Mme. Kaoutar ELKHIYAOUI

Parislech

INSTITUT DES SCIEMCES ET TECHNOLOGIES T E LE C D M

PARIS INSTITUTE OF TECHNOLOGY

ParisTech

mHE

2015-ENST-0062

/

EDITE - ED 130

Doctorat ParisTech

THESE

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Computer Science and Networking

présentée et soutenue publiquement par

Iraklis LEONTIADIS
2 Octobre 2015

Protection de la vie privée dans la collecte et I'analyse des
données

Directeur de thése : Refik MOLVA
Co-encadrement de la thése : Kaoutar ELKHIYAOUI

Jury

M. Sébastien GAMBS Rapporteurs
M. Loukas LAZOS

M. Emiliano DE CRISTOFARO Examinateurs
Mme. Maryline LAURENT

M. Refik MOLVA Directeurs de thése

TELECOM ParisTech
école de I'Institut Télécom - membre de ParisTech

2015-ENST-0062

EURECOM

S op h i a A n t i p ol is

Doctorat ParisTech

Thesis Dissertation

for the degree of Doctor of Philosophy by

TELECOM ParisTech

Computer Science and Networking

presented by

Iraklis LEONTIADIS
2 October 2015

Privacy Preserving Data Collection and Analysis

Thesis advisors : Refik MOLVA, Kaoutar ELKHIYAOUI

Jury

M. Sébastien GAMBS

M. Loukas LAZOS

M. Emiliano DE CRISTOFARO
Mme. Maryline LAURENT

M. Refik MOLVA

Mme. Kaoutar ELKHIYAOUI

Reviewers
Examiners

Thesis advisors

TELECOM ParisTech
école de I'Institut Télécom - membre de ParisTech

Acknowledgements

First and foremost I would like to express my gratitude to my supervisor, Prof. Refik Molva, who
opened the door to my research path. He taught me how to think out-of-the-boxr with discipline,
creativity and meaningful criticism. The unprecedented trust he showed on my proposals and
ideas, rendered me tackling daunting research problems with a stimulating attitude. I am
also indebted to Dr. Kaoutar Elkhyaoui who shared with me fruitful discussions and various
suggestions, as a second supervisor. Dr. Melek Onen showed an extreme amount of patience
on my stubbornness in various aspects during my Ph.D. studies and i am also beholden for
her comments. I would also like to thank the jury members for accepting being part of the
committee of this dissertation and all great people from Eurécom, whom i met during these four
years.

Special thanks go also to Giorgos Arvanitakis for sharing moments, enjoying research suc-
cesses any time during the day, but most importantly for analyzing the “failures”. During our
meetings we have been brainstorming towards the maximization of quality, price and healthy
factors of nutrition along with short fitness workout proposals. The result of this brainstorming
is the semi-marathon than i run with Vaggelis. My dissertation would not be interesting without
the nights in Tzarewitch with Arvanitakis, Tsimiklis, Vaggelis and Nikos, which motivated me
to make a pause from my work. I am also grateful to Isidora for her absurd tolerance to the
fluctuation of my personality during my dissertation. I am also appreciative to Mairh and Leon

who sacrificed a lot of their personal time and financial budget (unfortunately) for my education.

Acknowledgements

ii

Abstract

The progress in hardware and communication technology enables data analyzers to compute with
accuracy aggregate information, owing to the wide availability of data. The personal sensitive
information that is binded with individual data, renders users reluctant in publishing it. The
seemingly paradoxical requirement of preserving individual confidentiality while at the same time
granting partial access to an aggregate value over the data, has been addressed with Privacy
Preserving Data Collection and Analysis protocols. However, in order to achieve individual
privacy and efficiency, current cryptographic solutions assume honest-but-curious third parties
or fully trusted key-dealers to distribute keys, thus restricting the security model and hindering
its deployment in a dynamic environment.

In this dissertation, we design and analyze new Privacy Preserving Data Collection and
Analysis protocols to strengthen the existing security model and to propose new features. We
first propose a solution to the problem of privacy preserving clustering by exploiting the inherent
properties of a specific similarity detection algorithm. Then, we design a solution that allows
an energy supplier to learn more sophisticated statistics, such as the time interval of maximum
energy consumption, without violating individuals’ privacy. Afterwards, we address the problem
of data aggregation in a dynamic environment by relaxing existing trust assumptions. Finally, we
strengthen the security requirements of existing protocols by considering the case of a malicious
Aggregator who will try to provide bogus or biased results. Our protocols are analyzed under

the provably secure framework and their practicality is shown with prototype implementations.

Abstract

v

Résumé

Les progres matériels et technologiques en terme de communication permettent aux analystes de
données de calculer avec précision des données agrégées en raison du grand volume de données
disponibles. Les informations personnelles sensibles, liées aux données individuelles, rendent les
utilisateurs réticents a publier ces données. La contradiction entre le besoin de respect de la vie
privée individuelle d’une part, et celui de donner un acces partiel & une description synthétique
des données d’autre part a été résolue avec des protocoles de collecte et d’analyse des données
respectueux de la vie privée. Cependant afin de garantir a la fois efficacité et respect de la vie
privée, les solutions cryptographiques actuelles supposent ’existence d’un tiers parti honnéte
mais curieux ou d’une entité distribuant les clés en qui ’on puisse avoir une confiance totale,
limitant ainsi le modele de sécurité de ces solutions et entravant leur déploiement dans un
environnement dynamique.

Dans cette these, nous concevons et analysons plusieurs nouveaux protocoles de collecte et
d?analyse des données respectueux de la vie privée en vue de renforcer le modele de sécurité
existant et de proposer de nouvelles fonctionnalités. Nous proposons une premiere solution au
probleme de la catégorisation respectueuse de la vie privée en exploitant les propriétés inhérentes
d’un algorithme spécifique de détection de similarité. Puis, nous concevons une solution qui per-
met a un fournisseur d’énergie d’apprendre des statistiques plus sophistiquées, comme 'intervalle
de temps de la consommation d’énergie maximale sans violer la vie privée individuelle. Ensuite,

nous abordons le probleme de 'agrégation de données dans un environnement dynamique en

Résumé

relaxant les hypotheses de confiance existantes. Enfin, nous renforgons les exigences de sécurité
des protocoles existants avec un agrégateur malveillants qui tentera de fournir des résultats faux.
Nous montrons la faisabilité de nos solutions avec des implémentations de prototype. La sécurité

de chacun de protocoles est analysée dans le cadre de la sécurité prouvée.

vi

Contents

Acknowledgementso i
Abstract L iii
Résumé L v
Contents vii
List of Figures e xiii
List of Tables o XV

1 Introduction 1
1.1 Introduction L 1
1.2 Scenarios e e e e 2
1.3 Privacy Preserving Data Collection and Analysis 4
1.4 Goals and outline 6

2 Preliminary Topics 11
2.1 Brief historyo 12
2.2 Provable security 13
2.2.1 Computational security 13

2.2.2 Proofroadmap 15

2.2.3 Game-hopping technique Lo 16

2.24 Randomoracle 17

vii

CONTENTS

2.2.5 Genericgroupmodel Lo 18

2.3 Mathematical backgroundo 19
2.3.1 Bilinear pairings L Lo 19
2.3.2 Algorithmic complexity 20
2.3.3 Hardness assumptions Lo oo Lo 21

2.4 Cryptographic primitives 23
2.4.1 Pseudorandom generators (PRG) 23
2.4.2 Pseudorandom functions (PRF) L. 24
2.4.3 Pseudorandom permutations (PRP) 25
2.4.4 Hash functions L Lo 26
2.4.5 Digital signatures L Lo e 27
2.4.6 Message Authentication Codes 28

2.5 Summary e e e e 29
3 Data Collection and Analysis vs Privacy 31
3.1 Introduction 31
3.2 Noise-based solutions 32
3.2.1 Ad-hoc . .. L 32
3.2.2 Differential privacyo 34
3.2.2.1 Differential Privacy Background 35

3.2.2.2 Trusted Curator 36

3.2.2.3 Semi-honest Curator 38

3.3 Cryptographic protocols 40
3.3.1 Trusted Aggregator 41
3.3.2 Honmest-but-curious Aggregator 42
3.3.2.1 Trusted key dealer L 42

3322 NoKeyDealer 47

3.3.3 Further related work oo 49

3.4 TaxOnomy v o v v i e e e 49

CONTENTS

3.5 Current deficiencies 51
3.6 Summary e e 51
4 Privacy Preserving Clustering 55
4.1 Introduction L 56
4.2 Related Work o . oL o7
4.3 Problem Statement Lo 58
4.3.1 Similarity and privacy o 58
4.3.2 Cosine similarityo 59
4.3.3 Correctness and Privacy Lo oL 59

4.4 Solution e 61
4.4.1 Ideaof Solution L 61
4.4.2 Preliminarieso 61
4.4.3 Protocol descriptiono 62
4.4.4 Correctnesso e e 63

4.5 Security e 64
4.6 Evaluation 65
4.6.1 DataSet. 65
4.6.2 Clustering 66
4.6.3 Results e 66
4.6.4 Discussiono e e 67

4.7 SUMMATY . . . o o e e e e e e e 68
5 Privacy Preserving Statistics in the Smart Grid 71
5.1 Imtroduction L 72
5.2 Problem Definition oo 73
5.2.1 Entities 73
5.2.2 Protocol Definitions 73
5.2.3 Privacy Definitiono oL 74

ix

CONTENTS

5.3
5.4

5.5
5.6

0.7

Overview of PPSGS o 76
Protocol Description o 77
5.4.1 Order preserving encryption (OPE) 7
5.4.2 Our Protocol 78
Privacy Analysis 80
Feasibility o 82
5.6.1 Smart Meter Computation Cost 82
5.6.2 Server Computation Cost 83
SUMMATY o o o o e e e e e e e e 84

Private and Dynamic Time-Series Data Aggregation with Trust Relaxation 85

6.1
6.2
6.3

6.4
6.5

6.6

Introduction 86
Related Work oL 86
Problem Statement 88
6.3.1 Entities 89
6.3.2 Privacy Preserving and Dynamic Time-Series Data Aggregation 90
6.3.3 Privacy Definitions o o 90

6.3.3.1 Aggregator Obliviousness 91

6.3.3.2 Collector Obliviousness 93
Idea of Solution 95
Protocol Descriptiono 96
6.5.1 Joye-Libert Scheme, 97
6.5.2 Description 98
6.5.3 Privacy Analysis 99

6.5.3.1 Aggregator Obliviousness 99

6.5.3.2 Collector Obliviousness 101
6.5.4 Dynamic Group Management 104
Evaluation L 104
6.6.1 Implementation 105

CONTENTS

6.6.1.1
6.6.1.2
6.6.1.3

6.7 Summary . . .

PCs . . . s
Cubieboard
Mobile Device

7 PUDA - Privacy and Unforgeability for Aggregation

7.1 Introduction . .

7.2 Related Work .

7.3

7.4
7.5

7.6

Problem Statement L

7.3.1
7.3.2

PUDA Model

Security Model

7.3.2.1
7.3.2.2

Aggregator Obliviousness

Aggregate Unforgeability

Idea of our PUDA protocol

PUDA Instantiation o o o

7.5.1

Shi-Chan-Rieffel-Chow-Song Scheme

7.5.2 PUDA Scheme s

Analysis

7.6.1

Aggregator Obliviousness

7.6.2 Aggregate Unforgeability,

7.6.3 Performance Evaluation

7.7 Summary . . .

8 Concluding Remarks and Future Research

8.1 Summary . . .

8.2 Future Work .

Appendices

Appendices

A

xi

113
114
115
116
117
118
118
120
121
123
123
123
125
125
127
132
133

135
136
140

CONTENTS

LEOM Assumption 147
Resume 152
C.1 Applications 153
C.2 PPDCA 154
C.3 Objectifs 155
CA4 Clustering aux profils privées 157
C.5 Preservation de la vie privée par les statistiques dans le réseau

C.6

C.7
C.8

intelligent Lo 159

Protection de la vie privee pour ’agrégation de séries temporelles

dans le maniere dynamique 162
PUDA - Confidentialité et infalsifiable pour 'agrégation 165
Conclusion 168

xii

List of Figures

3.1
3.2

3.3

3.4

4.1

6.1
6.2
6.3

Overview of cryptographic techniques for PPDCA protocols.
The tree based construction by T.-H. Hubert Chan et al. [42]. In case of a failure
of node 3, Aggregator estimates the sum by summing the black nodes which are
the disjoint set that covers the remaining users.
Three interleaving groups G, G2 and G3. Node B receives keys from groups Gi, Ga
and node E from groups Go,Gs. Aggregator keeps group keys for the groups
S7, 85 and S§. Finally it can only get the sum of all nodes.
Mobile nodes (M N) first register to the registration authority (RA) in order to
obtain their secret key in the RegisterMN phase. Aggregator (A) also registers to
RA to obtain a valid querier registration id during the RegisterQ phase. Users
then report their readings encrypted with their secret key in the ReportData
procedure. Finally whenever the querier A4 wants to learn the aggregate result
for specific ids, it issues a query and it receives back a matching secret tag that

allows him to decrypt the result.
Hierarchical Clustering

Overview of our protocol for a single time interval ¢. pky, is public known value.
Decryption comparison with Joye-Libert scheme.

User overhead on cubieboard2.

xiii

LIST OF FIGURES

6.4 Energy consumption on SAMSUNG S4 - Android 4.2.2. 111

Xiv

List of Tables

3.1

5.1
5.2
5.3

6.1
6.2

6.3

6.4

6.5

6.6

6.7

Taxonomy of PPDCA protocols.

Protocol notations
Per day computational and storage overhead of OPE

Space and computation analysis. Mcb denotes megacycles per block

Performance analysis L oL
Computational costs in seconds, for Collector and Aggregator when bit-length
|N| = 2048 for PC benchmarks.
Computational costs in seconds, for Collector and Aggregator when bit-length
|N| = 4096 for PC benchmarks.
Computational overhead of users for encryption and auxiliary information in sec-

onds for different security levels with respect to the bit-length of N implemented

Comparison in seconds for Encryption. oL
Computational costs in seconds, for Collector and Aggregator when bit-length
|N| = 2048 for cubieboard2 benchmarks.
Computational costs in seconds, for Collector and Aggregator when bit-length

|N| = 4096 for cubieboard2 benchmarks.

XV

LIST OF TABLES

7.1

7.2
7.3

Performance of tag computation, proof construction and verification operations.
[denotes the bit-size of the prime number p. 132
Computational cost of PUDA operations with respect to different pairings. . . . 133
Average computation overhead of the underlying mathematical group operations

for different type of curves. 133

Xvi

List of Publications

The author of this dissertation has contributed with the following scientific publications:

. Traklis Leontiadis, Kaoutar Elkhiyaoui, Melek Onen, Refik Molva. PUDA-Privacy and
Unforgeability for Data Aggregation. In Proceedings of the 14th International Conference

on Cryptology and Network Security CANS 2015, Marrakesh, Morocco, December 2015.

. Iraklis Leontiadis, Kaoutar Elkhiyaoui, Refik Molva. Private and Dynamic Time-Series
Data Aggregation with Trust Relaxzation. In Proceedings of the 13th International Confer-
ence on Cryptology and Network Security CANS 2014, Heraklion, Crete, Greece, October
2014.

. Iraklis Leontiadis, Refik Molva, Melek Onen. Privacy Preserving Statistics in the Smart
Grid. In Proceedings of the 13th International Workshop on Big Analytics for Security, in
conjunction with ICDCS Madrid, Spain, June 2014

. Iraklis Leontiadis, Refik Molva, Melek Onen. A P2P Based Usage Control Enforcement
Scheme Resilient to Re-injection Attacks. In Proceedings of the Fifteenth International
Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM),

Sydney, Australia, June 2014

. Traklis Leontiadis, Melek Onen, Refik Molva, M.J. Chorley, G.B. Colombo. Privacy pre-

serving similarity detection for data analysis. In Proceedings of the Collective Social

xvii

LIST OF TABLES

Awareness and Relevance Workshop 2013, co-located with the Third International Con-

ference on Cloud and Green Computing. Karlsruhe, Germany, September 2013

6. Iraklis Leontiadis, Constantinos Delakouridis, Leonidas Kazatzopoulos, Giannis F. Marias.
ANOSIP: Anonymizing the SIP protocol. In Proceedings of the Measurement, Privacy and

Mobility Workshop, co-located with EuroSys. Bern, Switzerland, April 2012

xviii

Chapter

Introduction

Contents
1.1 Introduction i i i i e e 1
1.2 Scenarios v v i i it e e e e e e e e e e e e e e e e e 2
1.3 Privacy Preserving Data Collection and Analysis 4
14 Goalsandoutline iiiuiuuuiuiiuuueeieeno. 6

1.1 Introduction

The motivation of this dissertation stems from our engagement with a project on Usage Control
[3], which started as a side problem and progressively took us to the core topic of this dissertation.
Namely, protocols for Usage Control aim to control how data is used during its entire lifetime,
since regular access control systems cannot assure privacy for usage of data. An adversary in an
access control scheme may copy and store deleted data, duplicate it, or malevolently use it in an
unauthorized way. An essential component of a Usage Control enforcement scheme turns out to
be a similarity detection function, which is employed to detect malicious data usage by untrusted
parties. Our investigation on a specific category of data analysis operations such as similarity
detection for security purposes, spurred our interest in a broader category of protocols in which

functions other than similarity are evaluated by untrusted parties for different purposes.

CHAPTER 1. INTRODUCTION

Similarly, as with the Usage Control problem, there is a conflicting requirement between se-
curity and utility, in this type of protocols. An untrusted third party aims to learn some useful
statistical information over a census of data, that represents a population of users. Untrusted
parties collect data from individuals during the collection phase. After collecting all data, Ag-
gregators, which are not authorized to have access to individual data, will try to analyze it to
derive an aggregate value. Individual data contains personal sensitive information and users
providing it seek to protect their privacy. Through the analysis of the data collected from users,
useful statistical information can be computed in cleartext that will help Aggregators in decision
making. As such, the problem becomes challenging when individual inputs to the function are
obfuscated, so as to assure confidentiality. Different solutions address the problem hereafter
called Privacy Preserving Data Collection and Analysis (PPDCA), using two classes of tech-
niques. The first class relies on adding noise to data samples to assure privacy. The added noise
allows the Aggregator to compute a statistical function over data with some error. On another
variant of solutions that is based on cryptography, through non-conventional encryption and
key-management techniques, the untrusted Aggregator learns the result of a statistical function
without any noise. In spite of the advances made by such cryptographic solutions towards pri-
vacy and efficiency, the underlying security model does not involve a fully malicious Aggregator,
or assumes the existence of a fully trusted key dealer who distributes keys to each party of the
protocol. This dissertation focuses on cryptographic techniques for PPDCA protocols with a
stronger threat model, while relaxing the existing trust assumptions, in order to better suit real
world deployment. Before presenting the challenges and the goals that we tackle, we present

use-case scenarios that motivate us.

1.2 Scenarios

In this section we provide some evidence through real world scenarios for the broad range of
applications of Privacy Preserving Data Collection and Analysis protocols.
The confluence of powerful servers, ubiquitous computing devices and smart computing, al-

lows the collection of massive amount of data from end users. The availability of large volume

CHAPTER 1. INTRODUCTION

of information on the other hand, allows for aggregate operations as a powerful tool to infer sta-
tistical information about the underlying population, that improves the social welfare: consider
a healthcare scenario whereby patients in a hospital receive personal information about their
health status in an electronic form. This information constitutes their health history and it is
considered personal information. Medical scientists on the other hand, seek to operate on data
in order to derive statistical information such as sophisticated predictive models for predisposi-
tion to diseases (cancer, heart attack, genetic anomalies) or for offsprings’ likelihood to diseases
through genomic data. The medical data that are produced by a population of patients are
collected by the medical scientists who behave as Aggregators. A possible misuse of patients’
private data may have negative results in patients’ life: the elicitation of medical data to an
insurance company will negatively dominate the decision of the latter as to whether or not a
patient will become a potential client. The core problem of the healthcare scenario between
the medical data producers (users) and the medical scientists, who may act maliciously, is to
assure the confidentiality of individual data, while allowing medical scientists to perform some
operations on them.

In another context, thanks to the plummeting cost of hardware devices, smart meters are
widely deployed in homes in order to report energy consumption in a smart grid environment.
As the energy consumption monitored by smart meters may reveal sensitive information about
the home, such as the number of people, the appliances and personal activities, users are not
eager to disclose their energy consumption patterns. On the other end of the smart grid system,
energy suppliers viewed as data consumers, collect and analyze energy consumption samples
from smart meters in order to achieve various types of optimization. From the analysis of these
samples, they are able to precisely forecast the electricity demand in order to allocate energy in
advance according to the needs of an entire population. A typical privacy versus utility trade-off
thus arises between the two ends of the smart grid system. The challenge in the smart metering
scenario is to preserve individual data privacy while allowing untrusted parties access to some

aggregate information over the meterings.

CHAPTER 1. INTRODUCTION

1.3 Privacy Preserving Data Collection and Analysis

In the aforementioned scenarios an untrusted party collects data from multiple users. Users want
to protect their data confidentiality and they are reluctant to reveal their personal information.
On the other hand, the untrusted party seeks to derive in cleartext a function over the entire data,
without learning individual inputs. During a collection phase, an Aggregator collects obfuscated
data. Later, during the analysis phase, the Aggregator performs some operations on data that
allow it to reveal in cleartext some useful statistical information over the collected information.
The conflicting requirement of preserving individual privacy on data and allowing access on
aggregate information, renders the design of PPDCA protocols challenging. Let us now see
some possible solutions to the problem. Homomorphic encryption allows operations on encrypted
data but does not solve the problem of deriving a cleartext aggregate value. In a standard setting
based on homomorphic encryption, the untrusted Aggregator would need the secret decryption
key in order to decrypt the encrypted aggregate result, which would compromise individual
privacy of users. Following a different direction, the problem could be mitigated with Multi-
Party Computation (MPC) protocols. However, MPC implies a large communication overhead
because users must exchange many secret messages for the computation of a function over the
data. The functional encryption paradigm [31] can be used to design PPDCA protocols, but
in case of multiple inputs—modeling multiple users owing personal data—the proposed functional
encryption schemes would be prohibitively complex and costly [76].

We turn to more customized approaches that specifically deal with the PPDCA problem.
Noise-based solutions consist of adding some noise to each data value before sending it to the
Aggregator. The noise prevents the Aggregator from compromising individual privacy, but it
is appropriately designed such that some statistics over all data inputs can be inferred. The
second approach uses cryptographic protocols with a restricted set of operations an Aggregator
can perform over the entire data. The customized PPDCA protocols proposed in the literature

can be classified as follows:

CHAPTER 1. INTRODUCTION

e Noise-based protocols

— Ad-Hoc techniques [5, 7,19, 20, 95,108,120, 139]. In the ad-hoc approach, data is
obfuscated by users with noise, such that a function over the cleartext data can be
estimated by an untrusted party, while the adversary is confused by the noise data
samples, thus achieving user privacy. Privacy is expressed with different means such as
the distance between the noisy data distribution and the cleartext data distribution,

or it is modeled in terms of the entropy of the noisy data distribution.

Ad-hoc techniques lack a comprehensive notion of privacy. Furthermore, a comparison
of ad-doc techniques in terms of the privacy they provide does not seem feasible, since
each one uses a different privacy model. Solutions that adhere to the differential privacy

framework address this lack of a formal privacy definition.

— Differential privacy [4,15,22,42-44,55,56,59,60,62,64,71,116,118,124,132]. Within
the differential privacy approach, there is a rigorous privacy definition that is fulfilled
by adding appropriate noise either by each user separately or by a trusted party,
in a centralized fashion. Differential privacy assures that an adversary who learns
a function over two sets of data values that differ at most by one value cannot tell
with which data set it communicates. Alternatively, differential privacy prevents
the adversary from determining the existence or absence of an individual data value

through a statistical function.

