetched in a loop, and the next state
or action is decided based on the current state and the next
input token. This decision process usually involves switch
statements or dispatch tables. Thus, identifying loops with



switch statements or dispatch tables in their body are a good
indicator for parsers, especially if the value influencing con-
trol flow inside the loop’s body in turn depends on the loop’s
induction variable.

Data flow analysis on conditional statements (br_fact)
While detection of switch statements already covers a large
portion of parsers, compilers can choose to lower switch
statements to conditional branches, or hand-coded parsers
use conditional statements for example in conjunction with
the strcmp function.

For this reason we analyze the influence of each variable
on control flow decisions, yielding a “branching factor”. The
branching factor is computed by first assigning all instruc-
tions the number 0. Then, we iterate over all conditional
instructions in the function (branch, select and switch in-
structions). We perform a simple recursive data flow analy-
sis on the condition value, and add the number of outgoing
edges from the conditional instruction to each instruction’s
number. In the end we pick the highest branching number to
represent the maximum branching factor for a single value
in that function.

Maximum number of incident edges (in_edges)
Usually parsers are implemented as a sequential token pro-
cessing loop. Control flow paths fan out in the loop’s body,
and rejoin in the loop head basic block. Thus, a node with
a lot of incoming edges is more likely to belong to complex
parsing code, and the number of incoming edges then reflects
the number of different execution paths.

Number of basic blocks (bb_cnt)
This feature simply reports the number of basic blocks in
a function. The rationale is that embedded code, when
written and compiled for minimum size, often implements
parsers in a single huge assembler function. Smaller func-
tions that may be present in the source are often inlined.

Number of callers (call_cnt)
Some tokenizing functions (like atoi or scanf ) are called
from a lot of program locations. Given this observation,
we use the number of callers as a feature. On the one hand,
frequently-called parsing functions can reveal further details
when instrumented in a dynamic analysis. On the other
hand, a programming error in an often-called function can
be exploited in many parts of the program.

Switch statement (switch)
Complex input handling code often uses switch statements
and jump tables as a way to divert control flow to appro-
priate handling code. For this we take into account the
“switch” statement and jump tables. Even though this met-
ric overlaps with the switch_loop, the evaluation shows the
importance of this metric.

4. TRAINING AND EVALUATION
In this section we describe how we determine the perfor-

mance and relative weight of the heuristics proposed in Sec-
tion 3.3 using regular Linux applications. For our analysis,
we first obtain the LLVM bitcode files with complete control
flow information (by compiling popular open source software
with Clang) for a data set consisting of 101 coreutils and 3

popular applications (ProFTPd, lighttpd, and bash). We
manually inspected all the coreutils and labeled each target
function accordingly. For the other applications, we sample
the program to mark some functions as “parser-like” (as a
sanity check for obvious false negatives), and exhaustively
check the result returned by PIE for false positives.

4.1 Scoring
As a combined score for the heuristics we normalize and

weight the individual scores as follows

score =
∑

f∈features

ωf
xf −min(Xf )

max(Xf )−min(Xf )
(1)

where xf represents the value feature f takes for a given
function, Xf is the set of values that f takes for all tested
functions, and ωf is the weight attributed to feature f . Thus
each feature is normalized to a value between 0 and 1, and
the total score is bounded. The goal of this section is to
find the appropriate weights and threshold T such that if
the score of a particular routine exceeds the threshold, we
can declare it to be PARC3 code. False positives (FPs) are
functions that score above the threshold but are not PARC3

code (according to manual analysis), while false negatives
(FNs) occurs when PARC3 functions score less than T .

4.2 Validation
We apply 2-fold cross-validation by splitting our data set

in two subsets: S0 and S1. We perform training by running
PIE on S0, and do the validation on S1 (later we also swap
the sets). We then test each possible ωf and T combination
(in 0.1 increments), and for each parameter combination, we
compute the minimum distance on the ROC graph from the
ROC curve to the optimum (FP = 0 and TP = 1). The
output of the training step is a set of ωf and T parameters,
ordered by the distance from the optimum. To obtain the
weights (ωf ), we average the best K% results from the train-
ing step. We then compute the average of FP and TP for
the validation set S1 using the output of the training step.

