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Abstract : Blind channel identification and equalization based on second-order statistics by subspace fitting and
linear prediction have received a lot of attention lately. On the other hand, the use of cyclic statistics in fractionally
sampled channels has also raised considerable interest. We propose to use these statistics in subspace fitting and linear
prediction for (possibly multiuser and multiple antennas) channel identification. We base our identification schemes on
the cyclic statistics, using the stationary multivariate representation introduced by [2] and [4] [5]. This leads to the use
of all cyclic statistics. The methods proposed appear to have good performance.

1. PROBLEM POSITION

We consider a communication system withp emit-
ters and a receiver constituted of an array ofM antennas.
The signals received are oversampled by a factormw.r.t.
the symbol rate. The channel is FIR of durationNT=m
whereT is the symbol duration. The received signal can
be written as :

x(n) =
1X

k=�1

h(k)u(n� k) + v(n)

=
1X

k=�1

h(n� km)ak + v(n)

where

u(n) =
1X

k=�1

ak�(n� km)

The received signalx(n) and noisev(n) are aM �1
vectors.x(n) is cyclostationary with periodm whereas
v(n) is assumed not to be cyclostationary with periodm.
h(k) has dimensionM � p, a(k) andu(k) have dimen-
sionsp� 1.

2. CYCLIC STATISTICS

Following the assumptions hereabove, the correla-
tions :

Rxx(n; � ) = E
�

x(n)xH(n� � )
	

are cyclic inn with periodm (H denotes complex con-
jugate tranpose). One can easily express them as:

Rxx(n; � ) =
1X

�=�1

1X
�=�1

h(n� �m)Raa(�)hH (n� �m + �m � � )

+Rvv(� )

We then express thekth cyclic correlation as :

Rfkgxx (� )
4
=

1

m

m�1X
l=0

Rxx(l; � )e
�| 2�lk

m

= Ek
�

x(l)xH(l � � )
	

whose value is :

Rfkgxx (� ) =
1

m

1X
�=�1

1X
�=�1

h(�)Raa(�)

hH (�+ �m � � )e�|
2��k
m

+Rvv(� )�(k)

We can introduce a cyclic correlation matrix as :

Rfkgxx
4
=2

6664
Rfkgxx (0) Rfkgxx (1) � � � Rfkgxx (K � 1)

Rfkgxx (�1) Rfkgxx (0) � � � Rfkgxx (K � 2)
...

...
...

...
Rfkgxx (1�K) Rfkgxx (2�K) � � � Rfkgxx (0)

3
7775

= TK(HNDfk;pgDFT )R
fkg
uu T

H
K (HN ) + �(k)Rvv

whereRfkguu = Raa
Im and
 is a block Kronecker
product, the first matrix is a block matrix and the second
matrix is an elementwise matrix.

TK(HN ) is the convolution matrix of
HN = [h(0)T h(1)T � � �h(N � 1)T ]T and

Dfk;pgDFT = blockdiag[Ipje�|
2�k
m Ipj � � � je�|

2�(N�1)k
m I p]

3. GLADYSHEV’S THEOREM AND MIAMEE
PROCESS

Gladyshev’s theorem [2] states that :

Theorem 1 FunctionRxx(n; � ) is the correlation func-
tion of some PCS (Periodically Correlated Sequence) iff
the matrix-valued function :

R(� ) =
h
Rfkk

0g
xx (� )

im�1
k;k0=0

whereRfkk
0g

xx (� ) = Rfk�k
0g

xx (� )e2�|k�=m

is the matricial correlation function of somem-variate
stationary sequence.
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Reminding thatRfkgxx (� ) = Rfm�kgHxx (�� ), the fol-
lowing matrix

R
4
=

2
6664

R(0) R(1) � � � R(K � 1)
R(�1) R(0) � � � R(K � 2)

...
...

...
...

R(1�K) R(2�K) � � � R(0)

3
7775

is an hermitianK �K block Toeplitz matrix ofMm �
Mm blocks.

Then, Miamee [4] gives us the explicit expression of
the multivariate stationary process associated :

Zn =
�
Zk
n

�m�1
k=0

whereZk
n =

m�1
�
j=0

x(n+j)e2�|k(n+j)=m

where� is the direct sum, i.e., notingw = e2�|=m

Zk
n = wkn[x(n); x(n+1)wk ; � � � ; x(n+m�1)wk(m�1)]

is defined in a Hilbert space, where the correlation is the
following euclidian product :

< Zk
n;Z

k0

n+l >=
m�1X
j=0

E
n

Zk
n(j)Z

k0

n+l

H
(j)
o

andZn = [Z0
n
T

Z1
n
T
� � �Zm�1

n
T
]T with the classical cor-

relation for multivariate stationary processes.
On the other hand, Miamee gives the link between

the linear prediction onZn and the cyclic AR model of
x(n).