Noise-based techniques are inappropriate in scenarios where precision of the final data
analysis operation is of crucial importance: charging users based on noisy measurements
would never be acceptable by end users be it for the benefit of individual privacy. Cryp-
tographic protocols cope with this limitation by achieving precision in the computation of

the statistical information by the Aggregator.

e Cryptographic Protocols [4,15,21,42,45,52,63,82,87,92,104, 124, 132]. Privacy Pre-
serving Data Collection and Analysis protocols have been modeled within a rigorous cryp-

tographic framework. Conventional privacy and security definitions have been changed

5

CHAPTER 1. INTRODUCTION

in order to follow the new privacy and security requirements for Privacy Preserving Data
Collection and Analysis protocols. Namely, security definitions based on indistinguishabil-
ity aim to capture an adversarial behavior, which an adversary seeks to retrieve individual
data inputs from the ciphertexts and the result of a function over the plaintext data. In
order to assure confidentiality of inputs, cryptographic protocols often use a fully trusted

key dealer, which distributes secret keys to the users and to the Aggregator.

In order to avoid noise at the final computation of the aggregate value, in current crypto-
graphic solutions for PPDCA protocols, data is encrypted appropriately, such that an Aggrega-
tor cannot learn any information from the encrypted samples, except for some aggregate result
over users’ data. The cryptographic solutions assume an honest-but-curious threat model with
a fully trusted key dealer, which distributes keys to users and to the Aggregator. The amount of
trust that is placed in a single party during the protocol may not be realistic for real world sce-
narios in which parties are mistrustful. Furthermore, in a resource constraint environment such
as the smart metering scenario, extra features such as accommodating a dynamic population of
users during the protocol execution and achieving resiliency to failures, affect the efficiency of

the protocol.

1.4 Goals and outline

Although the most suitable approach for the PPDCA problem seems to be the one using
cryptographic protocols, existing solutions still suffer from several limitations. First, existing
protocols only support a basic set of aggregate functions: their extension thereof seems to be a
very suitable research challenge. Moreover, existing cryptographic protocols for PPDCA suffer
from unrealistic key management requirements due to their reliance on a fully trusted key dealer
and the need for updating the key material for the entire user population. Existing users of the
scheme are also affected in case of faults because users which already participate in the protocol,
need to receive new keys. In case of low-resource devices such as smart meters, it is of great
importance to support dynamic groups and resiliency to failures with low communication cost,

due to the resource constraints of the devices. Finally, the cryptographic protocols follow the

6

CHAPTER 1. INTRODUCTION

honest-but-curious threat model, in which the Aggregator is semi-trusted to follow the protocol’s
rules. We conclude that it is important to introduce a stronger security model taking into account
more powerful adversaries seeking to deviate from the protocol rules, to maliciously tamper with

the global results. The objectives of this dissertation can be summarized in a few points:

1. Provide new functions an Aggregator can perform on data for secure data collection and
analysis that are not available from the existing cryptographic protocols. We stress that
the extended functions should come with an ideal payoff for privacy without compromising
it to a large extent—i.e: Learning aggregate statistics over the entire population of users
is doable and acceptable, but learning how each user of the population behaves wviolates

individual privacy.

2. Design a suitable cryptographic protocol for a dynamic population of users with resiliency
to faults. We emphasize that the support of dynamicity and fault-tolerance should not

jeopardize individual privacy.

3. Formalize novel security definitions that specifically strengthen existing privacy definitions
with respect to Aggregator obliviousness. We lower the amount of trust that should be
placed on any single entity. Moreover, we propose an integrated security definition that

guarantees both privacy and verification on computations.

The structure of this dissertation is organized as follows:

e In Chapter 2, we provide cryptographic material that will help the reader interpret the
technical material of this dissertation: The Chapter starts with some historical break-
throughs and continues with a comprehensive analysis of security definitions. Next, we
highlight the cryptographic primitives that are employed along this dissertation and we

explain the method of reasoning for security in the provable security framework.

e In Chapter 3, we present a detailed analysis of the state-the-of-art. We start our analysis
with relevant noise-based techniques for Privacy Preserving Data Collection and Analysis.

Then, we introduce a thorough analysis of cryptographic protocols, which are classified

CHAPTER 1. INTRODUCTION

based on the threat model that they adhere to. Finally, we proceed into a taxonomy of

current cryptographic protocols and we identify their shortcomings.

In Chapter 4, we present our protocol for privacy preserving clustering. The underly-
ing idea is based on a novel transformation of multidimensional vectors that represent
data with bi-vectors. Privacy is preserved with individual randomness properly chosen,
such that clustering on data can be performed by an untrusted party without violating

individual privacy.

In Chapter 5, we discuss our solution for enhanced functionality in a smart-grid environ-
ment. Namely, an untrusted data Aggregator which can be an energy supplier in a real
world application is interested in learning continuous periods of high energy consumption
of a home. The underlying idea is a randomization of a delta encoding function that takes
as input the differences of energy consumption. The delta encodings along with an order
preserving encryption scheme allows the untrusted data Aggregator to exclude undesired

data from its analysis.

In Chapter 6, we propose a privacy preserving protocol for sum computation. In con-
trast with previous work that is based on the trustworthiness of a key dealer to guarantee
individual privacy, our solution relaxes this requirement. We also formulate the new pri-
vacy requirements with a stronger privacy model. Our protocol is suitable for a dynamic
population of users. In this scenario, users can spontaneously join or leave the protocol
without any coordination. Existing users are not affected with extra computational and
communication overhead since there is no need for a new key distribution phase. Finally,
we provide benchmark results for our prototype implementation on PCs, single board

computers (cubieboard [2]) and mobile devices.

In Chapter 7, we formalize security properties for aggregation protocols that entail a dual
security guarantee. The protocol assures verification of the correctness of computations
performed by an untrusted Aggregator and individual privacy against a malicious party.

We also implemented our protocol and we present our benchmark results. Our solution

CHAPTER 1. INTRODUCTION

achieves constant time verification and is provably secure under a new assumption whose

security evidence is proved in the generic group model.

e Finally in Chapter 8, we conclude with the results of this dissertation and we discuss future

research avenues.

CHAPTER 1. INTRODUCTION

10

Chapter

Preliminary Topics

Contents
2.1 Briefhistory i i e e e e e e e e e e 12
2.2 Provablesecurity L e e e e e e e e e e e 13
2.2.1 Computational security oL 13
2.2.2 Proofroadmap 15
2.2.3 Game-hopping technique L. 16
2.24 Randomoracle 17
2.2.5 Generic groupmodelo 18
2.3 Mathematical background 19
2.3.1 Bilinear pairings L 19
2.3.2 Algorithmic complexity oL 20
2.3.3 Hardness assumptions Lo 21
2.4 Cryptographic primitives o 0 0o e 23
2.4.1 Pseudorandom generators (PRG) 23
2.4.2 Pseudorandom functions (PRF) 24
2.4.3 Pseudorandom permutations (PRP) 25
2.4.4 Hash functions L 26
2.4.5 Digital signatures Lo 27

CHAPTER 2. PRELIMINARY TOPICS

2.4.6 Message Authentication Codes 28

2.5 SUMMATY v v v v v vt v et e 29

In this section we provide the necessary background in order to enable the reader to interpret
the cryptographic machinery that is employed in this dissertation. We first give a historical
overview of cryptography. We also present the hardness assumptions that the security of our
protocols is based on. Finally, we discuss the provable security framework and we present the

cryptographic primitives used in our protocols.

2.1 Brief history

The word cryptography stems from the Greek world xpuntéc (kryptos) which means hidden and
yooyelv (graphein) which depicts the notion of writing. It is the first descendant of the more
general term of cryptology (hoyia (logy) means study). The other descendant is cryptanalysis.
Cryptography aims to write secret codes which are decoded only with the employment of a secret
key. Even if the history has encountered the first notion of secret communication back in 2000
BC, cryptography has become a science only in the last decades.

Historians have observed some unusual notation to the egyptian hieroglyphics used to dec-
orate the tombs of kings [49, Chapter 2]. They deliberately used some cryptic symbols, which
were not part of the existing alphabet, in order to make the stone more royal. But it is not clear
yet if the main purpose of these cryptic symbols was to hide the underlying message or to act
as an eye-catcher to decoy people to decipher it.

The first official use of cipher was observed in 500 BC. Ancient Greeks in order to hide
messages they implemented a transposition cipher with a skytale [98], which is a wooden cylinder.
The sender wraps a strip of parchment wound or leather around it and the message is written
across the strip. Then, the sender unwraps the strip and random alphabet symbols were written
to random positions of the strip. In order to decipher, the receiver wraps again the strip in
a same diameter cylinder that acts as the secret key. During this period, Polybious invented
the first substitution cipher, known as Polybious square whereby letters grouped in a square

were substituted with a sequence of numbers. Some centuries later, at 58 BC, the ceasar cipher,

12

CHAPTER 2. PRELIMINARY TOPICS

which took its name from the senator Gaius Julius Caesar, is based on Polybious idea, and swifts
alphabet letters based on a fixed pattern.

Al-Kindi, an Arab mathematician and philosopher made a tremendous progress in ciphers.
After identifying the weakness of single alphabet substitution ciphers due to frequency analysis
he realized the need for polyalphabet ciphers. The wvigenére cipher was first described by Giovan
Battista Bellaso but the name has been wrong misattributed to Blaise de Vigenére due to a
stronger description of Bellaso’s cipher. Namely, vigenére cipher encrypts by applying different
alphabets to each letter of the plaintext.

In the 20th century the employment of electro-mechanical rotor machines were securing
the communication from host to host. The most well known is Enigma that has been used
by Nazi and was broken by Allies forces in Bletchley Park. Enigma is a polyalphabet stream
cipher whereby at each key pressing the three rotors change the circuit connections between
the keyboard and the lampboard, thus enabling a different cipher letter for the same plaintext
letter; resulting in ~ 1.76 - 10" different keys. James H. Ellis captured the idea of public
key encryption in 1969 [136], however it did not become known since he was committed to
the Government Communication Headquarters (GCHQ). In 1973 Clifford Cocks first realized a
public key encryption scheme based on the difficulty of factoring large prime numbers but it was
never published, since for the same reasons with Ellis, his work was classified information for
GCHQ. The work was kept secret until 1997 [136]. Public key encryption became widely known
by Diffie and Hellman in 1975 from the publication of their research results. Rivest, Shamir and

Adleman in 1976 rediscovered the RSA algorithm, since Cocks’ work was not published [1].

2.2 Provable security

2.2.1 Computational security

Computational security definitions bound the adversary to be successful only if it runs in any
reasonable time, where reasonable is polynomial on input of the key size. In the seminal work

by Goldwasser and Micali [78], the authors introduced the notion of semantic security which

13

CHAPTER 2. PRELIMINARY TOPICS

is employed to describe computational security. Informally, semantic security guarantees that
whatever function f(x) a polynomial bounded adversary can infer for the plaintext x by having
access to some auxiliary information I(k), where k is the size of the ciphertext, it can be deduced
by another adversary who has not access to the ciphertext. Semantic security models the adver-
saries as polynomial time algorithms and analyzes the success probabilities with asymptotics.
The latter allows to analyze the growth of complexity of the adversary with respect to the size

of the key and the auxiliary information.

Definition 1. (Semantic Security [74, Chap 5]) An encryption scheme Gen, Enc, Dec is semanti-
cally secure if for every function f: {0,1}% — {0,1}*, I : {0,1}* :— {0,1}* for every polynomial

time adversary A:
Pr[A(Enc(k, z), I(K)) = f(z)] — PrIA(I(k)) = f(a)] = > + ¢

for a negligible function e.
The above definition has an equivalent version [74, Chap 5] in terms of indistinguishability

of two ciphertexts:

Definition 2. (Message indistinguishability) An encryption scheme Gen, Enc,Dec is message

indistinguishable if for any two messages x1,xs and any polynomially bounded adversary A:

Pr[A(Enc(k,z1)) = 1] — Pr[A(Enc(k,z2)) = 1] = % +e

for a negligible function e. The unduly revolutionary idea that paved the way to treat
cryptography not in an ad-hoc framework where experience and intuition play a significant role
in solutions but in a general scientific domain, with rigorous mathematical formulations is due
to Goldwasser and Micali [77,78] in the 1980s. The idea designates that in order to prove the
security of a protocol, it suffices to construct an efficient polynomial time algorithm that reduces
the security of the new protocol to an alleged hard problem. That is, as long as the underlying
problem is intractable the scheme is secure. From another perspective it means that once there

is a probabilistic polynomial time (PPT) algorithm A that is able to break the protocol that it

14

CHAPTER 2. PRELIMINARY TOPICS

is analyzed, then there is an efficient PPT algorithm B that can break the underlying alleged
hard problem. The latter connotes a contradiction so the initial proposition of the security of
the scheme holds.

As already mentioned by Bellare [16] the term provably secure is misleading. The existence
of reductionist security proofs does not imply a rigorous proof that the scheme is secure in a real
world depiction. In contrast, it provides evidence for the security of the scheme as long as an
assumption for the hardness of a well known problem holds. In order to clarify things hereafter
whenever it is said that a protocol is provably secure, it means that there is a reductionist proof

from the hardness assumption of the protocol to an alleged hard problem.

2.2.2 Proof roadmap

The technique of providing a reductionist security proof is the following:

e Protocol description: In the first phase formal definitions about the functionality of the
protocol are provided. More specifically the engaged parties are presented as algorithms.
Information about the characteristics of the algorithms are also mentioned: deterministic,
probabilistic, interactive, non-interactive. At this phase no details about the initialization

of the protocol are provided.

e Security definition: The security definitions entail rigorous mathematical formulations
about what security guarantees the protocol should provide. The definition comes in terms
of a polynomial bounded adversary and a quantitative definition of probabilities that depict

the chances that the adversary can mount a reasonable attack to the protocol.

e Threat model: In the threat model the capabilities of the adversary are clarified. That is,
how the polynomial algorithm of the adversary is upper bounded in terms of computational
power (polynomially), how the adversary is going to attack the scheme (adaptive, non-
adaptive) and what the adversary is allowed to know. In general, the less restrictions to
the adversarial model the stronger security guarantee is assured. Adversary’s interactions

with the protocol can be presented in the form of a game, which is played between the

15

CHAPTER 2. PRELIMINARY TOPICS

adversary and a simulator that simulates the execution of the protocol. In a nutshell, there
is a learning phase in the game where the adversary learns auxiliary information about
the protocol and a challenge phase that follows. During the challenge phase a challenge is
submitted to the adversary by the simulator and the former succeeds in the game if it can

provide a correct answer to the challenge with non-negligible probability.

e Protocol realization: During the protocol realization the tools that realize the protocol
description are presented. Moreover parameters are analyzed in order to meet security

definitions and efficient functionalities.

e Reductionist proof: A reductionist proof from the protocol to a hard problem is de-
scribed: The steps for the construction of an algorithm B are presented. More specifically
B employs as a subroutine an adversary A against the proposed scheme, in order the for-
mer to break a believed hard problem. The proof should be as tight as possible in order
to be meaningful. That is, if A’s running time is polynomially bounded by t with success
probability e, then B running time and success probability should be as close as possible

to t, e respectively.

2.2.3 Game-hopping technique

Within the game-based framework after the definition of a game G, then the advantage Adv of
the adversary is modeled as the probability of an event S to occur. This is the target probability,
which should be negligible when the adversary has to compute something (e.g: forge a signature)
or it should be negligible between her choices when she has to distinguish between two events
(indistinguishability security of encryption). It is quite common both for technical reasons and
for clarity and simplification in order to avoid flaws, the proof to follow the game-hop technique
[54,135]. The original game is defined in Gy and then a sequence of games G1,G3,Gs,...,Gy,
are further presented. As previously mentioned, this happens in order to make the proof more
readable and easy to analyze but also because there are difficulties in proving the negligibility of
the target probability. The goal of the designer is to show that the advantage of the adversary

in each game is negligible close to its predecessor: Pr[S;] = Pr[S; + 1],7 € [0,n] and that Pr[S,,]

16

CHAPTER 2. PRELIMINARY TOPICS

equals the target probability.

2.2.4 Random oracle

So far we demonstrated the roadmap for provable security and the techniques that are employed
towards it. When the reductionist proof is possible without making any further assumptions
then the protocol is provably secure in the standard-model. However this is not always possible.
In the vast majority of existing protocols a source of randomness is mandatory. But it is hard to
instantiate a truly random function. A random function can be viewed as a hard-coded lookup
table. On the left side of the lookup table there is the input to the function that consists of all
bit-strings of the universe and on the right side there is the random output, different for each
input. This construction is totally impractical in terms of storage and of retrieval of the random
output for a specific bit string. The problem is mitigated with the random oracle [17], which
is viewed as an extra party in the protocol. Everybody can query the oracle. At the beginning
of the protocol the oracle’s state is empty. Then, each time a party is querying the oracle with
a bit string, the oracle checks if that has been queried before with the same input. If yes, it
returns the same random output string. If no, it returns a new random output string and it
stores the new pair of input-output to its state. The assumption that is made in the proofs in
the random oracle is that they pretend the existence of a function that outputs truly random
bit strings like in an ideal scenario.

The random oracle model allowed for the construction of security proofs that were infeasible
in the standard model. However, when it comes to the real-world model the random oracle is
substituted with a hash function which is not truly random. Researchers have come up with
several scenarios [33], whereby the implementation of a protocol using real hash functions suffer
from severe security flaws despite the security proof in the random oracle model. Moreover
the random oracle model does not depict all types of adversaries. Attackers that have physical
access to the machine that implements a cryptographic protocol can mount different types of side
channel attacks in order to learn the secret key: a) by observing the running time of secret key

conditional loop [100], b) by observing the power analysis of a device [101], ¢) by capturing the

17

CHAPTER 2. PRELIMINARY TOPICS

acoustic signal that is generated by the vibrations of electronic components of a computer [70],
or d) by having access to the memory of a PC and applying a cold-boot-attack [83]. So the
question to answer is: why are we still applying the idea of the random oracle model for security
proofs? The reason is because a security proof in the random oracle model is better than no
security proof at all. Moreover, when the adversary does not focus on attacking the real world
pseudorandom function then the random oracle provides security guarantees for generic attacks
of the scheme. Last but not least, during the instantiation of the random oracle with a specific
pseudorandom function, if there are weaknesses for this specific function then we can simply

substitute it with another one, without changing the protocol overall.

2.2.5 Generic group model

It may not always be possible to rely the security of a cryptographic protocol on well known
problems. As such, the reductionist proof should be made on a new problem. In order to provide
security evidence of the new problem Shoup introduced the generic group model [134]. This is
a theoretical framework, whereby the hardness of the new assumption is analyzed [11,26,137].
According to the generic group model, an adversary has access to elements of the underlying
mathematical group in which the problem is assumed to be hard, through a black box. The
black box acts as a simulator which uses a random encoding function in order to reply for
encodings of elements the adversary asks for. Moreover the simulator associates with each
random encoding a polynomial which is not forwarded to the adversary. The simulator also
simulates the mathematical operations of the underlying group and any other information the
adversary is allowed to have access to. Finally, the adversary outputs a solution to the problem
which is translated into an equation of the corresponding polynomials. The probability to
successfully evaluate a polynomial of degree d to 0 with a random variable assignment from a
group of order p, bounds the probability of an adversary to break the assumption according to

the Schwartz-Zippel lemma:

Lemma 1. Let p(x1,--- ,2,) be a polynomial of total degree d. Assume that p is not identically

zero. Let S CTF be any finite set. Then, if we pick y1,--- ,yn independently and uniformly from

18

CHAPTER 2. PRELIMINARY TOPICS

S,

Pr[(p(yla 7yn):]< TQl

2.3 Mathematical background

In this section we review mathematical structures that are used in this thesis and we highlight
the mathematical problems that the security of the proposed protocols is based on. We start our
review with a black-box definition of what a bilinear pairing is without presenting the underlying

mathematical and algorithmic subtleties.

2.3.1 Bilinear pairings

Miller and Koblitz [99, 114] proposed the neat idea to use groups that come from algebraic
geometry such as elliptic curve groups since no sub-exponential algorithm is known for the
discrete logarithm problem in elliptic curve groups. The reason of the broad usefulness come
from the existence of efficient algorithms for mathematical operations under these groups and
from the fact, that security scales much nicer with the security parameters. Elliptic curves with
a richer structure can be used to instantiate a bilinear pairing. Two examples of pairings over
elliptic curves are the Weil and Tate [67] pairings. An elliptic curve is defined over a cubic
equation y% = 2% + ax + b.

Let Gy, Go, G be three cyclic groups of order p. A bilinear pairing from G; x Go to Gr is
a map e:

e(G1,Go) = Gp
satisfying the following properties:
1. bilinearity: e(g¢, g5) = e(g1,92)®, for g1,92 € G1 x G2 and a,b € Z,
2. Computability: there exists an efficient algorithm that computes e(g1, g2) Vg1, g2 € G1 X G2

3. Non-degeneracy: e(g1,g2) generates Gp. That is, if g1, go are generators of G; and Go

respectively, then e(g1, g2) generates Gr.

19

CHAPTER 2. PRELIMINARY TOPICS

We say that a bilinear pairing for cryptographic protocols is admissible if the aforementioned
three properties are satisfied. Bilinear pairings can be categorized in the following three types

with respect to supported functionalities and the underlying group structure:
e Type I: In type I pairings G; = Geo.

e Type II: In type II pairings G; # G2 and there is an efficient computable map ¢ : Go —
Gy.

e Type III: In type III pairings G; # G2 and there are not efficient computable maps
¢1:G2—>G1 OI‘¢22G1—>G2.

Supersingular curves are employed for Type I symmetric pairings and are less efficient than
curves for asymmetric pairings [68,122]. MNT [117] or BN [14] non-supersingular curves are
used to realize Type II and Type I1I asymmetric bilinear pairings. Cryptographic pairings are
used for different type of protocols: three-party key exchange, identity based encryption, group
signatures, homomorphic signatures, aggregate signatures [27-30,91].

Before presenting the hardness assumption we define the notion of a negligible function f:

Definition 3. A function f : Z — R is negligible if for all ¢ > O there exists A\g > 0 such that

forallA=Xo: f(N) < &

2.3.2 Algorithmic complexity

An algorithm is a finite set of steps used to solve a computational problem that takes as input
variable length of data and outputs the result. The term deterministic algorithm refers to
algorithms that on equivalent inputs they output equivalent results following exactly the same
algorithmic path of steps. A probabilistic algorithm receives as input, a randomness r from a
source of randomness r <~ R as “random coins” and its output-algorithmic path is not equivalent
even on equivalent data inputs.

The running time of an algorithm reflects its efficiency. It is defined as the number of steps
the algorithm has to execute in order to terminate. As a step we consider the cardinality of

the set that includes the mathematical operation as multiplications, exponentiations, additions,

20

CHAPTER 2. PRELIMINARY TOPICS

subtractions and divisions used by the algorithm . Even if this is not extremely precise as it does
not entail the machine instructions that are used to implement the mathematical operations of
the data inputs, it is meaningful and provides a rigorous approach in order to compare protocols
and primitives. An algorithm is said to be efficient if its running time is polynomial on the size

of inputs.

2.3.3 Hardness assumptions

Definition 4. (Discrete Logarithm (DL) Problem) Let G be a cyclic group of prime order p
with generator g. The DL problem is defined as follows: given h € G compute x € Z, such that
g* = h. We say that x is the discrete logarithm of h to the base g : x = logg(h). The advantage

AdeL of an algorithm A in solving DL is defined as:
AdvQY = Pr[z + A(h,g) : = = log,(h)]

Definition 5. (Discrete Logarithm (DL) Assumption) Let G(A) be a DL problem generator
that outputs h on input of the security parameter A. We say that DL assumption holds if the
advantage AdeL of a probabilistic polynomially-time algorithm A is a negligible function e(\)

on input of the security parameter .

Definition 6. (Computational Diffie-Hellman(CDH) Problem) Let G be a cyclic group of prime
order p and g a generator of G. The CDH problem is: Given U = (g,9%,4¢¥) for uniformly
random elements x,y € Z,, compute g*¢. The advantage AdvfiDH of an algorithm A in solving
CDH s defined as:

AdvSPH = Pr[g™ « A(U))

Definition 7. (Computational Diffie-Hellman(CDH) Assumption) Let G(A) be a CDH problem
generator that outputs U on input of the security parameter A. We say that CDH assumption
holds if the advantage AdeDH of a probabilistic polynomially-time algorithm A is a negligible

function €(\) on input of the security parameter A.