4.3 Cross validation results
Table 1 shows the results of the cross-validation. The

first row shows results with training on S0 and validation
on S1 (S0 → S1). The second row (S1 → S0) shows cross-
validation when the two sets are swapped. We display the
output parameters, the threshold T and the weights as fol-
lows: switch_loop ω0, br_fact ω1, in_edges ω2, bb_cnt

ω3, call_cnt ω4 and switch ω5. We compute FP and TP
rates using the parameters gauged in the training step. We
also display the distance D from the < FP, TP > point
to the optimal. Because we define our goal to be as close
as possible to the optimal point, D is used to estimate the
error (ε = |DS0→S1 − DS1→S0 |) of our method. Figure 1
shows the optimal values of the parameters using the best
K% samples. Figure 2 displays example ROC graphs for ωf ,
corresponding to K = 2%. The figures show that finding
good, stable values for ωf is straightforward and produces
very good ROC curves.

5. CASE STUDIES
To show the use of PIE on real word embedded devices,

we applied the tool to four case studies: a GPS receiver, a
power meter, a hard disk drive, and a PLC. All four devices



K Direction
Training Validation

ε
T ω0 ω1 ω2 ω3 ω4 ω5 FP TP D

0.5%
S0 → S1 0.234 0.708 0.483 0.278 0.349 0.123 0.691 0.032 0.982 0.037

0.0178
S1 → S0 0.218 0.719 0.566 0.295 0.473 0.119 0.675 0.016 0.990 0.019

1%
S0 → S1 0.244 0.696 0.496 0.363 0.353 0.122 0.689 0.041 0.996 0.041

0.0223
S1 → S0 0.220 0.709 0.545 0.300 0.482 0.122 0.691 0.016 0.990 0.019

2%
S0 → S1 0.247 0.695 0.502 0.364 0.413 0.134 0.685 0.041 0.996 0.041

0.0223
S1 → S0 0.221 0.704 0.534 0.340 0.480 0.123 0.685 0.016 0.990 0.019

5%
S0 → S1 0.263 0.687 0.502 0.412 0.515 0.138 0.670 0.032 0.987 0.035

0.0122
S1 → S0 0.234 0.686 0.521 0.453 0.511 0.129 0.673 0.020 0.990 0.022

10%
S0 → S1 0.282 0.642 0.512 0.443 0.547 0.161 0.625 0.034 0.964 0.050

0.0272
S1 → S0 0.239 0.618 0.514 0.529 0.509 0.134 0.605 0.020 0.990 0.022

Table 1: Validation for K = {0.5, 1, 2, 5, 10}%.
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Figure 1: Best parameters for the complete data set.

GPS Meter HDD PLC
Size (kB) 519 544 287 9,984

# Basic blocks 48,738 55,054 43,866 657,349
# Functions 1,098 2,332 6,338 15,437
# CG edges 1,299 3,373 3,152 24,945

Table 2: Firmware sizes.

use SoCs or MCUs that rely on an ARM CPU core. Table 2
shows the complexity of their firmware in terms of number
of basic blocks, functions, and call graph (CG) edges, as
counted on the output of the LLVM translator. For all test
cases we use PIE to select interesting (PARC3) functions
and briefly discuss them. For the HDD and the PLC we use
the output of PIE as a basis for starting a more advanced
analysis to demonstrate PIE ’s usefulness from the security
perspective.

5.1 GPS receiver
In the first experiment we analyzed the firmware of a USB

GPS receiver stick. The device has a “boot loader mode”,
where it receives a binary over an emulated serial port in-
terface on the USB connection, and subsequently executes
it. Using SiRFDemo and SirFFlash utilities one can interact
with the device and read and update the firmware. This first
experiment intends to show that PIE is effective in selecting
parser related functions and complex functions.
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Figure 2: ROC plot using ωf corresponding to K = 2%

PIE results. For the values corresponding to K = 2% and
T = 0.247, 2.3% of functions were marked as PARC3 code
and the false positive rate is 0.047. Apart from common
sprintf and scanf functions which were correctly recog-
nized as containing an input parser, PIE found a function
which applies the Viterbi algorithm. Viterbi algorithm is
used for signal processing to decode noisy signals and con-
sists of complex code. Loosely, it can be viewed as a parser of
the data provided by the GPS receiver. Another function au-
tomatically detected by our system parses data which seems
to be in the Motorola SREC format. This is to be expected
as the device’s updates are in SREC format. PIE discovered
parts of the SiRF III protocol as well which was confirmed
by reverse engineering. The SiRF protocol is a binary pro-
tocol, for which simple heuristics like strings search are not
effective.

5.2 Power meter
In our second experiment we tested a remotely controlled

electric energy metering device, also commonly referred to
as a smart meter. The power meter contains, among other
components, a GSM/GPRS modem and an infrared inter-
face used to program and calibrate the meter.