4. EXPRESSION OF Zn w.r.t. u(n) and h(n)

FromZk
n =

m�1
�
j=0

x(n+ j)e2�|k(n+j)=m and

x(n+ j) =
L�1X
k=0

h(k)u(n+ j � k) + v(n+ j)

= HN

2
6664

u(n+ j)
u(n+ j + 1)

...
u(n+ j � N + 1)

3
7775

+v(n + j)

DefiningUn+j = [u(n+j)T � � �u(n+j�N+1)T ]T and

HfkgN = [w�kjh(j)]N�1j=0 we express the Miamee process
as :

Zk
n =

m�1
�
j=0

(Hf�kgN wknUn+j + v(n+ j)e2�|k
n+j
m )

= Hf�kgN wkn[UnUn+1 � � �Un+m�1]

+
m�1
�
j=0

v(n + j)e2�|k
n+j
m

) Zn = HtotU(n) + V(n)

where we notedHtot = [Hf0gTN Hf�1gTN � � �Hf1�mgTN ]T ,

U(n) = Dfn;pNgDFT [UnUn+1 � � �Un+m�1]
andV(n) =2
6664

v(n) � � � v(n+m� 1)
v(n)wn � � � v(n+m � 1)wn+m�1

...
...

...
v(n)wn(m�1) � � � v(n+m � 1)w(m�1)(n+m�1)

3
7775

) Z = TL+N�1(Htot)UL + VL (1)

whereUL = [U(n)]0n=L�1 clearly is a stationary
process whose correlation matrix can easily be deduced
from Raa.

Based on relation (1), we apply the classical sub-
space fitting and linear prediction channel identification
schemes, as detailed below.

5. SIGNAL SUBSPACE FITTING

We recall briefly the signal subspace fitting (noise sub-
space based) blind channel identification algorithm here-
under.

One can write the (compact form of the) SVD of the
cyclocorrelation matrixR = UDVH with the relations:

rangefUg = rangefVg = rangefTK(Htot)g

We have assumed thatTK(Htot) is full rank, which
leads to the usual identifiability condition. We can then
solve the classical subspace fitting problem :

min
Htot;T

jjTK(Htot)�UT jj2F

If we introduceU? such that[UU?] is a unitary ma-
trix, this leads to

min
Htot

Ht
tot

"
KMmX
i=D?

TN (U?Ht
i )T H

N (U?Ht
i )

#
HHt
tot

whereU?i is aKMm2�1,D? = N+K and super-
scriptt denotes the transposition of the blocks of a block

matrix. Under constraintjjHtotjj = 1, Ĥ
t

tot is then the
eigenvector corresponding to the minimum eigenvalue of
the matrix between brackets. One can lower the compu-
tational burden by usingD? > N +K (see a.o. [6]).

The casep > 1 can be (partially) solved in a manner
similar to [7] and [3].

6. LINEAR PREDICTION

We consider the denoised case. The correlation ma-
trix is then computed as follows.

Rf0gxx;sb = Rf0gxx � RVV (� ) yields :

[RVV (� )]i;j

=
m�1X
l=0

E
�

v(n+ l)vH(n + l + � )
	
wi(n+l)w�j(n+l+�)

= Rvv(� )w
n(i�j)�j�

m�1X
l=0

w(i�j)l

= Rvv(� )w
n(i�j)�j�m�ij

= m�ijRvv(� )w
�j�



HenceRVV (� ) = Rvv(� )
blockdiag[IM jw� IM jw2� IM j � � � jw(m�1)� IM ], which,
in R, corresponds to the noise contribution of the zero
cyclic frequency cyclic correlation.

From equation (1) and notingZK(n � 1) =

[Zj ]
j=n�K
j=n�1 , the predicted quantities are :

Ẑ(n)jZK(n�1) = p1Zn�1 + � � �+ pKZn�K

~Z(n) = Z(n) � Ẑ(n)jZK(n�1)

Following [9], we rewrite the correlation matrix as

R =

�
Ro rK
rHK RK�1

�

this yields the prediction filter :

PK
4
= [p1 � � �pK ] = �rKR�1K�1

and the prediction error variance :

� ~Z;K
= Ro � PKrHK

where the inverse might be replaced by the Moore-
Penrose pseudoinverse, and still yield a consistent chan-
nel estimate. Another way of being robust to order
overestimation would be to use the Levinson-Wiggins-
Robinson (LWR) algorithm to find the prediction quan-
tities and estimate the order with this algorithm.

Lots of ways are possible to go from the prediction
quantites to the channel estimate ([8] and [1]).

For our purpose, we used the simple suboptimal so-
lution hereunder.