Definition 8. (Decisional Diffie-Hellman(DDH) Problem) Let G be a cyclic group of prime

21

CHAPTER 2. PRELIMINARY TOPICS

order p and g a generator of G. The DDH problem is: Given U = (g,9", 9", g*) for uniformly
random elements x,y,z € Zyp, decide whether z = xy. Define the probability distribution X
that samples elements from Z = (g,g%, 9", g"Y) and the probability distribution Y that samples
elements from U = (g,9%,9Y,9%). The advantage AdeDH of an algorithm A in solving DDH
1s defined as:

AdvRPH — | PrlA(X) = 1] — Pr[A(Y) = 1]|

Definition 9. (Decisional Diffie-Hellman(DDH) Assumption) Let G(A) be a DDH problem
generator that outputs U on input of the security parameter \. We say that DDH assumption
holds if the advantage AdeDH of a probabilistic polynomially-time algorithm A is a negligible

function €(\) on input of the security parameter \.

Definition 10. (Quadratic Residuosity (QR) Problem) Let N = pq be a product of two large
primes. Define the probability distribution X over elements drawn from @N, the group of
quadratic non residues in Zy; and define the probability distribution Y with elements drawn from
QR y, the group of quadratic residues in Zy. The QR problem is to computationally distinguish
between probability distributions X and Y. The advantage Advf‘%R of an algorithm A in solving
QR is defined as:

Adv R = | Pr[A(X) = 1] — PrlA(Y) = 1]|

Definition 11. (Quadratic Residuosity (QR) Assumption) Let G(X) be a QR problem generator
that outputs X,Y on input of the security parameter \. We say that QR assumption holds if
the advantage Adv?lR of a probabilistic polynomially-time algorithm A is a negligible function

e(A) on input of the security parameter X.

Definition 12. (Decisional Composite Residuosity (DCR.) Problem) Let N = pq be a product
of two large primes. Define the probability distribution X over elements drawn from random
elements in the set of Z7,, and define the probability distribution Y with elements drawn from
(zN mod N?,x € Zy2)- The DCR problem is to computationally distinguish between probability

distributions X and Y. The advantage AdeCR of an algorithm A in solving DCR is defined

22

CHAPTER 2. PRELIMINARY TOPICS

as:

AdvRCR — | PrlA(X) = 1] — Pr[A(Y) = 1]|

Definition 13. (Decisional Composite Residuosity (DCR) Assumption) Let G(\) be a DCR
problem generator that outputs X,Y on input of the security parameter \. We say that DCR
assumption holds if the advantage AdeCR of a probabilistic polynomially-time algorithm A is

a negligible function e(\) on input of the security parameter X.

Definition 14. (Bilinear Computational Diffie-Hellman (BCDH) Problem) Let e(Gy x Ga) —
Gr be a bilinear pairing, g1 a generator of G1 and go a generator of Go and p the order of G, Ga
and Gp. The BCDH problem is defined as follows:

Giwen U = (91,97,9],97) € G1 and V = (92,95, 95) € Ga for random x,y,z € Z, compute

W =e(g1,92)"*. The advantage AdvﬁCDH of an algorithm A in solving BCDH is defined as:
AdvBOPH — pr[v « A(U, V)]

Definition 15. (Bilinear Computational Diffie-Hellman (BCDH) Assumption) Let G(\) be a
BCDH problem generator that outputs U and V on input of the security parameter. We say
that BCDH assumption holds if the advantage AdvﬁCDH of a probabilistic polynomially-time

algorithm A is a negligible function €(\) on input of the security parameter \.

2.4 Cryptographic primitives

In this section, we introduce the cryptographic primitives that are used throughout this disser-

tation.

2.4.1 Pseudorandom generators (PRG)

As Kolmogorov conceptually defined it, a k bit string is random if a polynomial time algorithm
cannot reproduce it in less that k steps. However the difficulty of finding real random bit
sequences for the keys has shifted the interest to the existence of pseudorandom generators

(PRG). Informally, a pseudorandom generator G is a deterministic polynomial time algorithm

23

CHAPTER 2. PRELIMINARY TOPICS

that takes as inputs a seed of length [and outputs a bit string of length L where L >> [, whose
output is computationally indistinguishable from a uniform distribution.

We now give the definition of computational indistinguishability for two distribution en-
sembles, which are modeled as sequences of random variables X = {X,}, € N, Y{Y,}, €
N. Before going into the formal definition we expand the notation Pr[A(X,) = 1] =
> Pr[A(xz) = 1] Pr[X,, = 2] which is used for the definition.

Definition 16. For any polynomial time algorithm A two distribution ensembles X = {X,}, €

N, Y = {Y,}» € N are computationally indistinguishable if:
PrlA(X,) =1] - PrlA(Y,,) =1] =€

where e is negligible function on n.

Definition 17. A pseudorandom generator G is a function G: {0,1} — {0,1}%, whose outputs

are computational indistinguishable from uniform bit strings of the same length L.

2.4.2 Pseudorandom functions (PRF)

Let the family of all functions in the universe from a domain X to a range Y to be Func[X,Y].
A truly random function f & Func|[X,Y] is chosen randomly from the set of Func. The set
of all these functions is [Y|/X| (gigantic number). It is true that for any random function f
with range size L chosen randomly from Func[X,Y], Pr[f(z) = y] = 2~%. The randomness is
not parametrized neither by the size of X and Y nor by the size of the domain. We define a
pseudorandom function fr : X — Y as a function from the set of all functions from X to Y as

soon as a particular key k is fixed.

Definition 18. Let Func={F : X — Y} be a function family for all functions F that map
elements from the domain X to the range R. Then a PRF = {f; : X' — Y'} C Func for

k< K, where K 1is the key space.

The security of a PRF is modeled with a game which is known as real or random security

game [75]. Intuitively, an adversary A is given access to an oracle that on input z from a domain

24

CHAPTER 2. PRELIMINARY TOPICS

X, flips a coin b ¢ {0,1} and if b = 0 then it outputs y = f(z), for f € Func[X,Y], otherwise
it outputs y = fx(x). A issues queries to the oracle polynomially many times on input of the
security parameter A. Finally A outputs a guess b’ for the bit b.

The advantage of a probabilistic polynomial time algorithm A in the PRF game is
AdviF = Pr[b & {01} < A(y) : b = b]

Definition 19. A PRF is computationally secure if all probabilistic polynomially time algorithms
A have advantage in the PRF game: %—}—e()\), for a negligible function € on the security parameter

A.

2.4.3 Pseudorandom permutations (PRP)

A permutation is a bijective function where the domain and the range are equal. Similarly with
the random functions, let Perm[X] to be the set of all permutations for the domain X. Then a
pseudorandom permutation (PRP) is a randomly chosen permutation from the set Perm[X],
keyed under a secret key k. Similarly with a PRF, the security of a PRP is described with a
game in which a polynomially bounded adversary A tries to distinguish permutations between
the family of all permutations from the pseudorandom ones. An oracle receives an input value
z € X from the adversary A. It flips a random coin b < {0,1}. If b = 0 then it chooses a
random permutation II from the set of all permutations Perm[X] and returns to A, y = II(x),
otherwise if b = 1 the oracle chooses a random k <~ K from the keyspace K, sets a pseudorandom
permutation I and forwards to A,y = IIx(z). A submits queries to the oracle polynomially
many times on input of the security parameter \.

The advantage of a probabilistic polynomial time algorithm A in the PRP game is
AdviRP = Pr[p < {0,1};0 + A(y) : b = 1]

Definition 20. A PRP is computationally secure if all probabilistic polynomially time algorithms

A have advantage in the PRP game: %—i—e(/\), for a negligible function € on the security parameter

25

CHAPTER 2. PRELIMINARY TOPICS

2.4.4 Hash functions

A hash function H is a keyed function that maps elements of arbitrary length from a domain
X to a finite range Y of length . The number [is the hash length of H. In practice the hash
function is not keyed (this implies that the adversary knows how to evaluate the function, or
it has access to an oracle that evaluates H on behalf of the adversary without publishing the
secret key) and its formal security definitions have been introduced in [126]. The three desired
properties of a cryptographically secure hash function are the followings:

First-preimage resistance A hash function H is first-preimage resistant if it is polynomial
time computable on input of an element x € X but there is no polynomial time algorithm that
can correctly guess x by given only y = H(z). More formally we define the advantage of an

adversary Appgr that tries to break first-preimage resistance as:

Ade’EPR =Prlk &K o Xy Hy(z); o «— Alk,y) : Hy(z') =]
Definition 21. A hash function H : X — Y is first-preimage resistant if the advantage of an

adversary Ade’EPR 1s negligible.

Second-preimage resistance A hash function H is second-preimage resistant if an adversary
that learns x; and y; = H(z;) cannot find x2 # z1 such that y = H(x1) = H(xzz). The

advantage of an adversary A that seeks to break the second-preimage property is:

AdvﬁgpR = Pr[k:ﬁlC : r& X sy Hy(z); o' + Alk,z,y) : (x#2") AN (H(z) = H(z2"))]

Definition 22. A hash function H : X — Y is second-preimage resistant if the advantage of

an adversary AdvﬁéPR 1s negligible.

Collision resistance The collision resistance property assures that any polynomially bounded

adversary cannot find any z1 # 2 such that y = H(x1) = H(z2). More formally the advantage

26

CHAPTER 2. PRELIMINARY TOPICS

of an adversary Acr against the collision resistance property is defined as:
Adviie =Prlk & K5 (2,0)) « A(k) : (x # 2') A (H(z) = H(2'))]

Definition 23. A hash function H : X — Y s collision resistant if the advantage of an

adversary Advi@R 1s negligible.

2.4.5 Digital signatures

A signature scheme ¥ = (KeyGen, Sign, Ver), which is used to provide message integrity and

sender’s authenticity, consists of a message space M, a signature space S, and three algorithms:

e KeyGen(1") : It takes as input the security parameter 1* and outputs the secret signature

key sk and the public verification key vk.

e Sign(sk,m) : It takes as input a message m € M, the signature key sk and outputs the

signature o,,.

e Verify(vk,o,,) : It takes as input a candidate signature o, and the public verification key

vk and it outputs 1 if o, is a valid signature of m or L otherwise.

A signature scheme ¥ is correct if for all A € N, all (sk, vk) < KeyGen(1*), all m € M and
all signatures o, < Sign(sk,m) then it is always true that Verify(vk, o,,) = 1.
The existential unforgeability against adaptive chosen message attacks security property of

a signature scheme is defined through a game with the following phases:

e Setup : Adversary A receives the public verification key vk and the security parameter
1? from the challenger which runs the KeyGen(1*) algorithm of the signature scheme X.

The challenger also keeps secret the signature secret key sk.

e Learning : During the learning phase A submits signature queries m to the the challenger

which responds to A with the signature o, after running the Sign(sk, m) algorithm.

e Challenge : A outputs a pair m, oyy,.

27

CHAPTER 2. PRELIMINARY TOPICS

A is said to win the aforementioned game if Verify(vk,o,,) = 1 and m has not been queried

during the Learning phase.

Definition 24. A signature scheme guarantees existential unforgeability against adaptive chosen
Sign—Forge

message attacks if the advantage Adv’y in the above game of a probabilistic polynomially-

time algorithm A is a negligible function e(\) on input of the security parameter \.

For a detailed analysis of the various threat models for digital signature schemes the reader

can refer to [125].

2.4.6 Message Authentication Codes

A message authentication code (MAC) scheme is a cryptographic primitive that provides integrity
and sender’s authenticity, as digital signatures, but in a symmetric setting. It consists of a

message space M, a MAC space S, a secret key space K and the following algorithms:

e KeyGen(1?) : It takes as input the security parameter 1* and outputs the secret MAC

key mk.

e Mac(mk,m) : It takes as input a message m € M, the MAC key mk € K and outputs a

tag t,, € S.

e Verify(mk,t,,) : It takes as input a candidate tag t,,, the secret MAC key mk, and a

message m. It outputs 1 if ¢,,, = Mac(mk, m) or L otherwise.

A MAC scheme is correct if for all A € N, all (mk) < KeyGen(1"), all m € M and all tags
tm + Mac(mk,m) then it is always true that Verify(mk,t,,) = 1.

The security of a MAC scheme is defined through the following game, which conceptually
guarantees that an adversary A, which has access to the security parameter A and the tag
algorithm Mac(mk,m), to forge a valid tag ¢/, such that Verify(mk,t/,) = 1 and m’ has not

been given as input to the Mac(mk, m) algorithm:

e Setup : Adversary A receives the security parameter 1* from the challenger which runs
the KeyGen(1*) algorithm of the MAC. The challenger also keeps secret the secret key

mk.

28

CHAPTER 2. PRELIMINARY TOPICS

e Learning : During the learning phase .4 submits tag queries m to the the challenger which

responds to A with the tag t,, after running the Mac(mk, m) algorithm.
e Challenge : A outputs a pair m, t,,.

A is said to win the aforementioned game if Verify(mk,t,,) = 1 and m has not been queried

during the Learning phase.

Definition 25. A MAC scheme guarantees existential unforgeability against adaptive chosen
message attacks if the advantage AdVZIAC*Forge in the above game of a probabilistic polynomially-

time algorithm A is a negligible function e(\) on input of the security parameter .

The above definition does not take into account replay attacks, which can be mitigated with
a time-stamp or a counter. Verification algorithms that are time dependent are vulnerable to
timing attacks as long as an adversary has access to a verification oracle which publishes the
results of the Verify(mk, ¢,,) algorithm. As such, the Verify(mk, t,,) algorithm implementation

should run in constant time.

2.5 Summary

In this Chapter we reviewed the basic building blocks that will make the manuscript intelligible.
We started with a brief history on cryptography. Next, we proceeded into a primer on the proof
technique by analyzing the core steps of a reductionist proof. We also investigated the different
types of proofs with respect to the assumptions and finally we presented the cryptographic

primitives that are employed in this dissertation.

29

CHAPTER 2. PRELIMINARY TOPICS

30

Chapter

Data Collection and Analysis vs Privacy

Contents
3.1 Imntroduction 31
3.2 Noise-based solutions00 32
3.2.1 Ad-hoc 32
3.2.2 Differential privacy 34
3.3 Cryptographic protocols e 40
3.3.1 Trusted Aggregator 41
3.3.2 Honest-but-curious Aggregator 42
3.3.3 Further related work 49
34 TaXonomy . . . v v v v vttt e e e e e e e e e e e e e e e e e e e 49
3.5 Current deficiencies o 0 o oo oo oo e 51
3.6 SUMMATY .« v v v v v v v v v v v v e e e e oo o o o o o o o o o o o e e e e 51

3.1 Introduction

Privacy Preserving Data Collection and Analysis protocols (PPDCA) exist in the literature
with a wide variety of security and functional definitions. In this chapter we survey current
related work on PPDCA protocols. We start our analysis with results pertaining to moise-

based techniques which we further classify into two categories: ad-hoc based solutions with no

31

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

formal privacy definition, and differential privacy-based solutions with rigorous formalizations.
Afterwards, we investigate cryptographic solutions which we categorize them with an assessment
based on the threat model that each protocol adheres to. After presenting a taxonomy based
on the different characteristics of the cryptographic protocols, we highlight the shortcomings of

the current PPDCA protocols and we conclude the chapter in section 3.6.

3.2 Noise-based solutions

3.2.1 Ad-hoc

We start with noise-based techniques, in which data is protected with non-cryptographic solu-
tions. Basically n users obfuscate their data, that are forwarded to an untrusted third party
called Aggregator. The latter during an analysis phase learns a statistical function f over users’
data. Ad-hoc based noise solutions aim to address the problem with a lack of a precise privacy
definition. Each noise-based approach tunes the privacy definition with respect to the function-
ality f that has to be computed by the Aggregator. In general, the ad-hoc approach consists of
a special combination of sensitive data with noise during the collection phase in order to allow
an untrusted Aggregator A to perform certain computations on the data [19, 20, 139], without
compromising users’ privacy.

First Aggrawal et al. [7] proposed to add noise r; to each data value x;, thus the user returns
yi = x; + 1; as its own obfuscated value. The Aggregator is interested in learning > . | ;.
The problem boils down to the estimation of the accumulative distribution X, knowing the
accumulative distribution R4 of all r; and each individual distribution Y; of each perturbed
value y; = xz; + r;. The proposed solution estimates X by applying the Bayes theorem on the
underlying distributions. Moreover the authors in [7] suggested to quantify privacy with respect

to the confidence ¢ an adversary has that a data value belongs to a specific range:

Definition 26. Given a confidence interval ¢% an adversary has for the possible data range
of a single value x; to be in [a — b], then the scheme guarantees |a — b| privacy level with ¢%

confidence.

32

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

However, as identified by Aggrawal et al. [5] this definition is not rigorous since it does
not take into account the underlying probability distributions of the original data values and
the perturbed data. The above observation led to a different privacy definition that includes
the underlying probability distributions through the differential entropy of a random variable.
Before examining the contributions as presented in [5] we are giving definitions of the entropy

that are used to quantify privacy by the authors.

Definition 27. The differential entropy of a random variable X with domain Q and PDF = f(X)

is defined as:

H(X) = - /Q £(2) logy(£(x)) da

Definition 28. The conditional differential entropy of a random variable X, conditioned on a
random variable Y, with domain Q and joint PDF = f(X,Y), conditional PDF = f(X|Y) is
defined as:

H(X[Y) = - /Q £,) logs (f (zly)) dady

The authors first proposed a privacy metric inherent to the random variable X : 27(X)

and they also inserted the knowledge of the aggregate value in order to quantify privacy with
all the known information by an adversary. The proposed privacy metric 27 (X1Y) entails the
conditional entropy of a random variable X by knowing another random variable Y = X 4+ R.
They also came up with another approach to reconstruct the cumulative distribution X from
Y, within an expectation mazimization framework. The heuristic is that after applying the
expectation maximization algorithm on the perturbed data distribution the result will converge
to the original data distribution.

The additive noise mechanism for individual privacy has been shown to leak the original
data. More precisely in [95] the authors analyzed the additive noise mechanism by modeling
it with random matrices. Afterwards they applied signal filtering techniques and they manage

to separate the perturbed data from the noisy elements, by applying random matrices theory

33

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

on the perturbed data. A transformation based on random projections for evaluating euclidean
distance and inner product computations is presented in [108]. Namely the authors by exploring
the following lemma they manage to randomize both row-wise and column-wise matrices with a

random projection mechanism 7 in order to maintain data utility for inner product computations:

Lemma 2. (Johnson-Lindenstrauss [90]) Given 0 < e < 1, let Q C R? be a set of n points.

Then, there exists a map 7 : R? — R¥, where k > 8In(n)/e?, such that Vx,y € Q:
2
(1 =)z -yl <|x(@) —7@)|" < (1 +e)llz -yl

Intuitively the lemma demonstrates that by projecting a vector from a d-dimensional space
to a lower random k-dimensional space the pairwise distance of two vectors is preserved within
a small factor.

Oliveira and Zaiane [120] examined geometrical transformation on vectors to preserve the
cosine similarity of two vectors for clustering data. The underlay observation is that by randomly
scaling two vectors v; and v or by rotating them with a common angle ¢ during the collection
phase the cosine similarity is preserved for the analysis phase since it quantifies the angle of the
two original vectors. A hybrid approach that combines rotation, scaling and vector translation
is also presented. Privacy is measured as the variance of the difference between the original data
X and the transformed data Y: VAR(X —Y).

The ad-hoc approach of noise perturbation techniques lacks a generic privacy definition.
Namely, all the aforementioned solutions introduce their own privacy quantification techniques
without describing a possible adversarial behavior. As such the noise-based solutions previously
described cannot be compared due to the absence of a common formal privacy model. This lack

laid the ground for differential privacy based solutions with generic formal privacy definitions.

3.2.2 Differential privacy

The idea of differential privacy has its roots in the seminal work of Tore Dalenius [51]. In
essence Dalenius paved the way to the cryptographic security definition of semantic security [78].

Informally he underpinned the following: nothing can be revealed for individual data inputs x;

34

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

to an adversary which has access to a function f, that cannot be learnt without access to f.
This observation has led to the ad omnia definition of differential privacy. Within the
differential privacy framework, users hold personal sensitive data and a Curator stores the data.
The goal of the Curator, which is trusted [60, 84, 140], is to output the result of a statistical
function f, which takes as input users’ data, obfuscated with some noise, such that an adversary
cannot learn individual data inputs. The aforementioned security model has been augmented
with a stronger security model in which there is a semi-honest Curator, which is not trusted
[4,15,42,71,124,132] and users distributively introduce noise to their data before sending them
to the Curator. Differential privacy solutions are also categorized with respect to the interaction
model: when the untrusted party is allowed to interact with the Curator, which holds the
data, in order the latter to issue statistical noisy information for the entire population of users,
then solutions which follow this model are named as interactive [22,60,62]. In the case of
non-interaction between the Curator and the untrusted party, the Curator publishes the noisy
statistical information once and goes off-line [43,44, 64]. Before delving into solutions that
adhere to differential privacy, we give the background needed for the context that is presented

afterwards.

3.2.2.1 Differential Privacy Background

Definition 29. A statistical database SD is a collection of data points x; modeled as a multi-set

of rows R™ = ({w1;}j2y, {wa i i{ws }iy - {an}j2y) each of size m.

Informally, a statistical database is a data structure in which the values are perceived to
represent a sample over a population. The database is held by the Curator which is publishing

useful statistics for the underlying population as a whole.

Definition 30. Two statistical databases SD,SD’ are considered as neighboring if

(SD — SD')U (SD' — SD)| = 1

Intuitively two statistical databases are neighboring if one database SD can be obtained by

35

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

SD’, by adding or removing one row.

A Curator is replying to query requests. A query Q is a function f that takes as input all
the rows of a database SD and outputs a single value. The query might be the average of all
values of the database based on a predicate: Average age of patients with HIV, or the sum value

of all users’ inputs: Total consumption of house tenants in a specific geographical area.

Definition 31. The L1 sensitivity of f is:
A(f) = maz|| f(SD) — f(SD)|

for all neighboring SD, SD’.

The sensitivity of a function defines a lower bound on how much noise should be added to
individual data points such that revealing the value of f does not compromise the confidentiality
of individual data points. From another point of view it explains how much an individual data
input can change the result of f.

Definition 32. Given a random variable X, we say that X follows the Laplace distribution if

|lz—p|
its probability density function L(x,pu,b) = ief 5 , where pu,b are the location and the scale

parameters, respectively.

After giving the definitions that will help the reader clearly interpret differential privacy
solutions we categorize existing solutions with respect to the amount of trust that should be

handled by the Curator.

3.2.2.2 Trusted Curator

In the trusted Curator model the Curator randomizes the database with a randomized algorithm
M that injects some noise to each query response. An Aggregator issues queries to the entire
database to learn some statistical function f over SD. The goal of the Curator is to generate
F = M(f(SD)) € T such that the knowledge of F' does not violate individual privacy and
simultaneously the noise added by M is as small as possible. Hence, an Aggregator which

acts as an adversary cannot infer from F' the absence or the presence of an individual row in

36

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

the database. We now proceed into the formal definitions of differential privacy as presented

in [56,60]:

Definition 33. A randomized algorithm M : SD — T guarantees e-differential privacy if for

any neighboring statistical databases SD and SD’:

Pr[M(SD) € T] < e Pr[M(SD’) € T

The parameter of € is publicly defined. Differential privacy mechanism in the trusted Curator
model, guarantees that an adversary by learning the result of a statistical function F' =~ f over a
randomized database M(SD) does not compromise the individual privacy of the participants in
the underlying sample population that constitutes SD. In another context differential privacy
assures that by injecting appropriate noise, the result of F(M(SD)) is not affected with the
addition or deletion of a row.