PIE results. The false positve rate is 0.046 and 3.79% of
functions were marked as PARC3 code. Our tool automat-
ically identified several functions responsible for string pro-



cessing, similar to scanf and sprintf. In all cases, the
format specifier is parsed in order to know what type of
data needs to be printed. PIE also found two parsers imple-
mented with a switch table over constant printable charac-
ters. We believe that this is the function that deals with the
infrared interface of the power meter, since the switch seems
to correspond to the ISO-IEC62056-21 protocol—mentioned
in the manual of the device. PIE also identified the GSM/G-
PRS modem command handler.

5.3 HDD
In our third experiment, we analyzed a commercial off-

the-shelf ARM-based hard drive. After a discussion PIE ’s
results, we show how the output of our tool can be used to
perform dynamic analysis to recover hidden commands in
one of the detected parsers, and show surprising results.

PIE results. The false positive rate is 0.197 and 1.4% of
functions were marked as PARC3 code. We do not consider
optimized versions of the mem* functions as PARC3 code but
PIE does so. The firmware has multiple versions of these
functions, hence the higher false positive rate.

On the HDD, PIE found six core parsing functions among
the ten highest scoring functions. In particular, the two
functions with the highest score (and well above the thresh-
old T ) are the parsers for a simple UART menu used for
maintenance, and the parser for receiving iHex-formatted
firmware updates. Interestingly, the advanced UART menu
(which can be enabled from the maintenance interface) was
not discovered by our system. It turns out that since each
character is treated on a different invocation of the UART
receive interrupt and processed directly, the state machine
of the menu is distributed over several functions. The ex-
periment shows that, while the output of the PIE contains
false positives (in this case arithmetic functions) and false
negatives, an analyst can quickly identify the main parsers
by looking at the functions with the highest score. Consid-
ering that the entire firmware contains over 6300 functions,
our tool considerably reduces the amount of manual analysis
time.

Example of dynamic analysis: ATA command parser
As an example of how we can use PIE for deep analysis, we
analyzed one of the parsing functions we found, the AT At-
tachment (ATA) command parser (the hard drive’s interface
to the computer). The ATA protocol is a simple command-
response protocol, where a fixed structure containing block
address, access size, device, etc. is sent to the hard drive.
The protocol is particularly interesting to analyze because
numerous commands have been changed or deprecated since
its first specification in 1994, and it is well known that ven-
dors often implement custom commands.

We wanted to know which commands our drive supports
and especially if there were any commands not described in
the ATA specification. Our idea was to use concolic execu-
tion on the ATA command parser, and to discover imple-
mented commands and command options in this fashion.

For dynamic analysis, we used the Avatar [45] framework.
We first executed the firmware, with an injected debugger
stub, on the HDD. Once PIE detects a PARC3 point of in-
terest, we pause execution on the device with a breakpoint
and take a full snapshot of the HDD’s memory and resume
execution from that snapshot in S2E. Accesses to I/O mem-

ory ranges are forwarded to the HDD (which is still stopped
at the breakpoint), and also recorded in a trace. With the
memory snapshot, and the recorded trace, we can now re-
play an execution. During the replay, we make use of S2E’s
symbolic execution engine to explore the impact of different
inputs on the parser.

We used an S2E plugin to re-execute the recorded pro-
gram path and identify commands and options by marking
them as symbolic values. Whenever the execution left the
pre-recorded execution path, we removed the symbolic state
and noted the newly discovered values to inspect them later
(similar to SAGE [27]).

This way, we successfully identified 78 ATA commands,
most of which are documented in the standard [1]. Inter-
estingly, some commands specified in the standard were not
implemented by our disk, like “Read Direct Memory Ac-
cess (DMA) Queued EXT” (0x26). On the other hand, the
drive implements some commands that are marked as obso-
lete, retired or vendor specific. Among the undocumented
vendor specific commands, two are particularly interesting:

• 0x80 looks like a gateway for internal firmware com-
mands. Sending this opcode with all other registers set
to “0” corrupted our drive’s configuration to the point
where we needed to re-flash the firmware.

• 0xEA checks for a magic logical block addressing (LBA)
of 0x333324 (“$33”), and sets a configuration value if
this constant is set.

The other three vendor specific commands, 0xFA, 0xFC

and 0xFD, seem to be related to normal hard drive opera-
tions. During our analysis we made another interesting ob-
servation concerning the ATA NOP (0x00) command. If the
special constant 0x7654321 is presented as LBA, a second
register value is treated as sub-opcode, and another parser
is invoked. Depending on this sub-opcode, several functions
can be called, including firmware update functionality. As
the foundation of all of our analysis and results was rooted
in PIE , we believe the experiment shows that PIE is useful
as a starting point for the analysis of embedded firmware.