From the prediction error equation, it is easy to de-
rive :

HTt
totTK([IMmPtK ]) = [HTt

tot0]

HenceIMmK � HTt
totTK([IMmPtK ]) = [HTt

tot(0)0] ; and
Htot is found by minimizingIMm(K�1) �HTt

totTK(PtK)
and is thus the left singular vector corresponding to the
minimum singular value of this matrix. This solution
corresponds to a “plain least-squares” solution, and is
robust w.r.t. order overestimation. This also means that
it is not the best solution available, but this discussion is
beyond the scope of this paper.

7. COMPUTATIONAL ASPECTS

It is obvious that the correlation matrixR built from
the cyclic correlations is bigger (in fact each scalar in
R is replaced by am � m block in R) than the corre-
sponding matrix built from the classical Time Series rep-
resentation of oversampled stationary signals. This fact
must be balanced with the stronger structure that is cast
in our correlation matrix. In fact, one can (not so easily)

prove that the estimateŝH
f�kg

N are strictly related (i.e.

Ĥ
f�kg

N = [w�kjĥ(j)]N�1j=0 for all k), which indicates us
that this structure should lead to reduced complexity al-
gorithms w.r.t. the original ones. When developing the
expressions in detail, this is particularly obvious in linear
prediction, where the prediction filter has some strong
structure (which is also visible in [5]).

8. SIMULATIONS

In our simulations, we restrict ourselves to thep = 1
case, using a randomly generated real channel of length
6T, an oversampling factor ofm = 3 andM = 3 anten-
nas. We draw the NRMSE of the channel, defined as

NRMSE=

vuut 1

100

100X
l=1

jjĥ
(l)
� hjj

2

F =jjhjj
2
F

whereĥ
(l)

is the estimated channel in thelth trial. In the
figures below, the NRMSE in dB has been calculated as
20 � log 10(NRMSE).

The correlation matrix is calculated from a burst of
100 QAM-4 symbols (note that if we used real sources,
we would have used the conjugate cyclocorrelation, wich
is another means of getting rid of the noise, provided it
is circular). For these simulations, we used 100 Monte-
Carlo runs.

8.1. Subspace fitting

The estimations of 25 realisations, for an SNR of 20
dB, are reproduced hereunder.
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For comparison, we used the same algorithm for the
classical Time Series representation of the oversampled
signal. The results hereunder show a better performance
for the classic approach, which is due to the fact that we
used the same complexity for both algorithms (same ma-
trix size), which results in a lower noise subspace size for
the cyclic approach. In theory, when one uses the same
subspace size, as there is a one for one correspondance
between the elements of the classic correlation matrix
and the elements of the cyclic correlation matrix, the per-
formances should be equal. The third curve illustrates
this fact.
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8.2. Linear prediction

For the linear prediction, we expect to have a slightly
better performance in the cyclic approach then in the
classic approach. Indeed, in the classic approach, if we
use for exampleM = 1 antenna and an oversampling
factor ofm = 3, we predict[x(n)x(n � 1)x(n � 2)]T

based on[x(n� 3)x(n� 4) � � �]T , whereas in the cyclic
approach we predict the scalarx(n) based on[x(n �
1)x(n�2)x(n�3) � � �]T . The corresponding prediction
filter thus captures little more prediction features in the
cyclic case.

On the other hand, the noise contribution being only
present in the zero cyclic frequency cyclic correlation,
we expect a better behavior of the method if we don’t
take the noise into account in the correlation matrix (i.e.
we don’t estimate the noise variance before doing the
linear prediction). Those expectations are confirmed by
the following simulations, note that the mentionLP on
cyclic statistics refers to the use ofR where the noise
contribution has been removed, whereas the mentionLP
on cyclic statistics, no ”denoising” refers to the use of
the plain correlation matrix.
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9. CONCLUSIONS

Using the stationary multivariate representation in-
troduced by [2] and [4] [5], we have explicitly expressed
this process. It can be seen as the ouput of a system with
transfer channelHtot = [Hf0gTN Hf�1gTN � � �Hf1�mgTN ]T

and input easily related to the actual system input. Once
these quantities expressed, application of the classi-
cal subspace fitting and linear prediction algorithms is
straightforward.

For the subspace fitting, one has essentially the same
performance as in the Time Series Representation [9].
The only advantage one could expect is some refinement
in the channel order estimation prior to the subspace fit-
ting. The main drawback is the increase of the computa-
tional burden.

For the linear prediction, we get a better performance
due to the fact that we take the very near past into ac-
count. Although the complexity is, for the moment, far
more heavy. Use of the LWR algorithm and of the struc-
ture of the correlation matrix should lead to similar cal-
culation loads.

Further work on these topics should stress on reduc-
ing the complexity of these algorithms.
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