The privacy mechanisms that first addressed differential privacy, relied on the Laplace noise
[58,60] technique. Briefly, the Curator which holds individual data values {z;}?_; in a database
SD, computes f(SD) and perturbs the result of f with noise sampled from Laplace distribution.
The scale of the noise is calibrated to the sensitivity of f. The following theorem formalizes the

solution:

Theorem 1. Let Q be a query and £ = Q(SD) the response results. A randomized algorithm M

preserves e-differential privacy if it adds independent noise sampled from a zero-mean Laplace

AQ)

€

distribution with scale parameter b = at each dimension i of the response transcript F[i] =

fli] + £(2Q),

€

The proof can be found in [60]. The noise added from the Laplace distribution introduces an
error at the computation of f which is measured by the standard deviation ¢ in the difference

of the transcripts: error,, = o|f — F| = a]ﬁ(@)\ = \/5@ When the sensitivity of the

query A(Q) is large or the € parameter is small, this yields a more flatten curve of /J(A(eQ)) with
increased noise. The noise mechanism is also independent of the distribution of the values of the

database. Solutions in which the Curator is not trusted to perform the computation of f over

37

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

plaintext data belong to the semi-honest Curator model and are described in what follows.

3.2.2.3 Semi-honest Curator

Acs et al. [4] presented a solution for distributive noise computation without any trusted Curator.
In this model users independently add noise to their data before transmitting them to the
Curator. However, simply adding noise from the Laplace distribution adds considerable noise
to the final aggregation. In [4] the noise is chosen following the Gamma distribution based on
the observation that a Laplace random variable can be simulated as a difference of two other
independent identical random variables drawn from a Gamma distribution. Predominantly, the
staple of the solution is the divisibility property of the Gamma and the Laplace distributions
[130]:

Lemma 3. Let X be a random variable that follows the zero-mean Laplace distribution with prob-

||
ability density function at x = L(x, u,b) = ﬁefT. Define two random variables G1 and Go that

17 v
follow the Gamma distribution with probability density function at x = G(n, \) = Fk(l)x%_le_?

Then X can be simulated as X =Y (G1 ~ G(n,\) — G2 ~ G(n, X)), for a scale parameter \

and shape n > 1, where Y7, (G1 ~ G(n, \)) = G(=t—1,).

i=1n
Rastogi and Nath [124] presented a different technique with distributive noise in case of a
semi-honest Curator. Users first transform its n-dimensional data to k << n dimensions with the
Discrete Fourier Transformation (DFT). Then they apply noise in the transformed data, that
is sampled from 4 Gaussian random variables to simulate a Laplace random variable according

to following proposition:

Proposition 1. Let Z be a random wvariable drawn from a Laplace distribution £(0,b) and Y;
fori € {1,2,3,4} be four Gaussian random variables. Then Z = Y+ Y3 —Y32 —Y2 is a random

variable following a L(A?/2) Laplace distribution.

As such, the original answer query is compressed and accurately approximated with the k
coefficients of the DFT. This results in a small error in the final response without violating

differential privacy.

38

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

Goryczka et al. [79] observed the inefficiency of the aforementioned solutions due to the
multiple random variables that have to be generated in order to simulate a variable from a
Laplace distribution. Namely, two Gamma random variables are needed in [4] and four Gaussian
random variables in [124]. Thus, they proposed a solution for distributive noise in which each
user has to generate a random variable from a Laplace distribution combined with a common
Beta random variable. The common random variable has to be distributed to all nodes, thus
affecting the robustness of the scheme.

The randomization mechanism with noise sampled from a Laplace distribution proportionally
calibrated to the query sensitivity is not always a solution [131]. In scenarios where the output
of Q is non-numerical then Laplace noise is useless. In this context, McSherry and Talwar
[113] proposed a solution for differential privacy in auctions. Differently than with the Laplace
mechanism, in which the sensitivity of a function dictates the minimum amount of induced noise,
in their model there is a utility function u(SD, y) with respect to the database SD and the output
y of the query y. The solution proposes to use noise sampled from exponential distribution,
proportional to exp((u(SD, y)ﬁ), where the sensitivity A(u) is measured with respect to the
utility function of two neighboring statistical databases SD, SD’. Tailored solutions for specific
scenarios such as streaming data have been also been studied under the differential privacy
model in the literature [25,34,40,41,57,61,65,96,97,115]. In [133] the authors came up with the
neat idea to combine ad-hoc based privacy definitions with differential privacy, after discerning
a gap in the latter and the leaked knowledge an adversary obtains after learning statistics over
a database, which is not entailed in differential privacy definitions.

Solutions that preserve differential privacy introduce an error in the result of f. That error
in specific applications in which precision in the computation of f is of crucial importance, may
be unacceptable. Consider the use case of a billing protocol in which users are reluctant to reveal
their real power consumption. On the other hand users will never engage in a protocol that will
allow an energy supplier to apply a charging policy based on a noisy aggregate result. As such,
noise-based techniques are not always suitable for specific PPDCA protocols. In the remainder

of this Chapter we present customized cryptographic solutions for PPDCA protocols in which

39

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

each user encrypts its individual data value, such that an aggregate function over the plaintext

data can be computed from the ciphertexts.

3.3 Cryptographic protocols

In order to tackle accurate and precise data analysis with individual privacy, different solu-
tions that blend cryptographic primitives have been proposed in the literature. Cryptographic
PPDCA protocols (cf. figure 3.1) involve n users {U/;}? ; which hold personal sensitive data
z;. On the other hand an Aggregator A seeks to infer in cleartext a function f, which takes as
input n values from the plaintext space and outputs the result. Users are reluctant to reveal
their individual data and as such they encrypt it with an encryption algorithm E. A holds a
secret key sk 4 that allows to reveal nothing but F. F takes as input the encrypted data and the
secret key sk4. In a collection phase users send their data E(z;) to A. After collecting all data

{E(z;)},, A proceeds in the data analysis phase, in which it learns F({E(z;)} ;) = f.

E(sks, {(Di}7) 6

Ui,

F(ska, E{Di}i21))

Figure 3.1: Overview of cryptographic techniques for PPDCA protocols.

The goal in the end of the protocol is two-fold: a) Users’ privacy is not compromised-i.e:
An adversary cannot learn anything by observing messages that are exchanged in between users
and the Aggregator A and b) an untrusted Aggregator A performs oblivious computations over
{E(x;)}"_, such that it learns F'({E(x;)}? ;) = f and nothing else. In the majority of the current
cryptographic solutions the privacy requirements are expressed within a game-based definition.
The adversary A is a honest-but-curious party which submits two data sets to a challenger such
that when they are given to f as inputs the result is equivalent. The challenger chooses uniformly
and at random one of the data set, it encrypts it and it gives the result to A. Following the

indistinguishability based security definition of encryption, A wins the Aggregator obliviousness

40

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

game if it correctly guesses with non-negligible probability which data set has been encrypted
by the challenger.

First we target protocols that guarantee individual privacy in the presence of a trusted
Aggregator. We then present solutions with a honest-but-curious Aggregator. The honest-but-
curious Aggregator model is further classified in solutions with a fully trusted key dealer, which
is responsible to distribute keys to users and to the Aggregator, and in techniques which avoid

the use of a fully trusted key dealer.

3.3.1 Trusted Aggregator

Onen et al. [121] transformed a symmetric encryption algorithm to an additively homomorphic
one in order to allow a tree based aggregation of sensor values. Under this model sensor nodes
correspond to the nodes of a tree 7 and the sink node is the root of 7. The nodes share keys
with the parent nodes and the sink. For data value x, secret key k£ and node i, data is encrypted
as Encrypt(z, k) = z + fr(ctr +1i) for a semantically secure pseudorandom permutation fj keyed
by k.

Castelluccia et al. [35] designed a scheme for privacy preserving aggregation for wireless
devices. In this scenario a sink-node receives data from all the wireless devices and it computes
a function over the encrypted data. Their solution entails a transformation of a symmetric
key algorithm to a homomorphic function. Briefly, all nodes and the sink share a secret key
k and encrypt their data as follows: ¢; = Enc(z;, k) = x; + kmod M. All wireless sensor
nodes are organized in a tree based construction and the root of the tree is a sink node which
receives encrypted data from the child nodes. Upon receiving all nodes’ ciphertexts the sink
node decrypts the sum Dec =" ;¢; — > i k=", x; mod M.

The trusted Aggregator threat model tackles only for privacy against external adversaries.
However in a real-world scenario the Aggregator itself is untrusted, since it is curious to learn
individual values. In what follows we analyze current PPDCA protocols, which assume a

Honest-but-curious Aggregator.

41

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

3.3.2 Honest-but-curious Aggregator

Towards a stronger security model, various protocols strengthen the threat model with a honest-
but-curious Aggregator which tries to violate individuals’ privacy. Solutions that tackle pri-
vacy in the presence of honest-but-curious Aggregators are further classified with respect to the

amount of trust that is put to a key dealer, which is responsible to distribute keys.

3.3.2.1 Trusted key dealer

In [132] the authors proposed a protocol for privacy in aggregation of data by an untrusted
Aggregator. They were the first to put forth formal security definition of Aggregator oblivi-
ousness (AO). According to the Aggregator obliviousness (AQO) definition, n users contribute
with encrypted data and the only allowed leakage in the protocol is the evaluation of a function
f =31, z; on the ciphertexts such that: f(x1,...,2,) = F(c1,...,¢,) where x; corresponds
to plaintext values and c¢; belongs to the ciphertext space. Each user encrypts &; = x; + 15
as ciy = gtitH(t)™ € G for a collision resistant hash function H : Z — G, time interval t,
secret key sk; € Z, and a random generator g for the cyclic group G of prime order p for which
Decisional Diffie-Hellman is hard. The noise r; is chosen from a geometrical distribution in order

to achieve differential privacy on the final result. Secret keys are chosen by a fully trusted key

dealer which also transmits to the untrusted Aggregator sk = — > I, sk;j. Aggregator computes
. sk

the discrete logarithm: > 2; = loggH e O™ and learns the result with the aid of a fully trusted

key dealer.

In a similar direction Bilogrevic et al. [21] aggregate data in order to compute in a privacy
preserving manner second order statistics: an Aggregator monetizes data with respect to the
distance from real random data. Due to the adaptation of the same aggregation mechanism
as in [132] this solution lends inefficient data analysis due to computation of discrete logarithm
for aggregation and weak security model since there is a trusted key deal in the protocol. The
distance metric that is used in order to rank the data is the Jensen-Shannon (JS) inequality [105].
Similarly as in [132] users receive secret keys by a trusted dealer and they further randomize

data with Geometrical distribution in order to assure differential privacy. Users choose noise

42

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

r; from a geometrical distribution as in [132] and encrypt both x; + r; and Q:ZQ + r; in order to
compute the mean and the variance that is needed for the JS inequality distance metric.

Benhamouda et al. [18] build upon the DDH based scheme of [132], in order to provide a
tighter reductionist proof. Moreover, their scheme takes advantage of the small ciphertext size
that DDH-based schemes enjoy. The core idea is to base their security on smooth projective hash
functions (SPHF) with key-homomorphism. SPHF define two hash functions. The one takes as
input a secret key hk and a value z form a domain X', and outputs the hash h;. The second
takes as input a public key hp, a value x € £ and a witness w that x € £ and outputs the hash
hg. The construction assures hj(hk,z) = ha(hp,z,w). Similarly as in [132] users encrypt the
time series data z;; in a ciphertext ¢;; = ¢g"** - Hash(sk;, H(t)), where Hash is a SPHF and H
is a hash function. The Aggregator decrypts by using its secret key ska = > | mathsfsk :
S i = loghl e Hash(ska H(0)

Joye and Libert [92] tackled the inefficient aggregate approach of [132] due to the computation
of a logarithm, with an encryption scheme which is based on Paillier [123] cryptosystem. The
neat idea that allows the Aggregator to decrypt and to learn the sum is the following: Discrete
logarithms in the subgroup of {(1+N)* mod N2}, with x € Zy, for an RSA composite number N
can be computed fast by expanding the term (14+ N)® mod N2 as (1+xzN) thanks to the binomial
theorem. During the protocol execution a trusted dealer distributes keys sk; to each user and a
decryption key skg = —>""" | sk; to the untrusted Aggregator. For each time interval ¢ user i

ski mod N2. Finally the untrusted Aggregator

encrypts data value z; ¢ as ¢;; = (1 + 2+ N)H(t)
decrypts and learns the sum » z; with the use of the secret key skg, without computing any
discrete log. Despite the significant improvements with respect to computation overhead of the
Aggregator, the protocol does not scale well for dynamic leaves and joins and also there is a
fully trusted key dealer.

T.-H. Hubert Chan et al. [42] targeted a protocol to address failures of users due to com-
munication errors or software/hardware failures (fault tolerance). The key building block in

their solution is a binary interval tree based model where each node computes the aggregation

of the descendant nodes. The leaf nodes include the data values of the users. The root node

43

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

Aggregator

Figure 3.2: The tree based construction by T.-H. Hubert Chan et al. [42]. In case of a failure
of node 3, Aggregator estimates the sum by summing the black nodes which are the disjoint set
that covers the remaining users.

is the untrusted Aggregator. As in [132] users encrypt their plaintext values with the additive
homomorphic scheme in [132]—after obfuscating it with random noise from a geometric distri-
bution Geom(a). Thus, due to the tree based construction each leaf belongs to different groups of
aggregations. Whenever user k due to faults does not participate in the protocol the Aggregator
can still evaluate the sum from the redundant aggregation information imposed at each level of
the tree by adjacent disjoint nodes, as can be depicted in figure 3.2. However there is an error
to the final result proportional to the size of failure nodes.

The authors in [104] addressed the increased error imposed by the scheme in [42] with another
approach. They invented a novel grouping technique of users known as interleaving grouping
(cf. Figure 3.3). In a basic scheme (cf. figure 3.3) a key dealer chooses n groups of secret key
pools 81, ...,S,, whereby each pool contains ¢ keys. Then, it chooses randomly a subset S’ of ¢
secret keys and assigns them to the Aggregator. The remaining keys S/ are further divided in n
groups and each user is assigned with S; = (U;_; S/) US’ keys. For encryption at time interval
t each user first applies random Geometric noise r; to each data value x; and derives a secret key
ki = e, B (1) = Ygresy H(fy (1) mod M, where M = 2llos5%] 2. € {0,... Delta},f is
a pseudorandom function indexed by s;,f : {0,1}* — {0,1}* and H maps A-bit elements to a

random value in [0, ..., M]. User i then sends the encrypted value ¢; = (x;+r;+k;) mod M to the

44

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

R

Gs

Figure 3.3: Three interleaving groups G;,G2 and G3. Node B receives keys from groups Gi,Go
and node E from groups Go,Gs. Aggregator keeps group keys for the groups Sy, S5 and S5.
Finally it can only get the sum of all nodes.

/.
J

Aggregator. For decryption, the Aggregator computes the decryption key ko = > shes! H(fy (1))
for each group and reveals the sum """ ; x; +7r; = > " (¢;) — ko mod M. Dynamic leaves and
joins are supported since only a small fraction of users is forced to receive new keys.

Jawurek [87] enhanced existing solutions by restricting the Aggregator to learn f over old
data values. This security property is referred as freshness. The protocol assures differential
privacy and Aggregator obliviousness with the help of a fully trusted key authority K which
sets up the parameters for Pailier public key cryptosystem [123] and remains on-line. Namely,
each user chooses randomness r; to encrypt each data value z; as ¢; = (1+ N)xlrlN mod N? for
sufficient large prime numbers p and ¢ such as N = pg. The untrusted Aggregator multiplies
all the ciphertexts ¢ = [[;"; ¢; transmits it to the key authority which decrypts the result
that reveals the sum of the underlying plaintexts. To guarantee freshness, users sign their
ciphertext, the encrypted randomness and the time that is coupled with each data value z; and
they forward it to the Aggregator. The Aggregator sends the signatures and the ciphertexts to
the key authority. The key authority first checks if the time interval of each query is the latest
one and further validates the signatures. If the two steps are successful then it decrypts the
computation and sends it to the untrusted Aggregator.

Rastogi et al. [124] proposed to blend homomorphic encryption with differential privacy.

Users receive by a trusted key dealer secret keys that follow a linear relationship: r =Y 7" | r;.

45

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

During encryption each user encrypts the data value x; with randomness r; by encrypting it
with Pailler cryptosystem: ¢; = Enc(z; 4+ r;). Upon receiving all ciphertexts ¢; the Aggregator
sends ¢ = [[; ¢; to each user for decryption. Due the distributed decryption process the
Aggregator learns y ;| x; as the exact sum. This bidirectional communication channel is not
always possible and also increases the communication cost of the protocol.

Following the distributive noise addition mechanism, along with encryption, Acs et al. [4]
proposed to simulate Laplace noise with Gamma variables r; (lemma 3). Each user chooses
independent noise and encrypts the noise along with the data value: z; = x;+r;. The encryption
algorithm that is employed is a additive homomorphic scheme [36] where each data is encrypted
as: Enc(z) = = + k; mod M, for x € [0, M] and k; € [0, M]. However in order to decrypt
the noisy sum the Aggregator has to know »_ " ; k;, which imposes a trusted key dealer which
distributes secret keys to each user.

Chen et al. [45] presented a scheme based on a XOR based encryption scheme. Each user
employs a PRG in order to compute a key r; that is used to a XOR based stream cipher. The
randomness r is sent to one trusted party which does not collude with the Aggregator and
the ciphertext ¢; = x; @ r; is forwarded to the Aggregator. Finally, the Aggregator receives
Yo, r and computes f =Y " @i => " ¢;®Y -, 1. The security of the scheme is based on
the non-collusion requirement between the server and the Aggregator and to the security of the
PRG. However an eavesdropper which acts as an external adversary can listen to the established
channels between users, the trusted third party and the Aggregator, and finally she can learn
individual inputs.

Gunther et al. [82] designed a scheme for privacy preserving aggregations for participatory
sensing. In their model (see figure 3.4) a set of mobile sensors are first registered in a registration
authority, which plays the role of a fully trusted key dealer. Later on, users encrypt their data
values and send them to the service provider. Data is encrypted with an additive homomorphic
identity based encryption scheme [28]. An Aggregator submits a query for some users in order
to learn their sum and receives the corresponding ciphertexts. The solution guarantees report

unlinkability, which assures that an adversary cannot trace ciphertexts submitted by users, query

46

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

SubscribeQuery

ReportData

RegisterQ
RegisterMN

RA

Figure 3.4: Mobile nodes (M N) first register to the registration authority (RA) in order to
obtain their secret key in the RegisterMN phase. Aggregator (A) also registers to RA to obtain
a valid querier registration id during the RegisterQ phase. Users then report their readings
encrypted with their secret key in the ReportData procedure. Finally whenever the querier
A wants to learn the aggregate result for specific ids, it issues a query and it receives back a
matching secret tag that allows him to decrypt the result.

privacy which hides the identifiers of users, node privacy which preserves the privacy of the data
value submitted by each user and recipient anonymity which hides the receiver of a ciphtertext.
However, in the adversarial model the Registration Authority acts as a fully trusted key dealer,
which should be online during the protocol execution, and at the decryption phase there is a
need to compute discrete logarithms, which restricts the plaintext space range to small values
(32-bit numbers).

In contrast with the aforementioned solutions, wherein a fully trusted key dealer distributes
keys to the users and to the untrusted Aggregator, such that the Aggregator learns a function f
over the plaintext data values, in what follows we analyze solutions in a stronger threat model,
whereby the protocol guarantees individual privacy without the assumption of a fully trusted

key dealer.

3.3.2.2 No Key Dealer

Erkin et al. [63] modified Paillier additively homomorphic encryption scheme [123] in a nifty
way in order to avoid distribution of keys by a trusted key dealer. Namely the encryption al-

gorithm proceeds as follows: Enc(z) = ¢~ where the randomness R(i) of each user i is

47

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

the amount of randomness sent to all users subtracted by the randomness received by each
other user in the network; combined with the public parameter N of Pailler cryptosystem:
R(i) = N+ 3711 j4iT(i—j) = 2ie1,j£i T(j—i)- By this approach when the Aggregator aggregates
all the ciphertexts, the randomness is annihilated: [[, ¢; = gim1 Tiplim B = g3y i N —
E(>"7" | x;). Finally, Aggregator decrypts and learns the sum without any further communica-
tion with the users with the decryption key of Paillier cryptosystem. However the assumption
for a static population of users in which each user has to communicate with all other users in
the system increases the communication costs.

Barthe et al. [15] proposed a solution which is not based on a trusted key dealer as well.
In their model the Aggregator is not a single participant but a coalition of servers. Between
the users and the Aggregators there is a service provider. Each user i establishes an ephemeral
Diffie-Hellman key k; ; € G with each Aggregator j, where G is Diffie-Hellman group of prime
order q. At each time interval ¢ € T the service provider receives from the users blinded readings
Tit = Tig + Z;”Zl H(t, k; ;) for a hash function H : (T,G) — Zy, for N << ¢. The service
provider forwards to each Aggregator j an index w containing the users that must be included for
aggregation and subsequently Aggregator j adds random noise n(j) from a geometric distribution
Geom(a) to the ephemeral key H(t,k; ;). Aggregators finally transmit the noisy ephemeral keys
s =mn(j) + H(t, mathsfk; ;) to the service provider which learns the noisy sum by subtracting
from the sum of all blinded readings) r;; the noise s. The proposed solution induces high
communication costs due to the ephemeral keys that user of the system has to be establish with
each Aggregator.

Danezis et al. [52] proposed a protocol for non-linear computation over encrypted data. Their
solution is based on a secret sharing mechanism between the users and a set of authorities that
aim the Aggregator to learn a function over the encrypted data. Users share secret keys with all
the authorities. Their solution permits sum, multiplications and boolean function evaluations

(NOT, AND, NAND, OR, NOR, XOR). The payoff of this approach is an increased overhead with respect

to the communication cost of each user since it has to share secrets with all the authorities.

48

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

3.3.3 Further related work

PPDCA protocols can be viewed as an instance of Multi Party Computations (MPC). MPC has
its foundation in the typical two party computation model, where two mutually distrustful parties
without revealing their inputs to each other want to perform a joint computation. Extended
for the multi-party environment where multiple clients contribute their secret inputs, theoretical
results show that any efficiently computed functionality f can be computed in a MPC setting. In
the current MPC scenarios the network is not homogeneous. That is, the parties that participate
in the protocol do not share the same computational resources, neither it is assumed for all parties
to be able to collude. Moreover there is a set of parties which do not contribute with inputs
to the computation of the function and are the only interested in learning the final result. The
theoretical foundations of heterogeneous MPC have been presented by Seny Kamara et al. [93].
However, the increased communication cost hinders their real world deployment. Moreover, in
case of an eavesdropper MPC non-heterogenous protocols require the data producers to encrypt
the data values with the public key of the Aggregator. That induces extra computational costs,
since the Aggregator has to decrypt each ciphertext received by each user.

The functional encryption [31] paradigm addresses the same goals as the PPDCA protocols:
Given a function f and an encryption of x the key holder of sk should learn the output of f(z)
and nothing else. However, when it comes to a multi-input function [76], then the current
constructions fall short of being practical due to their realization with impractical primitives as

indistinguishability obfuscation, which in turn is based on inefficient multi-linear maps.