5.4 PLC
Our last case study concerns a PLC. Such a device is part

of a Supervisory Control And Data Acquisition (SCADA) in-
frastructure and it is normally used to automate processes in
a factory. PLCs are often embedded systems that can receive
inputs from sensors, send outputs to drive actuators (e.g.,
motors or valves), and which are equipped with a network
or field bus connection to communicate with other systems
in the infrastructure. Analyzing the security of this type of
device is especially interesting, as they are used inside sev-
eral “critical infrastructure” fields, such as power generation,
water supply, and traffic control.

The PLC had the biggest firmware with the widest range
of functionality among the four firmware we analyzed. It
contains a proprietary operating system, the virtual machine
for interpreting ladder logic programs, a web server with
OpenSSL running on top of a TCP stack, and a Remote
Procedure Call (RPC) library to communicate with other
SCADA components and the computer used to program the
PLC). The web server and the proprietary control protocol
parser are two particularly interesting targets for attackers,
as they are exposed over the network.



PIE results
With the treshold T = 0.247 we do not obtain any false
positive but we miss many of PARC3 like functions. The
firmware size of the PLC is one order of magnitude bigger
than the firmware of GPS, the one of power meter, or than
the samples in the training set. The accuracy of our training
for T is biased towards small firmware. However, the score is
still usable: the false positive rate for the top 0.5% functions
sorted by score is 0.023. Among the top 0.5% functions, we
notice code belonging to the OpenSSL library. OpenSSL is
notorious for its complex code and for the large amount of
parsing operations.

As an example we list some of the functions with PARC3

functionality identified by PIE :

• calls_OMSp_serializer_parser_parser1 (position 4
in the PIE ranking) – this function is part of the ISO-
TSAP protocol of the OMS proprietary storage for-
mat. From this point it is easy to detect all the other
handlers for these protocols. The implementation the
ISO-TSAP has been a source of errors in the last ver-
sions of this firmware.

• miniweb_source_MWEB_VarWriter1 (position 5) – this
function resides in the web server module and it writes
values to a predefined variable in the main application.
The function contains a parser for the name of the
variable, the value of the variable, and the type of the
variable.

• firmware_update_check2 (position 21) – this function
checks the file format of the firmware update. A firmware
update file can be uploaded via the web interface of the
PLC or via a special MMC card.

• internal_var_print2 (position 36) – function that for-
mats a string. The type specifier tokens are not com-
mon. We believe that this function is used to print
PLC’s internal variables in file logs.

• recurisve_path_lexer2 (position 55) – a function used
by the PLC’s web server that symplifies URIs. We
believe that this function is used for parameter tok-
enization of HTTP requests. This function is a perfect
example of PARC3 code that can hide bugs: it is large
(756 basic blocks) and it is recursive.

• boot_menu2 (position 58) – as we shall see, this is an
undocumented feature providing a hidden boot loader
menu.

Finally, we chose two points of interest for further study: a
parser in the boot loader accepting commands over the serial
port, and the Uniform Resource Locator (URL) handling of
the embedded web server. Our motivation for analyzing the
boot loader parser was to understand its purpose and find
a way to inject a debugging code stub in the system with-
out hardware intervention. The web server is obviously an
interesting target, as it is reachable over the network. More-
over, a quick Shodan [5] search reveals many PLCs which are
directly exposed to the Internet.

1Function named after corresponding error messages.
2Function does not refer to any error message. The name

is given by functionality.

Example of dynamic analysis: boot loader parser
A quick view of the code leading to the boot loader parser
showed that it is only activated by a special sequence of
bytes. To extract this sequence, we used symbolic execu-
tion to injected symbolic bytes whenever the serial port was
read. By looking at the values’ constraints in the symbolic
state where execution enters the parser, we directly obtained
the activation string. Subsequently, we sent the string to
the PLC’s serial port, and the boot loader dropped in a
command-response mode. Using the same technique to in-
ject symbolic bytes when the serial port is read, we were able
to understand the binary message format. Each message is
prefixed with a length field and an opcode field, followed by
a payload. The last byte is a simple checksum.

By observing the triggered code and the replies from the
boot loader, we could also understand the meaning of mes-
sages. There were messages for querying the hardware and
boot loader version whose purpose was obvious from the
reply. The other messages all trigger accesses to different
peripherals of the PLC, and allow for example to toggle the
LEDs used to display the PLC’s status.

Thus we assume that the boot loader command interpreter
is used to test the hardware without the full firmware. How-
ever, we were not able to identify a command which would
allow us to read and write arbitrary memory.