3.4 Taxonomy

In order to achieve Aggregator obliviousness existing solutions use a fully trusted key dealer,
which distributes keys to the users and to the Aggregator, following a honest-but-curious Aggre-
gator model, whereby the Aggregator is trusted to follow the protocol’s rules. The shortcoming
of the fully trusted key dealer in terms of security is that the key dealer could at any time

decrypt individual encrypted values. Moreover there is an extra computational and communica-

49

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

tion overhead in case users dynamically enter or leave the protocol due to the need of a new key
distribution phase. Furthermore, in a ubiquitous environment in which faults are very likely to
occur, protocols with a fully trusted key dealer fall short to provide fault tolerance. Techniques
that avoid the existence of a fully trusted key dealer often require extra rounds of communication
either between the users and the Aggregator, such that the later can partially decrypt the result
throughout secret-sharing mechanism, or between each user in the protocol in order to agree
on a secret encryption key. Solutions with no key dealer, impose an increased communication
cost and as such, they are not suitable for dynamicity and fault tolerance. Moreover in current
techniques, there is a restriction on the range of the possible values a user can encrypt in order
the Aggregator to efficiently aggregate the data and learn f. We proceed in a detailed taxonomy

(cf. table 3.1) according to various properties for the aforementioned cryptographic protocols:

e Collusion resistance (CR) assures the privacy of individual data inputs in case of collusions

between malicious user and honest-but-curious Aggregator.

e Communication Model can be User-User (UU) which dictates users to share information
between each other before sending their data values to the Aggregator, unidirectional (UD)
in which each user does not receive any information from the Aggregator in order the latter
to learn the function f, or bi-directional (UB) whereby the Aggregator after receiving all

ciphertexts is engaged with an extra round of communication with the users.

e Dynamicity refers to the property of a dynamic leave or join of a user without any key

re-distribution phase.

e Fault tolerance corresponds to a PPDCA protocol in which the Aggregator is able to an-
alyze data in presence of users’ failures due to communication errors or hardware/software

failures.

e [reshness is guaranteed when the Aggregator cannot correlate fresh and non-fresh data in

order to learn f. Freshness is correlated with the notion of time for time-series data.

o Aggregator Complexity refers to the computational cost of the Aggregator for the compu-

tation of F.

50

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

3.5 Current deficiencies

After the taxonomy made in table 3.1 we are able to highlight the deficiencies of current work

that motivates the remainder this dissertation.

e In the analysis that we made we observed that the aggregate function f learnt by the
Aggregator is restricted to basic mathematical operations or binary computations over the
input data values. Thus, we turn our attention to functionalities beyond these in Chapters

4 and 5.

e We identified a lack in existing protocols to support dynamicity, collusion resistance, fault
tolerance and aggregation efficiency, in an unidirectional communication model at the same
time. This observation led us to design and analyze a protocol suitable for a dynamic pop-
ulation users, that supports collusions, is resilient to users’ failures, and provides aggregate
efficiency in an unidirectional communication model. The protocol is provable secure in

the random oracle model and is presented in Chapter 6.

e Moreover, a general observation with respect to the threat model is the fact that all
existing solutions but the protocol in [87] assume a honest-but-curious Aggregator, which
does not deviate from the protocol rules. Even though authors in [87] introduced the novel
property of freshness that does not allow a malicious Aggregator to aggregate old data
values, the solution requires a trusted party which can decrypt at any time user messages.
We incorporate in our model a malicious Aggregator in Chapter 7, that is able to learn
the sum over an entire population and constructs a proof that allows anyone to verify the
correctness of computations. Our protocol is provably secure in the random oracle model

under a new assumption that is analyzed in the generic group model.

3.6 Summary

In this Chapter, we presented the current state of the art for PPDCA protocols. We started

our analysis with ad-hoc protocols in the literature that add noise to each individual data value.

o1

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

We then discussed solutions, that are compliant with the differential privacy framework in which
noise is tuned appropriately such that an adversary cannot recognize the existence or absence
of a specific data value from the final result. However, noise-based techniques introduce an
error to the computation of f that may not be acceptable in applications that require precision
in the computation of the function f. Next, we surveyed customized cryptographic solutions,
categorized with respect to the amount of trust that needs to be placed in third parties. After
making a taxonomy of protocols we identified their deficiencies with respect to their weak threat
model and to unsupported functionalities. Therefore, in the next chapters we show solutions to

the explained shortcomings of current PPDCA protocols.

52

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

‘sjo00j01d YO Jo AWouoxe], :1°¢ 9[qe],

")INSOI 9} UIRI[O} IOPIO UT WYILIRIO[999I0SIp ' 9ndurod 0} sey 101832133y,
“uoryendwod wryyLreSo] 992IdSIP & JO POSU YY) MOYNM [sured] 109e3a133y
"109e30133Yy PoJsSnI) © JO 9SBD U URDUW AUR 9ARY Jou so0p Alrodord 9oue)sisal UOISN[o)),

1AaN X an X [zg] Te 10 szoue(
1aN X an X [61] 1@ 90 orIRg
1aN X X X nn X [e9] 1@ 90 UMy
1d X X an (28] 1% 10 1OTIUNY
1dN X an [GF] e 20 way)
1AdN X X X an [7] T2 90 soy
1dN X X aga [Fe1] T 90 1804sey
1dN an (L8] Te 30 yommer
1dN X an OINCEERY!
1dN X ag‘'dan (27 Te g0 wey)
1an X X X an 6] 12 90 9kor
1a X X X an [81] Te 30 epnoureyquog
1a X X X an [1g] 1% 30 o1a018071g
,1d X X X an [ze1] 1% 90 WS
1dN X X an V/N | [gg] e 90 ewongpyse)
¢ 1aN X X X an | »v/N [Tg1] wouQ
| OV | ssouyseag | 14 [Ayprweudg [wo [¥ | owoyog

53

CHAPTER 3. DATA COLLECTION AND ANALYSIS VS PRIVACY

o4

Chapter

Privacy Preserving Clustering

Contents
4.1 Introduction @i i i e e e 56
4.2 Related Work i i i e 57
4.3 Problem Statement 00000000 oo, 58
4.3.1 Similarity and privacy o 58
4.3.2 Cosine similarity L oo 59
4.3.3 Correctness and Privacy oL oo 59
4.4 Solution e e e e e e e e e e 61
441 Ideaof Solution 61
4.4.2 Preliminaries 61
4.4.3 Protocol description L Lo L 62
4.4.4 Correctness o .ot 63
4.5 Security 0 e e e e e e e e e e e e e 64
4.6 Evaluation i e e e e e e e e 65
4.6.1 DataSet. 65
4.6.2 Clustering 66
4.6.3 Results 66
4.6.4 Discussion Lo 67

CHAPTER 4. PRIVACY PRESERVING CLUSTERING

4.7 SUMIMATY . . v v v vt v v v e 68

4.1 Introduction

Untrusted third parties tend to leverage user information more and more to achieve better
content delivery. In particular recommendation systems collect data about users and their
interactions with their environment in order to deliver the most appropriate and personalized
content. The leveraged information, spanning users’ social relations and personal interests,
consists of highly sensitive data and hence raises the problem of privacy. A naive solution to the
aforementioned problem could be to encrypt data before analyzing them. This would not solve
the problem as operations after encryption are not be feasible. A more suitable solution could
be to encrypt data homomorphically thus statistical properties on data after encryption can be
computed. Even though this solution seems approachable, the current homomorphic encryption
schemes fall short of giving a solution for a global analysis system applied to some large scale
dataset.

One of the basic building blocks in the vast majority of data analysis scenarios is similarity
detection. By analyzing users’ dataset, a recommendation engine can discover similar profiles
and thus recommend to a newly arrived user some content that was already consumed by other
existing “similar users”. Online advertisers sought to increase their revenues by inspecting the
online behavior of users. That implies an outsourcing of personal sensitive information by online
retailers to the advertisers.

The aforementioned applications imply a privacy violation risk. Since the input to the data
analysis operations is personal sensitive private information and operations performed over them,
individual privacy may be not be protected. As such, users and companies either tend not to
submit their data for further analysis to untrusted parties or they give limited access to it due
to individual privacy violation risks [86,107,112,127]. Radical solutions include a restriction on
the available data analysis operations an Aggregator can perform from the analyzer perspective,
which degrades the accuracy on data analysis.

In this Chapter we present a privacy preserving protocol for similarity detection. Cosine sim-

56

CHAPTER 4. PRIVACY PRESERVING CLUSTERING

ilarity can recognize similar vectors based on the formed angle between the vectors. Our privacy
preserving mechanism first maps users’ data into vectors and then each user individually encrypts
its data, such that the geometrical representation of the vectorized data is being preserved. The
solution is provably secure under the security of pseudorandom generators. The accuracy of the

proposed solution is then evaluated with the study on users’ personality characteristics.

4.2 Related Work

Several techniques have been proposed in order to obfuscate data such that when users submit
their data to an Aggregator—which seeks to combine all data in order to infer useful statistics
over their the entire data—individual data privacy is being protected but specific data mining
algorithms can be applied on it. Privacy preserving data mining by adding noise on data has
been first proposed in [5,8]. The solution has been proposed for privacy preserving decision
trees as a solution to derive association rules from databases. In [120] the authors proposed
geometrical transformation for data clustering. Transformation though, is data dependent and
does not scale for multidimensional data.

Data anonymization asks for unlinkability on data records and users. K-anonymity [128,138]
has been proposed as a solution to protect the release of data to an untrusted party such that
the personal private information for each data record cannot be distinguished from k — 1 records.
Suppression and generalization are two techniques to achieve k-anonymity. By generalization [85]
specific attributes are generalized in order to protect user anonymity. With suppression [129]
specific data are not released.

In [106] cryptographic tools are used to protect user data privacy when the id3 tree is
constructed for association rules. The id3 tree is a widely known technique for data classification.
The categorical data of a set of records is being constructed by choosing the attributes that
contain the higher information gain. Information gain is expressed as conditional entropy and the
problem of id3 construction is approximated by finding the attributes for which the information
gain is maximized. The authors assume that data are split horizontally, thus the Aggregator in

order to compute the conditional entropy of two users, should separately and privately obtain

o7

CHAPTER 4. PRIVACY PRESERVING CLUSTERING

the data from both. It turns out that information gain for an attribute between two users is
expressed as (uj + ug) - log(uy + uz). The problem has been addressed as a secure multi-party
computation of this expression for two users.

Privacy preserving data classification on horizontally partitioned data has been addressed
in [48,94] as well. The solution is based on a privacy preserving protocol for sum computation
based on randomization and privacy preserving union set computation. Those two functionalities
can securely be used by an untrusted party to infer the global confidence of an attribute in order
to infer the association rules that will classify the data. In [119] privacy preserving clustering
on vertically partitioned data is addressed by submitting only the similarities on data and not
the real data. However, how the users compute the similarities while at the same time their
privacy is preserved, is not clearly addressed. Vaidya et al. [72] designed a protocol for secure
dot product computation without the use of a trusted party. However the communication cost
for computing all the dot products between users is high.

As opposed to previous solutions we propose a scheme that is data independent and assures
higher level of privacy. Previous solutions do not scale for multidimensional data [120] and also
there is no concrete security analysis with respect to the leakages of the protocol for example.
We did not tackle our similarity problem with respect to data anonymization as anonymization
protects the metadata and not the actual data. Moreover, data separation techniques in which
data are split in between different sites are not always a real world scenario in which each user

holds its data in its entire form.

4.3 Problem Statement

4.3.1 Similarity and privacy

We assume a set of n users. Each user U; holds its personal sensitive private data D;. A honest
but curious Aggregator A seeks to group together similar users according to their data. We
consider each D; as a multidimensional vector of size m: D; = (dy,da,ds,- - ,d,). After the

data collection, A is applying some operations F' in order to learn the similarity degree f over any

o8

CHAPTER 4. PRIVACY PRESERVING CLUSTERING

pair of data vectors, such that A can further form clusters. During the detection of similarities
in between data the privacy of users should not be compromised. As a consequence, we are

looking for an obfuscation mechanism ¢ : R”™ — R" such that for any two vectors x,y:

f(Di, Dj) = F(é(Di), (Dj))

where ¢ will preserve the privacy of individual data and at the same time similarity detection

through cosine computation can be computed.

4.3.2 Cosine similarity

Cosine similarity is a widely used distance metric for numerical data. Cosine similarity [111]
depicts the geometrical similarity of two objects in an Euclidean space by measuring the angle
0 formed by their vector representation in n-dimensional Euclidean space. The dot product
< a-b > of two vectors a,b is < a-b >=||a|| - ||b|| cos @ , where ||a|| = /> 1, a;? is the norm

of vector a and a; denotes the it" coefficient of this vector. Thus,

<a-b>
cosl = ———
lall - (]|

and the more similar the data the closer the angle between their corresponding vectors is and

the closer to 1 their cosine. The cosine similarity is our similarity detection function f.
4.3.3 Correctness and Privacy

Definition 34. (Privacy Preserving Data Analysis(PPDA)) In a Privacy Preserving Data Anal-
ysis scheme a set of n users U; are encrypting their data and afterwards the data are sent to the
Aggregator A for analysis. PPDA consists of the following algorithms:

Setup(1>‘) It is a randomized that on input of the security parameter 1% outputs the secret
keys k of the users.

Encrypt(sk, D;) — D;: It takes as input user data and secret encryption key and it outputs

1ts encryption.

99

CHAPTER 4. PRIVACY PRESERVING CLUSTERING

Analyze(D;, D;) — f(ﬁi,D_j): It takes as input two encrypted data vectors and it outputs
the result of a data analysis algorithm F(D},D}), such that F(D},D}) = f(D;, Dj), where f is

a similarity detection algorithm.

Definition 35. (Correctness) A PPDA scheme is correct if for all pairwise combinations of data

D;, D, the Aggregator A executes Analyze(Encrypt(sk, D;)) and obtains F(D;, D;) = f(D;, D;).

Intuitively, the privacy guarantee we require from a PPDA scheme is that given encrypted
vectors D; an adversary cannot learn any information about the plaintext D; although it may
learn the output of the function f. For the threat model we assume external adversaries, which do
not know the common 6 angle. We formalize its security through a game between an Adversary
A and the oracles (’)Eﬁc?ﬁ)t, OEPDA as follows:

At the Learning phase A submits vectors D to the (’)EEC%‘;),C oracle and the latter returns

the encryption of D with secret key sk.

During the Challenge phase:

A submits one pair of bi-vectors Vy = (Dy, D1), V1 = (D2, D3) to (’)EEC'?;A‘W that have not

been asked during the learning phase.

PPDA
OEncrypt

selects uniformly at random a bit b and returns to A D; = Encrypt(sk, Dy).
e A returns bv'.
e if ¥’ = b then A wins the game.

Definition 36. A PPDA scheme is secure if for any adversaries A, the probability of correctly
guessing b is:

PriAPPPA] < = 4 ¢(N)

, for a negligible function € on input of the security parameter X.

60

CHAPTER 4. PRIVACY PRESERVING CLUSTERING

4.4 Solution

4.4.1 Idea of Solution

The idea of the solution is to apply some transformations to original vectors which on the
one hand preserve the angle between any pair of them and on the other hand assure privacy.
Since rotation in a two dimensional space preserves angles, we apply this transformation to
two-dimension vectors named as sub-vectors which originate from the original data vector. Ad-
ditionally, these sub-vectors are further randomly scaled and thus obfuscated while still not
having an impact on the angle.

We observed security leakages when the encryption mechanism does not entail both random
scalings and rotations. If each user only selects random scaling as the encryption mechanism
then an adversary by obtaining a good guess for a coefficient of a user’s vector it can recover the
specific two dimensional vector by computing the inverse of the guessed element and multiplying
it by the encrypted coefficient.

On the other hand, thanks to rotations, the aforementioned problem is mitigated but the
following one appears when random vector rotations are used: if two users with secret vectors D;,
D; respectively have the same value at the same position of their vectors then only by encrypting
with a rotation matrix Ry of angle 6, the corresponding encrypted vectors would have the same
value at this position. This violates the security definition 36. Thus, in order for the cosine
similarity to be securely preserved after the encryption of the vectors, both random scaling and
rotations are applied. Hence, thanks to the rotation, the adversary cannot discover similarities
between one vector’s coordinates. The mapping of vectors into subvectors also decreases the
probability of discovering the original vector since the scaling factor differs from subvector to

subvector.

4.4.2 Preliminaries

Vector scaling

Vector scaling with a scaling factor s is defined by a multiplication operation between the

61

CHAPTER 4. PRIVACY PRESERVING CLUSTERING

vector v and the identity matrix S in which the main diagonal has been substituted with the

scale factor s.

s 0
v-S=v
0 s
Vector Rotation Vector rotation with an angle 6 is defined by a matrix multiplication between

cos(f) —sin(6)
the vector v and the rotation matrix Ry: v - R = v-

sin(f) cos(6)

4.4.3 Protocol description

We now describe the details of the protocol with respect to Definition 34.

e Encrypt(sk, D;) During the encryption phase each user U; holds a vector D; =

ki) _ [

(dy,da,ds,...,dp) of size m. It generates subvectors of 2 dimensions d; =

dy

If m is odd then (m + 1)/2 are constructed, otherwise if m is even then we have m/2

subvectors. In general we have [m/2] subvectors. Afterwards each user chooses a random

(k,1)

scaling factor for each subvector and it scales each subvector d;"”” with the random scaling

.j . d(kul)

factor s;: Sf = s] -d;", obtained with a pseudorandom generator PRG1(z1), that takes

as input a random looking seed z;. That is, if any of the coefficients of the subvector
dl(k’l) have been previously selected to form a vector then the old random scale factor s;

(k1)

must be used for d;”’. Then the intermediate vector S; is further rotated with a rotation

_ . . |cos(#) —sin(0
matrix Ry , where 6 is the rotation angle: df’l =5 -Ry=05/ (©) (©) . For

7
sin(d) cos(6)
the computation of # a pseudorandom generator is also used to generate the common to

all users angle § = PRG9(z2), where z3 is a random looking seed.

Finally each user U; sends D; = (JZ(-LZ), @2’3), e ,dgk’l)),Vk,l € [0,---,m] to the Aggrega-
tor A. Hereafter we will write d{ to denote the j* subvector of user U; and Jg for the j*
encrypted subvector of user U;. As such, the encryption mechanism consists of random

scalings and rotations by an angle 6: Encrypt(sk, D;) = sg : df’l - Ry, where sk = (sg, Ry).

° Analyze(ﬁi,ﬁj) The analyzer then performs computation F over the encrypted data in

62

CHAPTER 4. PRIVACY PRESERVING CLUSTERING

order to learn the similarity f of two data vectors: VU;, U;,i # j :

COS(JZ-LQ, J;’Q)
F(d;,dj) =

cos(cﬂm/ﬂ , cfj[m/ﬂ)

Aggregator computes the similarity between two vectors on the encrypted data, by applying
the cosine similarity algorithm on the encrypted data. As such, F' = f and A learns the cosine
similarity between vectors of data.

4.4.4 Correctness

Theorem 2. The PPDA scheme presented above is correct.

Proof. Tt is known that cos(a,b) = ~%b> — 2Tt For the proof of the theorem we need to
llall-Jo] [EARI

prove the following three lemmas:

Lemma 4. The transpose of an orthogonal matriz A, AT is equal to its inverse A~1

Proof. 1t is known that:

A- At =1y (4.1)

where 14 it’s the identity matrix of A. Also we obtain:

1 0
A ' AT _ A,{:l . ALI e A{:m . Al,m _ . . . _ IA
Azlj,l ’ An71 U Ag,m ' An7m
0 1
From (1), (2) we have that for any orthogonal matrix A, AT = A~! O

Lemma 5. The multiplication two vectors a,b with a rotation matriz R preserves its cosine

similarity.

63

CHAPTER 4. PRIVACY PRESERVING CLUSTERING

_ <RaRb> _ (Ra)T-Rb _ 4TRT-Rb _ TR VRb _ aTb _
Proof. cos(Ra, Rb) = [Ra[TRy = TRalTRE] = TallTol. = [Ral TRl = Japqe) — cos(a:b) where
cos(f) —sin(6) a1 cos(f) —sin(6) b1
| Ral|= = [la|| and ||Rb||= = [|b]| O
sin(f) cos(6) as sin(f) cos(6) ba

Lemma 6. The random scaling of two vectors a,b with different random scaling factors r1 and

ro preserves its cosine similarity.

<ria-rob> (r1a)T rab ria®-rob al'b
falFra] o = cos(a,b) =

Proof. cos(ria,m2b) = R8T = mllalmlel = mllalrs16] = Ta

From lemma 4, 5 and 6 it is true that multiplication of a random vector and random scaling
is a correct Privacy Preserving and Data Analysis mechanism, since encryption preserves cosine
similarity: F = f. The proof of lemma 5 is based on lemma 4: the rotation matrix R is
orthogonal and as such R~! = R”. Furthermore the rotation doesn’t change the vector norms.

O]

4.5 Security

For the privacy analysis we will show how to correlate the success probabilities of an adversary,
which will try to distinguish encryptions with a one-time pad, which uses a PRG to generate
a pseudorandom bit-stream that is used as a key, from encryptions with a one-time pad that
chooses uniformly at random keys, with the success probabilities of an adversary A that tries
to break our scheme. A depicts external adversaries, which are not aware of any source of

randomness: neither the random scaling factor nor the common random angle 6.

Theorem 3. The PPDA scheme presented above is secure according to definition 36 if PRG o

are secure pseudomndom genemtors.

Proof. We show how to relate the success probabilities of an adversary B who tries to dis-
tinguish uniformly random strings from PRG outputs. We name the distinguishing proba-
bility of adversary B against the PRG AdngG which is negligible function e. When ad-
versary A of our scheme sends two vectors Vp, V; then when B receives them it flips a ran-

dom coin and if b = 0 it returns the encryption of Vj, Encrypt(sk, V) as in the described

64

CHAPTER 4. PRIVACY PRESERVING CLUSTERING

PPDA scheme, using pseudorandom generators PRG1, PRG3 to obtain the key sk, otherwise
when b = 1 it chooses sk uniformly at random and encrypts with the Encrypt algorithm V.
When b = 0 the view of A is exactly as in the real experiment and succeeds with probability
AdviFPA When b = 1 then A succeeds with probability 1/2: Advk~ = 1/2. By definition

AV = |AQvPA —1/2) < e = AdvPPA <124

4.6 Evaluation

We also demonstrate the correctness of our protocol with an experimental evaluation procedure.
We obtained data from a personality experiment. We first cluster the data based on cosine
similarity, using hierarchical clustering. The same clustering algorithm is further applied over the
encryption of the same data using ¢ which as already described combines rotation and random
scaling. We proceed with an analysis of the data and next with the clustering algorithms that

we use.

4.6.1 Data Set

The dataset contains results from the Foursquare Personality Experiment! which uses the mobile

social network Foursquare?

, combined with a standard personality test to link between person-
ality (as defined by the five-factor model [73]) and the places that people visited. To the best of
our knowledge, this is the first time that it has been possible to correlate personality with place
on such a granular level.

When accessing the experiment, users sign in using their Foursquare account, allowing us
to access the list of venues which they have ’checked in’ to on the Foursquare service. We
access only this list, storing the venues that the user has been to and the number of times they
have visited each venue, but without accessing or storing the information about the individual

checkins - we do not store when each visit to the venue occurred, nor the order in which venues

were visited. Once users have accessed the system they then take a 44-item personality test [88,

"http://wuw.cs.cf.ac.uk/recognition/foursqexp
*http://www.foursquare.com

65

89], revealing their five-factor personality scores. The five-factor model gives each person a
score between 1 and 5 for each of the five personality traits: Openness, Conscientiousness,
Extraversion, Agreeableness and Neuroticism. The users, who participated in the study were
a self-selecting group comprised of 173 people who both use Foursquare online location based

tagging system and are willing to take part in a personality-based experiment.

4.6.2 Clustering

Clustering algorithms seek to group similar objects together. Similarity is measured with a
distance metric which in our case is cosine similarity. Hierarchical clustering is a widely known
approach for clustering. It constructs a binary tree of clustering objects that successively are
merged under the same cluster with respect to the linkage metric. The linkage metric links
clusters and objects together. It acts as an intergroup similarity measure. Two most popular
linkage metrics are the complete metric which defines the maximum similarity between two
objects as a verification to whether or not one object would be merged under the same cluster
with another one and the single metric in which the minimum similarity is treated as the
intergroup similarity metric. At the first step of the algorithm each object belongs to each own
cluster. Then all the possible pairwise similarities between objects with respect to the defined
distance metric are defined. Afterwards the algorithm iteratively merge clusters with respect to

the linkage metric until there would be one cluster with the all the examined objects.

4.6.3 Results

We applied the hierarchical algorithm over the personality dataset with the complete linkage
metric and based on cosine similarity. The data consists of 173 different 5 dimensional vectors
describing users’ personality with respect to the 5 personality traits as previously described. We
did not include venue visits frequency since we believe that personality traits are considered
much more sensitive data compared to location information and that users would be more
interested in hiding such information. We consider similarity on 3 subvectors per user data: the

subvectors are constructed with the (1%¢,2"4), (374, 4t") and (1%, 5'") coordinates of the original

CHAPTER 4. PRIVACY PRESERVING CLUSTERING

vector respectively. Any pairwise subvector could behave chosen such that the union of the set
of subvectors entails all the coefficients. The main similarity metric is computed as the average
of the similarities between subvectors. In order to protect their privacy, every user chooses a
random scaling factor per two dimensions. After the random scaling process users apply the
rotation operation to their partially obfuscated subvectors.

In figure 4.1 we plot the two dendograms of hierarchical clustering before and after the
encryption of data with our algorithm. The horizontal axis of the plot corresponds to cluster
indexes that are formed by the algorithm and the vertical axis to the linkage similarity based
on cosines. Clusters are connected with upside-down U-shaped lines. The clusters are exactly
the same due to the correctness of the algorithm as has been previously proved. All the cosines
between all the coeflicients of 2 over 173 elements has been computed. That results into a set of
14878 distances. For the linkage function we chose the complete option. Thus, two clusters will
be merged together according to the maximum distance between their elements. Results shown

in figure 4.1 demonstrate the correctness of our protocol.

4.6.4 Discussion

In our experiments we used as a similarity metric an aggregate output of each three per user
similarities. This is the average of cosine similarities. Thus, during the clustering the similarity
between points depicts similarities between the averages. We could have demonstrated three
different scenarios during the clustering process one for each subvector in order to check the
correctness of our obfuscation mechanism but since this has been demonstrated once the other
experiments would not add extra knowledge. We also want to state that the aggregate function
should not always be used for every case. This would imply an inconsistency on correctness since
many inputs could evaluate the same average similarity. Suppose for instance that data consist
of user interests on m items and for each user n similarities per two dimensions are computed.
Then a single aggregate function on user n similarities might group together during clustering

dissimilar objects that average the same similarities but on different inputs.

67

CHAPTER 4. PRIVACY PRESERVING CLUSTERING

4.7 Summary

The interplay between data analysis and privacy is emerging rapidly. Researchers from machine
learning area have highlighted the merit of data analysis operations. However this exposure
of personal sensitive data, facilitates privacy violations. Adversaries by gaining access to per-
sonal information can learn the real identity of users and overcome data legal regulations and
restrictions. That postulates a mechanism that would shield individual data confidentiality.

In this chapter we presented a mechanism for privacy preserving clustering that is based on
geometrical transformation of objects. Data are encrypted appropriately such that operations
with respect to cosine similarity detection are compatible. We proceed into an analysis of the
security risks of each operation and we concluded that the most secure way is a combination of
random scalings and rotations. Without scaling and only with rotation, similarities on the same
position coordinates are possible to occur by external adversaries. This is mitigated by a random
scaling factor, which is different per user and per subvectors with no common coefficients. We
proceed into an experimental evaluation of a scheme in order to demonstrate its correctness.
Personality traits have been obtained by 173 users and identical clustering results have been

observed before and after the obfuscation proposed solution.

68

Plaintext data

o

i

1.0f

0.8

0.6

0.4

0.2

Encrypted data

":1"1

0.8

0.6

0.4

0.2

ing

Hierarchical Cluster

Figure 4.1

CHAPTER 4. PRIVACY PRESERVING CLUSTERING

70

Chapter

Privacy Preserving Statistics in the Smart

Grid

Contents
5.1 Introduction @ i it it e e 72
5.2 Problem Definition 000000 n oo 73
5.2.1 Entities 73
5.2.2 Protocol Definitions 73
5.2.3 Privacy Definition 74
53 Overviewof PPSGS i i 76
5.4 Protocol Description 0000000, s
5.4.1 Order preserving encryption (OPE) 77
5.4.2 Our Protocol 78
5.5 Privacy Analysis o i i it e e e e e e e e e e e 80
5.6 Feasibility i i i i e e e e e e e e e e e 82
5.6.1 Smart Meter Computation Cost 82
5.6.2 Server Computation Cost, 83
BT SUIMMATY © v v v v v v v v v e e e e e e e ettt 84

71

CHAPTER 5. PRIVACY PRESERVING STATISTICS IN THE SMART GRID

5.1 Introduction

Smart meters are devices deployed in households to measure the energy consumption in specific
time intervals. They do not only measure electricity consumption but gas and water commodity
as well. The motivation for the wide deployment of smart meters is many-fold. Suppliers can
more precisely learn the time intervals houses consume more energy and thus tune appropriately
the billing of each customer and predict the potential energy demand. On the other hand, home
tenants can receive energy advices and can also change their energy consumption habits. In
particular, a customer learning the period of the highest consumption may prefer to consume in
a more efficient way.

In this Chapter, we consider the problem of computing continuous maximum energy con-
sumption over meterings sent by individual smart meters in a privacy preserving manner. Fol-
lowing the analysis that we made in Chapter 3, such type of statistics do not exist in the current
literature. We assume that both the supplier and individual smart meters are interested in de-
termining the interval in which the smart meter consumes the most. Such an operation cannot
be performed by a smart meter alone because of its lack of resources and in particular its lack of
memory: The smart meter would need an important number of values in order to find out the
maximum value corresponding to a “continuous” consumption. On the other hand, outsourcing
these computations to the supplier will naturally leak periodical consumptions which definitely
are very sensitive information. We therefore propose a solution, in which smart meters send their
periodical metering to the supplier in a privacy preserving manner while still allowing this entity
to compute the time interval of the maximum consumption. The proposed solution is based on
an order preserving encryption (OPE) which by definition preserves the order of plaintext val-
ues after their encryption without revealing any additional information. Additionally, in order
to filter out spontaneous peaks (due to some erroneous switch-on/switch-offs of home devices
for instance), the smart meter also sends the differences of consecutive consumption values in
an on-the-fly approach whereby the smart meter does not need to store auxiliary information.
Thanks to the differences the supplier is able to determine the period of maximum consumption

that is continuous. The proposed solution is provably secure with a reductionist proof to the

72

CHAPTER 5. PRIVACY PRESERVING STATISTICS IN THE SMART GRID

POPF-CPA assumption [23] which corresponds to the security notion that characterizes the

security of OPE.

5.2 Problem Definition

In this section we precisely define the problem we are trying to address and the environment in
which we envision our protocol to run. We seek for Privacy Preserving Smart Grid Statistics
(PPSGS) scheme for a set of smart meters. The smart meters are sending their meterings to
a supplier and the supplier should identify the time interval at which each smart meter reports
the maximum consumption. The supplier learns nothing but the time period of the maximum

consumption.

5.2.1 Entities

1. Smart meters. We assume a set of n smart meters, each one denoted as sm;. These
are deployed in separate households across a geographical region. The smart meters are
universally programmed to send energy consumption at a fixed time interval ¢; starting
from time ¢; and ending at time t.. Each smart meter has an embedded private key in a

tamper resistant hardware module.

2. Supplier. An energy supplier collects information from each smart meter and computes
the time interval corresponding to the maximum consumption individually for each smart

meter, thus acting as an Aggregator A.

Table 1 describes the notations used throughout the Chapter.

5.2.2 Protocol Definitions

Definition 37. (Privacy Preserving Smart Grid Statistics)(PPSGS) A PPSGS scheme consists
of the following algorithms:
Setup(1*) It is a randomized lagorithm that on input of the security parameter 1* outputs

for each user a secret key sk; and mac key mk;.

73

CHAPTER 5. PRIVACY PRESERVING STATISTICS IN THE SMART GRID

Encrypt(x; ¢, ski, mk;) — (ci¢, dit, mac;;) Each smart meter sm; encrypts its meterings z; ;
for time interval t using its secret encryption key sk;. It also computes the discretized differences
of consecutive meterings d;;. The output of the algorithm is the ciphertext value c;;, the
discretized differences d; and an integrity value mac;; computed with a MAC key mk;.

Analyze({c;+},{d;+}, mac; s, mk;) — t; The supplier takes as input encrypted meterings
{ci+}, differences {d;;}, MACs mac;; and the MAC key mk; and it outputs a tag t; for each

meter sm; that specifies an interval of the mazximum consumption.

Definition 38. (Correctness) A PPSGS scheme is correct if for all individual smart meters
sm; that submit their meterings to a supplier, after running Analyze({c;+},{di+}) algorithm, the

supplier outputs the mazximum consumption of sm; with probability 1.

Notations
sk; secret encryption key of user i
mk; | mac of user ¢
sm; | Smart meter i
tj Time interval ¢;
Ti ¢t Energy consumption of smart meter ¢ at time interval ¢
Cit Encrypted energy consumption of smart meter ¢ at time interval ¢
miw | Maximum interval window defined by the supplier
diq Difference of z; - x; ;1) metering values

Table 5.1: Protocol notations

5.2.3 Privacy Definition

We consider a honest-but-curious adversary model: Although following the steps of the protocol
correctly, the supplier will try to discover the content of the meterings sent by each smart meter.
Message forgery attacks are prevented thanks to the use of existentially unforgeable message
authentication codes (MACs). We namely present our privacy requirement:

Third party obliviousness(TPO). We adapt the security notions of aggregate oblivious-
ness in [132] to define our privacy requirements: The third party, which in our environment is the

supplier, cannot learn anything more than the time interval of maximum energy consumption.

74

CHAPTER 5. PRIVACY PRESERVING STATISTICS IN THE SMART GRID

Consider an energy supplier that receives the encryptions of each smart meter sz;. The supplier
can only learn the time interval that corresponds to the maximum consumption of each sz; and
not the metering value in plaintext.

We formulate the third party obliviousness privacy definition with a game Game” ", which
is played between the challenger C and a probabilistic polynomial time (PPT) adversary ATF©
We assume a data structure T; which depicts time series data indexed by 7. T can be seen as
an ¢ X j matrix, in which each row T; corresponds to a different time serie for time intervals j.
ATPO hass access to the game’s oracles in the following phases:

Learning. During the learning phase ATT? can issue two type of queries:

TPO
Encrypt

TPO

Encrypt returns

e Type I: ATPC submits encryption queries (z,T; ;) to O oracle and O
to ATPO ¢ij, which corresponds to an order preserving ciphertext ¢;; for time interval
Ti,j'

TPO

ATPO issues queries (T, Tiy) to the Opg’ oracle and the latter replies with

e Type II:
the corresponding difference x;, — z;; <= i) an encryption query for a message = for

the time serie T; has not been submitted for a Type I query or ii) a message = was part

TPO

of an encryption query to the (’)Encrypt

oracle for T; ; > T, Tiy.

Challenge. A™" O submits two differences of plaintext values dy = x1 — xg9,d1 = T3 — T2
to OEPO oracle which correspond to messages for time intervals (T; o, T;0), (T;x1, T;p)
respectively. The latter choses uniformly and at random b & {0,1} and returns to ATPC the
encryptions of one pair corresponding to either the encryptions of (x1,x¢) if b = 0 or the
encryptions of (x3,x9) if b= 1.

Guess: At the end of the game the adversary outputs its guess b'.

We say that A wins the Third party obliviousness game if its guess b’ = b and none of the

TPO or OTPO

(Tigo, Tipo), (Tipr, Typn) have been queried at the learning phase to either Og 7 Diff

oracle.
Definition 39. (Third party obliviousness). Let T = (Setup, Encrypt, Analyze) be a PPSGS

scheme with associated plaintext size M and ciphertext size N. Y ensures third party obliv-

iousness if for all PPT adversaries A the probability of winning the aforementioned game is

75

CHAPTER 5. PRIVACY PRESERVING STATISTICS IN THE SMART GRID

negligible: Pr[b/ = b] < 3 + €()\), where €(\) is a negligible function and X is the security

parameter.

5.3 Overview of PPSGS

In this section we give a brief description of our solution. Our PPSGS scheme achieves third-party
obliviousness thanks to an order preserving encryption scheme in which the order of numerical
items in the plaintext space is preserved in the ciphertext space as well. Each smart meter is
equipped with a tamper resistant hardware module in which a secret key is embedded. This
secret key is being used to encrypt meterings at each time interval. Thanks to the cryptographic
primitive of order preserving functions a keyed order preserving functions chosen uniformly and
at random is indistinguishable from an ideal one. Thus nothing more than the order is revealed
to the supplier who is acting as a data analysis entity.

For the accuracy of the analysis once the supplier has identified the time interval in which a
smart meter has consumed the maximum it can verify from the extra information composed by
the differences between each consumption, that actually there is a valid continuous maximum
energy consumption “around” this time interval. If the differences converge to 0 then it has a
strong indication that the meterings around that particular interval are part of a continuous
maximum consumption. Albeit the goal of publishing differences is to allow energy suppliers
determine continuous maximum energy consumptions, researchers have raised the interest for
the design of privacy preserving protocols for spike detections so as to energy operators identify
overloaded power lines [53]. As such our solution is suitable for this case as well. The advantage
of our approach is that the smart meters do not have to store the differences or the ciphertexts in
order to perform the analysis but these are computed and sent immediately on-the-fly. From the
supplier perspective the verification of a maximum continuous consumption interval is performed
in a batch way with a single operation. Moreover as it will be established in section 5.2.3, the
differences do not jeopardize the privacy requirements of the scheme.

The information from the identification of a continuous energy consumption will improve

the forecasts of energy consumption and will allow better energy allocation in advance from

76

CHAPTER 5. PRIVACY PRESERVING STATISTICS IN THE SMART GRID

energy producers. Moreover, the information of the maximum energy consumption interval can
be sent back to the tenants in order to swift their increased energy habits into low tariff periods.
This operation cannot be performed locally at each smart meter because their resources are
not sufficient for big data analysis operations. On the other hand, an integrity mechanism is
needed in order for the supplier to be assured that the meterings are sent from existing and

authenticated smart meters.

5.4 Protocol Description

In this section, we formally define our PPSGS protocol. Before describing our protocol in full

details we give a brief description of what an order preserving encryption scheme is.

5.4.1 Order preserving encryption (OPE)

Privacy preserving queries on databases have raised the interest for non conventional symmetric
encryptions [6]. Recently, in [23], Boldyreva et. al. formally defined an Order Preserving
Encryption (OPE) scheme. An OPE leaks the order of plaintext data and ideally nothing more.
An order preserving function (OPF) is a function g such that for a < b then g(a) < g(b). A
symmetric encryption scheme is then an order preserving encryption scheme if the encryption
function Enc is an order preserving function. The construction is based on the observation that
an OPF with domain D of size M and range R of size N is a bijection of all combinations of M
out of N. The security of an OPE has been analyzed in [24] with strict security definitions and
bounds. The authors described how an “ideal” random order preserving function (ROPF') should
behave. The new security definition employs the notion of window one wayness. That is the
probability of the adversary to successfully identify the range of a plaintext message given many
randomly chosen ciphertexts. They also introduce the notion of distance window one wayness
where the adversary is further restricted to identify the interval r between two plaintexts given

a large set of ciphertexts.

77

CHAPTER 5. PRIVACY PRESERVING STATISTICS IN THE SMART GRID

5.4.2 Our Protocol

The protocol consists of two phases. During the first phase each smart meter encrypts with an
OPE its meterings and it sends it to the supplier along with a MAC. Afterwards, in a second
phase the supplier collects all the encrypted values from each sm; and sorts them. Since the
encryption uses OPE the supplier can discover the ordering of the ciphertexts. The purpose of
the protocol is for the supplier to identify high energy consumption periods for each householder.
Simply by using an order preserving encryption scheme, which preserves the order of the plain-
texts at the ciphertext space would solve the problem, since home tenants tend to spontaneously
switch on/off high energy appliances. That results in a faulty inference by the energy supplier.
As such the supplier must not only recognize peaks for high electricity consumptions but also
confirm a continuous duration of the maximum consumption. To address this requirement along
with its meterings, each smart meter sm; sends discretized differences between consecutive me-
terings in such a way that the supplier can only verify the interval where the consumption
differences equal 0 which is interpreted as a continuous maximum energy consumption.

We now describe the protocol according to the definition in section 5.2.3 :

Setup(1>‘) It is a randomized lagorithm that on input of the security parameter 1* outputs
for each user a secret key sk; and mac key mk;. The mac key mk; is shared with the supplier
under and a confidential channel.

Encrypt(z; ¢, ski, mk;) — {ci+, di+, mac; 1} Each sm; encrypts its meterings z; ; with its secret
key sk; using an OPE scheme. For each ciphertext ¢;; for time interval ¢ it also sends t as
auxiliary information associated with each ciphertext. For each two sequential time intervals
each smart meter sends d;¢. Each smart meter then applies the MAC with the MAC key mk;
to the encrypted data ¢; ¢ and the discretized differences d; ; and sends ¢; || M ACnk, (¢it, dit) to
the suppliera long with d; ;.

Analyze({c;},{di+}, mac;+,mk;) — t; : The supplier collects at each time interval ¢ the
encrypted smart meterings from each sm;. If the computed MAC by the supplier matches the
MAC it obtained from the sm; then it continues with the execution of the protocol otherwise

it halts. Since the order is preserved it can identify the maximum energy consumption at time

78

CHAPTER 5. PRIVACY PRESERVING STATISTICS IN THE SMART GRID

interval ¢; for each sm;. To assure a continuous duration of the maximum consumption, the

supplier verifies:
Wend

Z dis 20 (5.1)

Wstart

inside the miw that is specified by the supplier. The miw interval has a starting point wsia,t
and an end point weyq. In the beginning the we,q is set to t; and wgar = t; — miw. Inside this
window the analyzer checks if equation 5.1 holds in order to validate a continuous maximum
energy consumption around ¢;, where each d; defines the differences of two consecutive meterings.
The differences from the meterings are discretized in order to avoid inequalities from 0 even for
small variations. This requirement obviously captures spontaneous switch on/offs of a high
energy consumption appliance that will erroneously record maximum consumptions. If equation
5.1 is not true, it continuously checks the condition by sliding the window one position to the right
until wgiere = t;. By sliding the window 1 position we mean that we advance the corresponding
time frequency by 1. That is, if the smart meter reports meterings every 1 second for instance,
miw = k and t; = 23h40m40s then the supplier will verify equation 5.1 for wgert = t; — k and
Weng = tj and will move the interval 1 second every time the condition does not hold. So the
second iteration would be from wgtert = t; — k + 1 t0 Wepg = t; + 1 until wgiere = t; and so on.
If none of the corresponding delta differences inside miw does not satisfy the condition then the
second maximum ¢; is selected and the procedure restarts.

Correctness. The correctness of PPSGS depends on the correctness of the order preserving
encryption scheme and on the fact that if the discretized differences of plaintext meterings are

equal to O then:

Wend

> diyg £0

Wstart

Indeed, consider a smart meter sm; which detects the set of plaintext values
{xi,th s Tityy s Tigyy - - s Tity, }. These plaintext values after decreasing ordering, they form the or-
dered set 0, indexed by j which is the time interval . For every two consecutive values @;¢;, Ti¢t; .,
the sm; computes the difference d; ; = Titi g —Tit; and then sends to the supplier along with the

encrypted values <{c,~7,5j1 »Cityys Cityys - - ,ci,tjn} the differences discretized by a parameter ¢ [d; ¢]4.

79

CHAPTER 5. PRIVACY PRESERVING STATISTICS IN THE SMART GRID

Thanks to the OPE the supplier can reconstruct the same ordered set 0. from the ciphertexts
but instead of plaintext values it obtains the corresponding for the time interval j ciphertext
values. If around the maximum time interval ¢; there are not big difference variations then after
the discretization of the differences [d;4]s = 0 and >, "¢ d;, Lo,

Wstart

5.5 Privacy Analysis

We show in this section that the published differences do not affect the privacy requirement for
third party obliviousness, which requires that nothing more other than the interval in which the
smart meter has consumed the maximum energy for at least miw time interval, is revealed. We
assume that the OPE in our protocol is instantiated as in [6] from the set of all possible OPE
functions fixed by the secret key of the smart meter. If the OPE acts as a pseudorandom OPE
fixed by a secret key then nothing more than the ordering is revealed. For our reduction we will
use the POPF-CPA security definition from [23].

Let an OPFE scheme OPE = (K, Enc, Dec), with plaintext space D and ciphertext space
R,|D| < |R|. We describe the oracles an adversary A has access to, during the POPF-CPA

game:

POPF—CPA

During the learning phase a A submits order preserving encryption queries to O, crypt

a value z and the oracles replies with Enc(x). At the challenge phase A submits to OEOPF*CPA

oracle two pairs of same order plaintexts: (z9,2%), (z}, 1) that have not been queried at the

(POPF—CPA

Encrypt oracle, during the learning phase. (’)EOPF_CPA flips a random coin b & {0,1} and

returns to A : Encrypt(zf, 24). Eventually A outputs a guess b* for the bit b.
We say that A succeeds in the POPF-CPA game if its guess b* = b.

Definition 40. An OPE encryption scheme is CPA secure if for any adversary A against
an order preserving pseudorandom function under chosen-ciphertext attack (POPF-CPA) the
probability Pr[b) = b] < %—i—e()\), where € is negligible function on input of the security parameter

A.

Theorem 4. The PPSGS scheme presented in section 5.4 assures third party obliviousness

under the POPF-CPA security of the underlying OPE encryption scheme.

80

CHAPTER 5. PRIVACY PRESERVING STATISTICS IN THE SMART GRID

Proof. (Sketch) Let us assume there is an adversary A7F© that breaks third party obliviousness
as presented in section section 5.4 with non negligible probability e. We show in what follows that

there exists an adversary B that uses A77C to break the POPF-CPA game with non-negligible

POPF—CPA

POPF—CPA
Encrypt OC

advantage. For ease of exposition, we denote O , and the oracles of the

POPF-CPA game and by (’)Efc?ypt, Og!}o , (’)EPO the oracles that A7P© has access to. Now to

break the POPF-CPA game, aggregator B simulates the third party obliviousness game of our

scheme for adversary ATTC as follows:

e Whenever ATPO submits queries (z, T; ;) to the (’)Efc?ypt oracle, BB calls the (’)Er(])cfpr;CPA

oracle and returns ¢; to ATFO.

e B whenever receives (T; ;, T;;) queries for the (’)EEFO oracle, checks if for time interval T;

A has issued an encryption query or if a message x was part of an encryption query to the

(’)Er'fc?ypt oracle for T; ; > T, T;;. If none of the above holds the B forwards to A the

difference x; — x; ;.

ATPO gubmits two plaintext values dy = x2 — xg,d1 = 22 — x1 to B that correspond to the

delta encodings that A receives during the protocol execution.

e Sequentally B so as to simulate the (’)EPO oracle, it submits to (’)EOPF_CPA oracle the pairs

(20 xé), (xg,x}l), such that dy = x4, — xp, d1 = xc — T4.

a’

(’)EOPF_CPA in turn flips a random coin b & {0,1} and responds to B with ¢4, ¢, if b =0 or

with ¢, cq if b=1.

B finally forwards to A the ciphertext pair that it received from (’)EOPF_CPA.

The adversary A cannot tell whether it is interacting with the actual oracles or with adversary
B during this simulated game. Now, A outputs a guess i’ for the bit b. Note that if A has a
non-negligible advantage ¢ in breaking the third party obliviousness of our scheme, then this
entails that it outputs a correct guess b’ for the bit b with a non-negligible advantage e. Finally

in order to win the POPF-CPA game B outputs the guess b* = b'.

81

CHAPTER 5. PRIVACY PRESERVING STATISTICS IN THE SMART GRID

To conclude, if there is an adversary A which breaks the third party obliviousness of our
solution, then there exists an adversary B which breaks the POPF-CPA game of [23] with some

non-negligible advantage e: Adv[ATPO] < Adv[BFOPF=CPA] < ¢()\) O

5.6 Feasibility

5.6.1 Smart Meter Computation Cost

Real-world smart meters that are deployed in houses are equipped with low-cost, ultra-low power
microcontrollers (MCU). We assume the existence of the widely used 16-bit RISC MSP430X
MCU. They consist of flash memory that can be extended up to 256 KB, read-only-memory and
a distinct clock rate for their CPU that ranges from 8MHz to 25MHz. Some of them are equipped
with a radio frequency transceiver for wireless communication. For the metering procedure they
have sensors that measure energy and an analog-to-digital converter. We analyze the feasibility
of the protocol with respect to space and time overhead based on a 16-bit RISC MSP430 MCU,
with 256 KB flash memory, 20 MHz clock rate and an AES instruction set coming in the AES
accelerator hardware module that can speed up AES encryption in CTR mode up to 8 times [80].