Example of dynamic analysis: HTTP request handle
The PLC’s web server is custom and serves a mix of static
content, processed templates and internal values. By de-
fault, it allows starting and stopping the process’ execution
as well as inspecting and modifying program variables, input
and output values. If the engineer chooses to, he can also
embed “user pages” in his process which show the process’
state and permit control in a visually pleasing way.

We wanted to focus on the parsing of URLs, as most data
is sent to the web server via HTTP GET requests. Using the
output of PIE , we quickly identified the handler for the GET
request. Starting from a snapshot taken at the beginning of
the parser function, we replaced the URL with a short string
of symbolic values and continued execution in S2E.

We found that the parser function returns an error code,
which conveniently tells us if the symbolic URL was accepted
by the request handler or not. Leveraging this information,
we could focus on symbolic states where the URL was ac-
cepted, which revealed some interesting parameters. For
example, we found that by inserting “?SRC” in the URL of
a dynamically generated page, the web server would return
the page template’s source code. Most probably this param-
eter was used to debug web page templates or the template
engine, but it is highly questionable if such undocumented
parameters should be present in a release version of the PLC.

Second, symbolic execution revealed a URL prefix which
exposes a web service Application Programming Interface
(API). Based on the URL, we suspect that this API might
be used for controlling a PLC via an IPhone. While some of
the services exposed require authentication, undocumented
interfaces in a security critical device should be seen with
caution. Other vendors have been known to implement
hidden APIs exposing privileged operations “just for con-
venience” [28].

Third and last, we found a bug, resulting in a software
crash, in one of the input parameters. A pseudocode rep-
resentation of the vulnerable code can be seen in Listing 1.



strtol parses the hexadecimal number from the parameter,
and returns it as a 32-bit value. Afterwards the function
proceeds to check that the parsed number does not exceed a
maximum threshold, and then loads a pointer from an array
of structures. Even though the function seems secure, as the
maximum value of the parsed number is checked, it is not:
idx is a signed value and can be negative. This negative in-
dex is then used later to access a structure, which causes a
processor exception if no memory is mapped at the pointed
address. This bug has been reported to the vendor and it is
fixed in the most recent firmware version.

Listing 1: Negative index used in a table.

void get from hex(char ∗buff in, void ∗∗ret)
{
signed int idx; void ∗result;

idx = strtol(buff in, NULL, 16);

if ( idx >= 50 ) result = NULL;
else result = 76 ∗ idx + 0xb44fdc;
∗ret = result;
}

We conclude that finding two backdoors and one bug on
the PLC with the help of PIE shows that PIE is very useful
for analysis from a security point of view.

6. FUTURE WORK
PIE would benefit from a more accurate data flow analy-

sis algorithm. Combining data flow and template matching
proved to be powerful, even with the limited data flow anal-
ysis that we implemented in our prototype. Using points-to
analysis and inter-procedural analysis could result in a more
complete picture of the code that is analyzed. Furthermore,
detecting loop indices with data flow would improve the de-
tection of lookup tables used by parser.

The next logical step to extend our system is to fully au-
tomate the application phase. As an example, it is possible
to use PIE to automatically generate white-box fuzzing test
cases, similar to SAGE [27] or AFL [2]. This would provide
a fully automated system for the testing of a firmware.

We also believe that testing of embedded devices would
benefit from software emulation of device peripherals. In
this case, the problem is that there is no behavioral speci-
fication for a peripheral, making the process of modeling it
in software a daunting reverse engineering task. This lack
of specifications is reflected as well on the way the protocols
are implemented. If machine-readable specifications for each
protocol or feature in an embedded device were to exist, au-
tomatic validation would be a powerful tool. In this case,
PIE could be extended to perform automatic validation not
only for protocols but as well for the behavior of the device.

A better detection of error code paths would help PIE
to provide more assistance in successive symbolic execution.
While detecting error paths in normal binaries is easy (e.g.,
a segmentation fault is easy to detect in an operating sys-
tem), detecting faulty states in embedded systems is non-
trivial. Each firmware treats errors individually, which is
why a more sophisticated static analysis has to be devised.

7. CONCLUSION
In this paper we described a new method for analyzing

parser-like binary code in embedded devices, which we im-

plemented in PIE . We established simple yet effective fea-
tures to detect parsers and complex handling code, and eval-
uated them to show their potential for parser detection in
binaries. We then demonstrated the practical impact of
our work on four different embedded devices. For each de-
vice, we could detect complex and custom designed parsers,
greatly reducing the required manual analysis time. Our
case studies show our techniques can help to address the
urgent problem that we currently lack almost all knowledge
about unknown protocols, hidden interfaces, and additional
unspecified functionality in embedded devices. We hope that
improving awareness and third party analysis will help im-
prove trust in such devices.
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