In table 5.2, we show the computational and storage overhead of our solution. Since our OPE
like in [23] is based on the a symmetric block cipher, we refer to the performance analysis of AES
in counter mode on a 16-bit RISC MSP430 MCU with an AES accelerator module described
in [80] and further compute the cost of our solution. Results are shown in a per day analysis
considering different time slots.

To compute the storage overhead of the solution we observe from real data [13] that the
maximum energy consumption of smart meters deployed in a 1700 square foot home do not
exceed 1000kW and therefore can be represented by 2 bytes. Since the minimum block size for
AES is 128 bits (16 bytes) a metering value can be considered as 1 AES block. Thus for the
computational overhead we consider the cost of 1 block AES encryption. I.e: the first row of
table 5.2 shows that in 1 day we can have 24 % 60 x 60 = 86400 meterings that correspond to

86400+2 = 172.8 MB for a total computational cost of 13.3 million cycles for the OPE encryption

82

CHAPTER 5. PRIVACY PRESERVING STATISTICS IN THE SMART GRID

of all the meterings.

Table 5.2: Per day computational and storage overhead of OPE

Period (seconds) | #Meterings | Flash(KB) | Time (Mcb)
1 86400 172.8 13.33
2 43200 86.4 6.32
3 28800 56.6 4.08
4 21600 43.2 2.99
5 17280 34.5 2.35
6 14400 28.8 1.93
7 12343 24.6 1.63
8 10800 21.6 1.41
9 9600 19.3 1.24
10 8640 17.2 1.10

Table 5.3: Space and computation analysis. Mcb denotes megacycles per block

5.6.2 Server Computation Cost

The procedure that dominates the computational overhead of the server is the sorting of the me-
terings. The server must first sort all per user encrypted meterings in a separate data structure.
Each encrypted smart metering c;; is associated with a tag which is the time interval j. We
consider that the server holds a binary search tree (BST) for each user. The BST provides an
efficient way to keep a set of elements sorted [50]. In the average case it has O(log N') complexity
for insertions and O(log N) to find the maximum element of the BST. Thus the computational
complexity per smart meter for m metering is O(logm).

For the verification of the maximum continuous interval the server also has to perform n

?

additions (> wend

word dit 0) per smart meter, where n is the number of differences provided

by smart meter inside the miw. The miw is orders of magnitude smaller than the meterings.
Thus n additions are performed in the best case in which the server identifies a maximum

continuous energy consumption inside the miw. In the worst case the server has to compute

o((n_l).w

pen) multiplications where T'otal Duration corresponds to the overall metering

duration.

83

CHAPTER 5. PRIVACY PRESERVING STATISTICS IN THE SMART GRID

5.7 Summary

In this Chapter we presented a protocol for personalized statistics in a smart grid environment
by showing that a reconciliation of privacy and utility is achievable. The solution is based on an
encryption scheme that preserves the order of the plaintexts in the ciphertext space along with
an appropriate delta encoding scheme. We proved the privacy of the protocol with a reduction
proof to the POPF-CPA [23] assumption of the OPE. The storage and computational costs of the

protocol are analyzed with real data. For the analysis we assumed real world microcontrollers.

84

Chapter

Private and Dynamic Time-Series Data

Aggregation with Trust Relaxation

Contents
6.1 Introduction i 86
6.2 Related Work 0 0 i i i i e e e e e e 86
6.3 Problem Statement 000000 e 88
6.3.1 Entities 89
6.3.2 Privacy Preserving and Dynamic Time-Series Data Aggregation 90
6.3.3 Privacy Definitions oo o 90
6.4 IdeaofSolutionttt 95
6.5 Protocol Description 0o e . 96
6.5.1 Joye-Libert Scheme, 97
6.5.2 Description L e 98
6.5.3 Privacy Analysis L 99
6.5.4 Dynamic Group Management 104
6.6 Evaluation. i i e e e 104
6.6.1 Implementation L 105
6.7 SUMIMATY . . ¢ ¢ ¢ v v v bttt e e et e e e e e e e e e e e e e e e e e e 109

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

6.1 Introduction

In this Chapter, following the goals of this dissertation as presented in Chapter 1.4, we
propose a Privacy Preserving Data Collection and Analysis (PPDCA) protocol that eliminates
the need for key redistribution following a user join or leave and the need for fully trusted key
dealer. As such we strengthen the threat model of current PPDCA protocols with enhanced
functionalities of dynamicity and fault tolerance. The features of the enhanced protocol can be

summarized as follows:

e No key dealer. Contrary to most of previous privacy preserving aggregation protocols,
there is no trusted key dealer in our scheme. In contrast, we introduce a semi-trusted
party called Collector which gathers partial key information from users through a secure

channel.

e Support for dynamic user populations. No coordination is required to manage changes in
the population of users. This is possible due to a self-generated key mechanism by which

no key agreement between users is required.

e Privacy. With respect to privacy, the scheme assures Aggregator obliviousness as intro-
duced by Elaine Shi et al. [132]. That is, the untrusted Aggregator only learns the sum
and the average over users’ private data at the end of the protocol execution. Moreover,

we show that the Collector does not derive any information about the users’ private data.

e Efficiency. Like Joye et al. [92] our scheme enables the computation of the sum and the
average over a large number of users without restrictions on the range of users’ values. It
is also scalable in the sense that decryptions performed by the Aggregator do not depend

on the number of users.

6.2 Related Work

Onen and Molva [121] introduced a scheme to compute aggregate statistics over wireless sen-

sor networks with multilayer encryption by transforming a block cipher into a symmetrically

86

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

homomorphic encryption. Even if the proposed solution provides generic confidentiality, the
sink-Aggregator is fully trusted and shares keys with the sensors. In [63], the authors proposed
a protocol for secure aggregation of data using a modified version of Paillier homomorphic en-
cryption. The Aggregator which is interested in learning the aggregate sum of data is able to
decrypt without knowing the decryption key. The idea behind the scheme is a secret sharing
mechanism executed between users such that the aggregation of encrypted data reveals the sum
if and only if all users’ data is aggregated. However, this scheme suffers from an increased com-
munication cost due to secret share exchange between users. A solution that blends multiparty
computation with homomorphic encryption is also presented in [102], but contrary to our scheme
it does not address the issue of dynamic group management.

The authors in [15, 42,87, 124] studied privacy preserving data collection protocols with
differential privacy. The combination of differential privacy with non conventional encryption
schemes can provide an acceptable trade-off between privacy and utility. In [124], a secret sharing
mechanism and additively homomorphic encryption are employed together with the addition of
appropriate noise to data by the users. Upon receiving the encrypted values a second round
of communication is required between users and Aggregator to allow for partial decryption and
noise cancellation. At the end of the protocol, the Aggregator learns the differential private sum.
Jawurek and Kerschbaum [87] eliminate this extra communication round between the users and
the Aggregator by introducing a key manager which unfortunately can decrypt users’ individual
data. Barthe et al. [15] proposed a solution whereby each smart meter in the protocol establishes
an ephemeral DH shared secret with all the Aggregators. In their scheme the service provider
is willing to learn a noisy weighted sum. Interestingly dynamic leaves and joins are supported
with the cost of shared secrets between the smart meter and all the Aggregators. Aggregators
also, unless they collude they cannot learn individual meterings.

Chan et al. [42] devised a privacy preserving aggregation scheme that computes the sum of
users’ data, and handles user joins and leaves of smart meters and arbitrary user failures. The
decrypted sum is perturbed with geometric noise which ensures differential privacy. Nonetheless,

this solution calls for a fully trusted dealer that is able to decrypt users’ individual data. The

87

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

authors in [104] presented a solution to tackle the issue of key redistribution after a user joins or
leaves. The propounded solution is based on a ring based grouping technique in which users are
clustered into disjoint groups, and consequently, whenever a user joins or leaves only a fraction
of the users is affected.

The existing work that resembles the most ours is the work of [92,132]. Actually, Song
et al. [132] employs an additively homomorphic encryption scheme with differential noise to
ensure Aggregator obliviousness. The proposed solution is based on a linear correlation between
the keys which is known to the untrusted Aggregator. However the decrypted sum is encoded
as an exponent, thus forcing a small plaintext space. Whereas Joye et al. [92] designed a
solution that addresses the efficiency issues of [132]. Notably, Joye et al. [92] introduced a
nifty solution to compute discrete logarithms in composite order groups in which the decision
composite residuosity problem is intractable. Still, the scheme in [92] depends on a fully trusted
key dealer which renders the scheme impractical for a real world application. Moreover, both

schemes do not tackle either the issue of dynamic group management or user failures.

6.3 Problem Statement

We consider a scenario where an Aggregator A would like to compute the aggregate sum of the
private data of some users ;. Similarly to the work of [92] and [132], we restrict ourselves to
time-series data which is a series of data point observations measured at equally spaced time
intervals. A straightforward approach to compute the aggregate sum would be encrypting U;’s
individual data using the public key of A. This solution however relies on a trusted Aggregator
which first decrypts the users’ individual data using its secret key then computes the sum. To
tackle this issue, [92] and [132] employ a combination of secret sharing techniques and additively
homomorphic encryption to enable Aggregator A to compute the sum of users’ data without
compromising users’ privacy. The idea is to have a trusted third party called key dealer that
provides each user U; with a secret share sk; while supplying the Aggregator A with the secret
key sk defined as — > sk;. Each user U; encrypts its private data using its secret share sk;

and forwards the resulting ciphertext to the Aggregator, which in turn combines the received

88

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

ciphertexts so as to obtain an encryption of the sum of the users’ data that can be decrypted
using the Aggregator’s secret key sk 4.

Although such solutions prevent the Aggregator from learning users’ confidential data, they
suffer from two main limitations which we aim to address in this chapter. The first limitation is
that they build upon the assumption that the key dealer is trusted and does not have any interest
in undermining user privacy. Whereas the second shortcoming —which is generally overlooked- is
that these solutions only support static groups of users and as a result they are fault intolerant.
Namely, in the case of user failures, Aggregator A cannot compute the aggregate sum. Along
these lines, we propose a solution for privacy preserving data aggregation of time-series data that
draws upon the work of [92] and which in addition to supporting dynamic group management
and arbitrary user failures does not depend on trusted key dealers. The idea is to introduce
an intermediary untrusted party that we call Collector, which helps the Aggregator A with the
computation of the sum of users’ individual data, without any prior distribution of secret keys

by a trusted dealer.

6.3.1 Entities

A scheme for dynamic and privacy preserving data aggregation for time-series involves the

following entities:

e Users U;: At each specific time interval ¢, each user Uf; produces a data point xz;; that it
wants to send to an Aggregator. Each data point contains private sensitive information
pertaining to user U;. To protect the confidentiality of the value of z;; against the Aggre-
gator and eavesdroppers, user U; encrypts x;; using some secret input sk; and forwards the
resulting ciphertext c¢;; to the Aggregator. It also sends to the Collector some auxiliary
information aux; ; that will be used later to compute the aggregate sum of individual data.

Without loss of generality, we denote U the set of users U; in the system.

e Collector C: It is an untrusted party which upon receiving the auxiliary information aux;
sent by users U; € U at time interval ¢ computes a function g of aux;;. Hereafter, we

denote aux; the output of function ¢ at time interval t.

89

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH

TRUST RELAXATION

Aggregator A: It is an untrusted entity which upon receipt of ciphertexts c;; and the

auxiliary information aux; at time interval ¢ computes the sum Z x;+ over the data
Uu; el
points x;; underlying ciphertexts c; ;.

6.3.2 Privacy Preserving and Dynamic Time-Series Data Aggregation

A privacy preserving and dynamic time-series data aggregation protocol consists of the following

algorithms:

Setup(1?) — (P, ska, skc, {ski}u,cv): It is a randomized algorithm which on input of a
security parameter A, outputs the public parameters P that will be used by subsequent
algorithms, the secret key sk4 of Aggregator A, the secret key ske of Collector C and the

secret keys {sk;}y,eu of users U;.

Encrypt(t,sk;, x; 1) — ci+: It is a deterministic algorithm which on input of time interval
t, secret key sk; of user U; and data point x;;, encrypts z;; and outputs the resulting

ciphertext c; ;.

Collect((aux; ¢)i,cu, skc) — auxg: It is a deterministic algorithm executed by Collector C
which on input of the auxiliary information (aux;¢)y,cu provided by individual users U;
and Collector C’s secret key skc computes a function g over aux;; and outputs the result

auXg.

Aggregate({c;}u,cu, auxs, ska) — > @i It is a deterministic algorithm run by Aggre-
gator A. It takes as inputs ciphertexts {c;}y,cu, auxiliary information aux; supplied by
Collector C and the secret key sk4 of the Aggregator A, and outputs the sum) z; 4, where

x; ¢ is the plaintext underlying ciphertext c¢; ;.

6.3.3 Privacy Definitions

In accordance with the work of [92,132], we assume in this chapter an honest-but-curious model.

This means that while the participants in the protocol are interested in learning the individual

data of users, they still comply with the aggregation protocol. Namely, users are always presumed

90

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

to submit a correct input to the aggregation protocol. Actually, data pollution attacks where
users submit bogus values to the Aggregator is orthogonal to the problem of privacy preserving
data aggregation. We also assume that while users I/; may collude with either Aggregator A or
Collector C by disclosing their private inputs, Aggregator A and Collector C never collude.

In this section, we present two formalizations: The first one defines privacy against Aggre-
gator A which we call in compliance with previous work Aggregator obliviousness, whereas the
second formalization defines privacy against Collector C which we refer to as Collector oblivi-

ousness.

6.3.3.1 Aggregator Obliviousness

Aggregator Obliviousness (AO) ensures that for each time interval ¢, the Aggregator learns
nothing other than the value of ZuieIU x; ¢ from ciphertexts ¢;; and the auxiliary information
aux; that it receives from users U; € U and Collector C respectively. It ensures also that even
if Aggregator A colludes with an arbitrary set of users K C U, it will only be able to learn the
value of the aggregate sum of honest users (i.e. Z z;+) and nothing else.
U;eU\K
To formally capture the capabilities of an Aggregator A against the privacy of aggregation

protocols, we assume that A is given access to the following oracles:

® Osetup,4: When called, this oracle provides Aggregator A with the public parameters
denoted P of the aggregation protocol and any secret information sk 4 that may be needed

by Aggregator A to perform the aggregation.

® Ocncrypt: When queried with time ¢, identifier uid; of some user i; and a data point z;,

oracle Oencrypt Outputs the encryption ¢;; of x;; in time interval ¢ using U;’s secret key sk;.

® Ocorrupt: When queried with the identifier uid; of some user U;, the oracle Ocorrupt returns

the secret key sk; of user U;.

® Ocollect, A When called with time ¢, this oracle returns the auxiliary information aux; that
Collector C computed during time interval t. We note that in schemes such as [92, 132]

where a Collector is not needed, the Aggregator will not call this oracle.

91

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

Algorithm 1 Learning phase of the Aggregator obliviousness game

(P,ska) <= Osetup,4; // A executes the following a polynomial number of times
sk; < Ocorrupt(Uidi)§

A= t;

// Ais allowed to call Oencrypt for all users U

Cit < Oencrypt(t; uid;, xi,t);

auxg <— Ocollect,A(t);

Algorithm 2 Challenge phase of the Aggregator obliviousness game
A — t* S*;

A— X2 XL

<(C?7t* es, auxt) < Opao (X2, XL);

A — b*;

e Opo: When called with a subset of users S C U and with two time-series (U, t, f?,t)uieS
and (Ui, t,x{,Ju,es such that Y af, = 3z, this oracle flips a random coin b € {0,1}
and returns an encryption of the time-serie (U, t, wﬁ?’t)uies (that is the tuple of ciphertexts
(cgt)uieg) and the corresponding auxiliary information aux? that Aggregator A should

receive from the Collector in time interval .

Aggregator A has access to the above oracles in two phases: a learning and a challenge phase.
In the learning phase (cf. Algorithm 1), Aggregator A first calls the oracle Osetyp 4 that provides
A with the set of public parameters P associated with the aggregation protocol together with
any secret information sk4 that Aggregator A may need to execute the aggregation correctly.
Next, A compromises users U; by calling the oracle Ocorrupt Which returns the secret keys of
compromised users. Then, A picks a time interval ¢ and issues encryption queries (¢, uid;, ; ;) to
the oracle Oencrypt Which outputs the corresponding ciphertexts c;;. Finally, A calls the oracle
Ocollect t0 get the auxiliary information aux; computed by Collector C in time interval ¢.

In the challenge phase (see Algorithm 2), Aggregator A chooses a subset S* of users that
were not compromised and a challenge time interval t* for which it did not make an encryption
query during the learning phase. A then submits two time-series X2 = (U;, t*, x%t* Ju;es+ and
XL = (Ul-,t*,x}’t* Ju;es+ to the oracle Opp, such that ngt = Zx}t Oracle Opp accordingly
flips a coin b € {0,1} and returns the encryption (c},.)yes+ of the time-serie AL and the

auxiliary information aux?. computed by Collector C for time interval ¢*. At the end of the

92

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

challenge phase, Aggregator A outputs a guess b* for the bit b.

We say that Aggregator A succeeds in the Aggregator obliviousness game, if its guess b* = b.

Definition 41 (Aggregator Obliviousness). An aggregation protocol is said to ensure Aggregator
obliviousness if for any Aggregator A, the probability Pr(b = b*) < %—I—e()\), where € is a negligible

function, and X is the security parameter.

6.3.3.2 Collector Obliviousness

Collector Obliviousness (CO) guarantees that Collector C cannot infer any information about
the private input of individual users U; either from the messages it receives directly from the
users or the protocol exchange between the users and the Aggregator. It also entails that even
in the case where Collector C colludes with a set of users K, it does not gain any additional
information about the individual values of honest users U; in U \ K.

To formally reflect the adversarial capabilities of Collector C against aggregation protocols,
we assume that in addition to the oracles Oencrypt and Ocorrupt, Collector C is given access to the

following oracles:

® Osetup,c: When queried, this oracle supplies Collector C with the public parameters denoted
P of the aggregation protocol and any secret information skg that Collector C may need

during the aggregation protocol.

® Ocliect,c: When invoked with time ¢, identifier uid; of some user ¢/; and ciphertext ¢; ¢, this
oracle returns the auxiliary information aux; ; that corresponds to ciphertext ¢; ; that user

U; computed during time interval ¢.

e Oco: When called with a subset of users S C U and with two time-series (U, t, x?,t)uieS
and (Z/Ii,t,azz{t)uieg, this oracle flips a random coin b € {0,1} and returns to Collector
C an encryption of the time-serie (Ui,t,x?,t)uieg (i.e. the ciphertexts (C?,t)uieS) and the

corresponding auxiliary information computed by users U; € S (i.e. (aux?,)yes)-

Collector C accesses the aforementioned oracles in a learning and a challenge phase. In the

learning phase (cf. Algorithm 3), Collector C first queries the oracle Osetup,c Which supplies C with

93

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

Algorithm 3 Learning phase of the Collector obliviousness game

(P,skc) <= Osetup,c; // C executes the following a polynomial number of times
sk; < Ocorrupt(Uidi)§

C—t;

// C is allowed to call Oencrypt and Ocoliect,c for all users U;

Cit < Oencrypt(t; uid;, xi,t);

auXx; ¢ < Ocollect,C(tp uid;, Ci,t);

Algorithm 4 Challenge phase of the Collector obliviousness game
C — t*,S%

C— X2, xk;

((Cgtﬂauxgt*))%eS* Oco(Xf, XL) 5

C—b";

the set of public parameters P of the aggregation protocol and the secret information skc that
Collector C should have to execute the aggregation properly. Then, C calls the oracle Ocorrupt to
compromise users in the system. Next, it selects a time interval ¢ and submits encryption queries
(t,uid;, z;+) to the oracle Oencrypt Which outputs the corresponding ciphertexts c¢;;. Finally, it
issues queries (¢, uid;, ¢; +) to the oracle Ocojiect,c to get the auxiliary information aux; ; generated
by users U; for time interval ¢ and ciphertext c¢; ;.

In the challenge phase (see Algorithm 4), Collector C selects a subset S* of honest users
and a challenge time interval t* for which it did not make an encryption query in the learn-
ing phase. Then, C queries the oracle Oco with two time-series X2 = (Ui,t*7»"32t* Ju;es+ and
XL = (L{i,t*,xit*)uieg*. Oco then picks randomly a bit b € {0,1} and returns the tuple
((cgt*,auxi-”t*))uieg* for the time-serie X%. At the end of the challenge phase, Collector C out-
puts a guess b* for the bit b.

We say that Collector C succeeds in the Collector obliviousness game, if its guess b* = b.

Definition 42 (Collector Obliviousness). An aggregation protocol is said to ensure Collector
obliviousness if for any Collector C, the probability Pr(b = b*) < % + €(N\), where € is a negligible

function, and X\ is the security parameter.

94

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

6.4 Idea of Solution

The homomorphic scheme suggested by Joye and Libert [92] allows an untrusted Aggregator to
evaluate the sum or the average without any access to individual data. However to support this
functionality, a fully trusted dealer has to distribute secret keys to each user U; and as a result,
it will be able to decrypt. Our scheme extends Joye and Libert scheme [92] through two major

enhancements :

e No key dealer: Our scheme does not require a trusted key dealer that might get individual

private data samples.

e Dynamic group management: In the Joye and Libert scheme [92], each join or leave
operation triggers a new key redistribution for all the users in the aggregation system,
whereas in our protocol, join and leave operations are possible without any key update at
the users. Hence, dynamic group management is assured with significantly lower commu-
nication and computation overhead. The proposed protocol is also resilient to user failures

that may occur due to communication errors or hardware failures.

In order to eliminate the need for a fully trusted dealer and to support dynamic group
management without inducing additional communication or computation overhead, we employ

two techniques:

o Responsibility splitting mechanism: Each user U; sends an encryption of its private data
sample to Aggregator A and an obfuscated version of its secret key sk; to the semi trusted
Collector C, in such a way that neither the Aggregator nor the Collector can violate the

privacy of individual samples provided by users.

o Self-generation of secret keys: The secret keys used to encrypt individual data samples are

generated independently by users with no coordination by a trusted key dealer.

An overview of our solution is depicted in figure 6.1. Each user U; chooses independently
its secret key sk; whereas the untrusted Aggregator generates a random key sk 4. For each time

interval ¢, Aggregator A publishes an obfuscated version pk4, of the secret key ska. Users U;

95

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH

TRUST RELAXATION
C A
PkA,t
auxy ¢
—————] Ci,t
U
auxa ¢
——————| Cot
Us
auxs, ¢
—eeeeeee | Cg,t
Us

————| Cn,t
U,
auxy

Aggregate(c; ¢, aux;, ska) = >0 Ti

Figure 6.1: Overview of our protocol for a single time interval ¢. pk,; is public known value.

on the other hand encrypt their private data samples x;; with their secret keys sk; using the
Joye-Libert cryptosystem, and send the corresponding ciphertexts c¢;; to Aggregator A. They
also obfuscate their secret keys sk; using pk 4 ; and send the resulting auxiliary information aux;
to Collector C through a secure channel. Collector C computes a function g(¢) of the auxiliary
information aux;; it has received and forwards the output aux; to Aggregator A. Upon receiving
the ciphertexts ¢;; and the auxiliary information aux;, A uses its secret key sk and learns the
sum) x;, for the time interval ¢.

In this manner, we eliminate the need of a trusted key dealer that knows users’ private keys
while ensuring that neither the Aggregator nor the Collector can infer information about users’
individual data, and we achieve efficient dynamic group management that does not call for any

key update mechanism.

6.5 Protocol Description

Without loss of generality, we assume in the remainder of this section that the aggregation

system comprises n users denoted U = {Uy, ...,Uy }.

96

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

Now before providing the description of our solution, we first give a brief overview of the

Joye-Libert (JL) scheme [92].

6.5.1 Joye-Libert Scheme

e Setup,L: A trusted dealer D selects randomly two safe prime numbers p and ¢ and sets
N = pq. Then, it defines a cryptographic hash function H : Z — Z},, and outputs the
public parameters Py = (N, H). Finally, the dealer D distributes to each user U; € U a

secret key sk; € [0, N?] and sends skq = — >_I" | sk; to the untrusted Aggregator A.

We note that hereafter all computations are performed "modN?2” unless mentioned other-

wise.

e Encrypt) : For each time interval ¢, each user U; encrypts its private data x;; using the
secret key sk; and outputs the ciphertext ¢;; = (1 + xi,tN)H(t)Ski mod N2. We point out

that ciphertexts c¢;; fulfills the following property:

n

ﬁ Cit = H(l + xz‘,tN)H(t)Ski =(1+ i xz‘,tN)H(t)Z
i=1 =1

i=1

n
i—15ki

= (14) i N)H(t)
=1

e Aggregate; : Upon receiving c;; the untrusted Aggregator computes

n

n
P = H CLtH(t)SkA =1+ in’tN mod N?
=1 i=1

and recovers » ., x;; by computing li t]\71 in Z. The value £ tﬁl is meaningful as long as

2?21 Tt < N.

We recall that the JL scheme is Aggregator oblivious in the random oracle model under the

decisional composite residuosity (DCR) assumption (cf. [92]).

97

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

6.5.2 Description

Our protocol runs in four phases:

e Setup: A trusted third party TP selects two safe primes p and ¢, sets N = pq, and picks a
cryptographic hash function H : {0,1}* — Z3,,. TP then publishes the public parameters
P = (N, H) and goes offline. Next, Aggregator A generates a random secret key skq € Z}2,
and each user U; € U independently chooses its random secret key sk; € [0, N?] without

any coordination by a trusted key dealer.

It is important to note here that contrary to the JL scheme, the trusted third party TP
does not know the individual secret keys of users U;, and once the public parameters P

are published it can go offline.

e Encrypt: For each time interval ¢, each user ; encrypts its private data x; ; using its secret
key sk; and the algorithm Encrypt; as shown in subsection 6.5.1, and sends the resulting

ciphertext ¢;; = (14 z;:N)H(t)* mod N? to Aggregator A.

e Collect: For each time interval ¢, Aggregator A publishes pk,, = H (t)*ka. Each user U
then computes the auxiliary information aux; ; = pkilfit = H(t)*kaski ysing its secret key sk;

and sends aux;; to Collector C through a secure channel.

Upon receiving aux;; (1 < i < n) from users U; € U, Collector C computes
n n
aux; = H aux; ¢ = H H(t)kaski = F(¢)ska iz sk
i=1 i=1

and sends the result to Aggregator A.

Notice here that C does not obtain the secret value H ()% employed by users U; during the

encryption, rather it only learns an obfuscated encoding of it which is aux;; = H (t)skaski,

e Aggregate: Upon receiving the ciphertexts ¢;; (1 < ¢ < n) and the auxiliary information

98

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

aux;, Aggregator A calculates:

Po= ([Lea)™ = (43 mieN)H(B>= 0%
i=1 =1

n
= (14w N)aH (t)ska Xiz sk
=1

Since the order of (1+ > 1" x;;N) in Z}, is either N or divisor of N, we have:

sk;
1—|—le SkAH SkAZ7 ISkl_(l—FSkAZ%ltN H()SkAZi:I
=1

where sk’y = skq mod N.

Py
aLlXt

-1
Finally, Aggregator A computes I; = **4— = sky > "', #;; in Z and evaluates R, =

ska_IIt mod N = 2?21 x;y mod N to obtain the sum of x;;. Notice that since sky €

Z*

N2 sky is in Z%. Now to obtain the average of the data points z;;, Aggregator A

computes £t in Z.
n

As in [92], the result of the aggregation is meaningful as long as > ;" | z;; < N.

6.5.3 Privacy Analysis

Now the privacy of the above scheme can be stated as follows:

6.5.3.1 Aggregator Obliviousness

Theorem 5. The proposed solution ensures Aggregator obliviousness under the decisional com-

posite residuosity (DCR) assumption in Zy,.

Proof. Assume there is an Aggregator A that breaks the Aggregator obliviousness of our scheme
with a non-negligible advantage e. We show in what follows that there exists an Aggregator B
that uses A to break the Aggregator obliviousness of the JL protocol (which is ensured under

DCR) with a non-negligible advantage e.

99

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

For ease of exposition, we denote OJ%,,., Ok ol and O,Ja\'b the oracles needed for the

setup’ “corrupt> “encryp
Aggregator obliviousness game of the JL protocol. We also assume that the aggregation system
of the JL scheme involves n users U = {U, ...,U, }, each endowed with secret key sk;.

Now to break the Aggregator obliviousness of the JL scheme, Aggregator B simulates the

Aggregator obliviousness game of our scheme for Aggregator A as follows:

Learning phase:

e To simulate the oracle Ogeryp, 4 for Aggregator A, B first invokes the oracle (’)sJe':cup which

returns the public parameters P = {N, H} (where N is the product of two safe primes,
and H : Z — Z}. is a cryptographic hash function) and the Aggregator secret key skp.
We recall that according to the description of the JL scheme skg = — " | sk;. Then,
B supplies Aggregator A in our scheme with the public parameters P = {N, H}. After
receiving P, Aggregator A selects a secret key skq € Z}, and for each time interval ¢ it

publishes pky ; = H (t)5.

e Whenever A submits a corruption query for some user U; to the oracle Ocorrupt, B relays

this query to the corruption oracle Q25 of the JL scheme which accordingly returns the

corrupt

secret key sk; of user U;.

e Whenever A calls the encryption oracle Oencrypt With an encryption query (t,uid;, z;),

JL
encryp

x;N)H(t)* to B. Next, B provides A with c; ;.

B forwards this query to O . which returns the matching ciphertext ¢;; = (1 +

e Whenever A queries the collection oracle Ocojlect, 4 With time interval ¢, B computes aux; =
pkgsth which it returns to A. Note that aux; = pk;lsth = H(t) skasks = FH(t)ska 2 ski
corresponds to the actual auxiliary information that a Collector in our scheme could have

computed.

Challenge phase: In the challenge phase, A chooses a subset S* of users that were not
compromised and a challenge time interval ¢t* for which it did not make an encryption query

during the learning phase. A publishes pky . = H(t*)*4. A then submits two time-series

100

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

X2 = U, t*, 20, es- and XL = (Ui, t*, 2} .)yes+ such that Y29, = Sl to B which

simulates oracle Oag as follows:

e It submits the time-series X2 and X} to the oracle O3 which picks randomly b € {0, 1}

and returns the encryption (¢?,)y,es+ for the time-serie A%

e Then it computes the auxiliary information aux}. = kaStEB = H(t*) skasks

H(t*)SkAZSki matching the time interval ¢*.

e Finally, B returns (C?,t* Ju;es+ and auxi’* to A.

It is important to notice here that Aggregator A cannot tell whether it is interacting with
the actual oracles or with Aggregator B during this simulated game. As a matter of fact, the
messages that A receives during this simulation are correctly computed.

At the end of the challenge phase, A outputs a guess b* for the bit b. Note that if A has a non-
negligible advantage € in breaking the Aggregator obliviousness of our scheme, then this entails
that it outputs a correct guess b* for the bit b with a non-negligible advantage €. Notably, if A
outputs b* = 1, then (C?,t* Ju;es is an encryption of time-serie th*; otherwise it is an encryption
of time-serie X. Now to break the Aggregator obliviousness of the JL scheme, B outputs the
bit b*.

To conclude, if there is an Aggregator A which breaks the Aggregator obliviousness of our
solution, then there exists an Aggregator I3 which breaks the Aggregator obliviousness of the
JL scheme with the same non-negligible advantage e. This leads to a contradiction under the

decisional composite residuosity assumption in Zy,. O

6.5.3.2 Collector Obliviousness

Theorem 6. The proposed scheme assures Collector obliviousness in the random oracle model
under the decisional composite residuosity (DCR) assumption in Zy, the quadratic residuosity
(QR) assumption in Zy and the decisional Diffie-Hellman (DDH) assumption in the subgroup

of quadratic residues in Zy.

101

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

Proof. Assume there is a Collector C that breaks the Collector obliviousness of our scheme with
a non-negligible advantage e. We show in what follows that there exists an Aggregator B that
uses C to break the Aggregator obliviousness of the JL protocol (which is ensured under DCR)
with a non-negligible advantage €.

To break the Aggregator obliviousness of the JL scheme, Aggregator B simulates the Collector
obliviousness game of our scheme to Collector C as follows:

Learning phase:

e To simulate the oracle Oserypc for Collector C, B first queries the oracle Og;up which
returns the Aggregator’s secret key skp and the public parameters P = {N, H} (where
N is the product of two safe primes and H : Z — Z};, is a cryptographic hash function).
Then, B supplies Collector C with the public parameters P = { N, H}. Finally, Aggregator
B picks randomly ska € Z}, and for each time interval ¢, B simulates Aggregator A by
publishing pk 4 ; = H ()%,

e Whenever C queries the oracle Ocorrupt for some user U;, B forwards the query to the

JL

corrupt Which outputs the secret key sk; of user U;.

corruption oracle of the JL scheme O

e Whenever C submits an encryption query (¢, uid;, z; ;) to oracle Oencrypt, B sends this query

to OL

encrypt Which returns the matching ciphertext ¢;; = (1 + z; N)H(t)* to B. B then

provides C with ciphertext c; ;.

e Whenever C queries the collection oracle Ocliect,c With time interval ¢, user identifier uid

and ciphertext ¢;;, B simulates Ocojiect,c as follows:

— It submits the encryption query (¢, uid;, 0) to O35, which returns accordingly (1 +
0- N)H(t)™ = H(t)%.

— Then using sk4 it computes aux;; = H (t)skiska,

It is noteworthy that the messages that C received so far are correctly computed. This entails
that C cannot detect during the learning phase that it is interacting with Aggregator B.
Challenge phase: In the challenge phase, C chooses a subset S* of users that were not

compromised and a challenge time interval t* for which it did not make an encryption query

102

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

during the learning phase. Next, C submits two time-series X = (Z/{i,t*,a:?t* Juses+ and XL =

(U, t*, 3“11,15*)Ju;es+ to B which simulates oracle Oco as follows:

e It picks time-serie X and generates a new time serie X! = (U, t*, 2%)y;es+ such that
Zx?’t = Za:ilt and provides oracle Op%, with the time series X2 and X/. Oxy conse-
quently flips a coin b € {0,1} and returns the tuple of ciphertexts (c?,.)y;es+ such that
(cﬁ-’t* Ju;es+ is an encryption of the time-serie X2 if b = 0; otherwise, it is an encryption of

the time-serie X/I.

e Upon receipt of (cf # Juzes+, B selects randomly pky .« € ZY,, and computes auxi? 4+ of each

user U; € S by picking a random number r?,. € Z%., and setting aux} . =r?,..

e Finally, B gives ((Ci-”t*, auxgt*))uieg* to Collector C. It is important to indicate here that
under the DDH assumption and the random oracle model, C cannot detect that pk, ;-
and auxzt* are generated randomly, instead of being computed as pky .« = H (t*)ska and

aux; ¢« = H(t*)%kiska (cf. Lemma 7).

Lemma 7. In the random oracle model, Collector C cannot detect that pk 4 4« and (Qux; ¢+)14, es*
are generated randomly under the decisional composite residuosity (DCR) assumption in 7},
the quadratic residuosity (QR) assumption in Zy and the decisional Diffie-Hellman (DDH)

assumption in the subgroup of quadratic residues in ZY;.

The proof of lemma 7 can be found in the Appendix Chapter. Now notice that if b6 = 0 and
if C does not detect that ((aux;)i;es+, Pka4+) are generated randomly, then from the point of
view of Collector C (<c§.’7t*,auxﬁ»’7t*>)u¢€g* corresponds to a well formed tuple for the time-serie
X{, and as a result, C will have a non-negligible advantage € in breaking Collector obliviousness
of our scheme. Notably, C will output the correct guess b* = 0 for the bit b with a non-
negligible advantage €. In this case, if B outputs the bit b* = 0 then it will break the Aggregator
obliviousness of the JL scheme with a non-negligible advantage e.

If b = 1, then the tuple ((c},.,aux?,.))y,es+ is independent of the time-series X2 and XL

submitted by C. Consequently, C will return with probability 1/2 either the bit b* = 1 or the

103

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

bit b* = 0. Therefore, to break the Aggregator obliviousness of the JL. scheme, all B needs to

do is output b*. O

6.5.4 Dynamic Group Management

Suppose at time interval t a set of users FF fail to participate in the protocol execution. This event
does not affect the computation of the aggregate sum by the Aggregator A. Indeed, each user
U; ¢ F computes: aux;; = pkj‘fi and encrypts its data by computing ¢;; = (1 + thN)H(t)Ski.
Upon receiving the auxiliary information aux;; from users U; € F, Collector C computes aux; =

H aux;; = H H (t)SkASki. When Aggregator A receives the ciphertexts ¢;; from users U; ¢ F
U; ¢F U ¢F
and aux; from Collector C, it first computes the product H ci and computes as depicted above
U; &I
the value of Z x;¢. Thus, our solution will still function correctly even when an arbitrary
U; @k
number of users fail to submit their contributions to the protocol as long as Collector C operates
properly.
Similarly, if a set of k£ new users J = {U;, ...,U;} join the protocol at time ¢, nothing changes
from the point of view of Aggregator A and Collector C. Notably, the new users U compute the

auxiliary information aux}, = pkjit corresponding to their ciphertexts ¢j,. The Collector C in

turn evaluates the product aux; = H aux; ¢ X H aux; ;, whereas the Aggregator A calculates

U;€U Urel
the product H cit X H c; ¢~ Now provided with aux; and the secret key sk4, Aggregator A
U;€U Urel
can derive the sum Z Tit + Z Ty
U;€U Uurel

6.6 FEvaluation

Table 7.1 depicts the theoretical computational and communication costs of our protocol. In each
time interval ¢, Aggregator A first publishes pk ; = H (t)SkA, whereas each user U; computes the
ciphertext ¢;; = (14+;,N)H (t)s"i which consists of one exponentiation, one multiplication, one
addition and one hash evaluation in Z},. User U; also performs an additional exponentiation

to compute the auxiliary information aux;; = pkzk’; = H(t)kaski ¢ Zy>- Then, the Collector

104

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

receives the auxiliary information aux;; (1 < ¢ < n) and computes the product aux; = [[, aux; 4
which calls for n — 1 multiplications in Z3,,. Finally, the Aggregator computes the sum)" | x;
by performing n — 1 multiplications, one exponentiation, one division in Z},, and one division
in Z. Moreover, if [is the size in bits of IV, then each user U; sends 2[bits for ciphertext c¢;; to
Aggregator A and 2! bits for aux;; to Collector C. As such, the overall communication cost per

user is 4l per time interval.

[Algorithm H Computation [Communication]
User 2 EXP +1 MULT +1 ADD +1HASH 4-1
Aggregator 2EXP +2DIV +(n — 1) MULT +1HASH 2-1
Collector (n — 1) MULT 2-1

Table 6.1: Performance analysis

6.6.1 Implementation

In order to show the feasibility of our protocol, we implemented a prototype in different hardware
platforms. First we implemented our scheme in Python 3.2.3 using Charm [9,10]. Charm is a
Python library that provides cryptographic abstraction in order to build security protocols. The
PC benchmarks run on an Intel Core i5 CPU M 2430 @ 2.40GHz x 4 with 6GB of memory
machine, running Ubuntu 12.04 64bit. The implementation has been merged with the Charm
library, which is maintained at John Hopkins University'. In order to show the feasibility and
the efficiency of our protocol we measured the encryption time, which includes the computational
overhead of the auxiliary information aux;; and the computation of the ciphertext by each user.
Due to the simple mathematical operations involved in the computation of the ciphertext and
the auxiliary information, the user side overhead is very low. In our benchmark analysis, we also
included the running time of an Aggregator to decrypt the sum, and the cost of the Collector
which aggregates auxiliary information and sends it to the Aggregator. We included different
number of users in order to show the scalability of the protocol and different security parameters
with respect to the bit-length of moduli N. As it was expected Aggregator’s decryption time is

proportional on and the size of the users.

"https://github.com/JHUISI/charm/blob/dev/charm/schemes/lem_scheme.py

105

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

We also put forward a comparison with Joye et al. [92] scheme in order to see the differences
of the two schemes. The extra auxiliary information that is computed by each user increases the
encryption time, and the total decryption overhead as well, since the Collector needs to aggregate
all aux;;. However, that extra overhead, allows efficient fault tolerance and dynamicity, since
there is no further key distribution phase, in contrast with the work in [92].

In order to demonstrate the feasibility of our scheme in an ubiquitous environment we also
performed a benchmark analysis on cubieboard2, which is a single board computer, with 1 GB
RAM running on ARM Cortex-A7 Dual-Core. The operating system on top of cubieboard?2
platform is Ubuntu/Linaro 4.8.2. In order to boost efficiency we implemented our scheme in
standard ANSI C using libgmp 6.0.0 and openssl 1.0.1. As with the benchmarks on a PC,
we measured the encryption time per user and the overhead of the Collector and Aggregator in
order for the latter to learn the sum.

Finally we deployed the Python code on a mobile device. We used for our implementation a
SAMSUNG 19500 S4 smart phone with 2GB RAM and a quad-core 1.6 GHz Cortex A5 processor
with Android 4.2.2. For this setting, we are envisioning mobile phones as end users that send

their values encrypted to an Aggregator. As such we measured the cost on the user side only.

6.6.1.1 PCs

In this section we make a performance analysis on PCs. In table 6.2 we present our results that
show the scalability for aggregation. Namely, for a different number of users we measured the
time that the Aggregator needs to compute the sum and the time that the Collector needs to
aggregate all the auxiliary information aux;;. There is a growing overhead as the number of
users increases: From &~ 30 ms in order to decrypt the sum of 500 users, the computational
overhead is increased to ~ 1 minute for 1 million users and to ~ 9 minutes for 10 million users
with moduli bit-length 2048. Collector performs operations that are executed in less time than
the Aggregator’s operations, since the Collector does not need to perform costly mathematical
operations as exponentiations or divisions but it only multiplies all the auxiliary information

aux; ¢, that is computed by each user. We also changed the moduli size of N to 4096 and as it

106

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

was expected there is an increase at the cost for the Aggregator and the Collector due to the

larger size of the group that the mathematical operations take place (table 6.3).

) #Users || 5 1K | 10K | 100K | 1M 10M
Entity
Collector 0.030 | 0.056 | 0.556 | 5.60 | 59.72 | 562.66
Aggregator 0.159 | 0.190 | 0.690 | 5.73 | 59.22 | 569.19

Table 6.2: Computational costs in seconds, for Collector and Aggregator when bit-length |N| =
2048 for PC benchmarks.

Table 6.4 presents the overhead on the user side due to the encryption process and the
auxiliary information computation. We performed our analysis for different bit-lengths of N.
Both encryption and auxiliary information computation are very efficient at the scale of ms. The
computational cost for auxiliary information computation is higher than the one of computing
the ciphertext, because the exponentiation performed by each user H (t)Ski is being reused during
the ciphertext computation ¢; ¢ = (1 + ;;N)H (t)* to optimize the encryption.

Finally, we make a comparison with the Joye-Libert scheme. In case of encryption, Joye-
Libert scheme [92] outperforms our scheme since there is no need for auxiliary information
computation at the user side (cf. table 6.5). However the extra computational cost is very
low for both moduli N bit-lengths: 2048 and 4096. We also compared the decryption times.
As it can be seen from figures 6.2a and 6.2b, for a population of users up to 1 million users,
the difference in time for the decryption procedure is slightly higher for our scheme, since we
included the cost of the Collector which aggregates the auxiliary information. The extra cost is
almost doubled in case of 10 million users. These extra overhead of our scheme in comparison
with Joye-Libert scheme [92] comes as a trade-off for supporting dynamicity and fault-tolerance
with minimal extra computational and communication costs for existing users, since there is no
need to perform a new key-distribution phase. In contrast in Joye-Libert scheme [92] at every
dynamic leave or join of user the trusted key dealer has to distribute new secret keys to each
user and to the Aggregator, which increases the communication cost of the scheme and the

computational overhead of the key dealer.

107

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH

TRUST RELAXATION
) #Users || - 1K | 10K | 100K | 1M 10M
Entity
Collector 0.103 | 0.206 | 2.06 | 20.32 | 205.74 | 2034.94
Aggregator 0.574 | 0.674 | 2.53 | 20.77 | 204.63 | 2257.87.19

Table 6.3: Computational costs in seconds, for Collector and Aggregator when bit-length |N| =
4096 for PC benchmarks.

IN|
Algorithm 2048 4096
Encrypt 0.116 0.4
Aux 0.123 | 0.44
Total 0.239 | 0.84

Table 6.4: Computational overhead of users for encryption and auxiliary information in seconds
for different security levels with respect to the bit-length of N implemented on a PC.

N| Scheme Our scheme | Joye-Libert
2048 0.239 0.156
4096 0.84 04

Table 6.5: Comparison in seconds for Encryption.

6.6.1.2 Cubieboard

We implemented our scheme on single board computers: cubieboard2. For this setting we
simulated different users with a single cubieboard2 and the Aggregator and the Collector at
different cubieboard?2 platforms. We measured the decryption time for the Aggregator and the
computational overhead of the Collector. In tables 6.6 and 6.7 we can see the computational
overhead in seconds for different security parameters. In order to evaluate the performance on
the user side we randomly selected a possible data range for users’ data and we measured the
total encryption time for different security parameters. We observed that the encryption time
is proportional to the plaintext space. Due to the simplicity of the scheme the encryption time

overall is a very fast process (cf. figure 6.3).

6.6.1.3 Mobile Device

Finally, we implemented our scheme on a mobile device running Android 4.2.2. For the de-
ployment in Android we used the Py3KA package for the Python library for Android and the

scripting layer SL4A. We computed the average encryption time per user with |[N| = 2048 and

108

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

1200

4500 T T
) I Our Scheme

I Our Scheme

Joye-Libert | 4000} Joye-Libert e
1000f
3500}
800 | 1 3000}
& % 25001
T L T
g 600 £
= = 2000}
400}F 1 15001
1000
200
500
0 — 0 — ‘

500 1K 10K 100K M 10M 500 1K 10K 100K M 10M
Users Users

(a) |N|=2048 (b) |N|=4096

Figure 6.2: Decryption comparison with Joye-Libert scheme.

#Users #Users
Entity 500 1K 10K Entity 500 1K 10K
Collector 0.098 | 0.202 | 2.015 Collector 0.305 | 0.629 | 6.201
Aggregator 0.100 | 0.202 | 2.014 Aggregator 0.833 | 1.166 | 6.656

Table 6.6: Computational costs in seconds, Table 6.7: Computational costs in seconds,
for Collector and Aggregator when bit-length for Collector and Aggregator when bit-length
|N| = 2048 for cubieboard2 benchmarks. |N| = 4096 for cubieboard2 benchmarks.

the average time to compute the auxiliary information per user. The average encryption time
per user is 0.97 seconds the highest of all of our benchmark results on different platforms and
the auxiliary information computational cost is 1.02 seconds. We also measured the energy
consumption during encryption and is approximately 400mW (cf. Figure 6.4).

The benchmark results showed the practicality and scalability of our scheme on different
platforms ranging from PCs and single board computers to mobile devices. Further code opti-

mization can improve the computational overhead.

6.7 Summary

In this chapter, we presented a privacy preserving solution for time-series data aggregation which
contrary to existing work supports arbitrary user failures and does not depend on trusted key
dealers. The idea is to rely on a semi-trusted Collector which plays the role of an intermediary

between the users and the Aggregator, and which enables the Aggregator to compute the aggre-

109

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

0.45

+~— Encryption for |[N|=2048
0.40r| »— Encryption for [N|=4096

0.35f

0 2000 4000 6000 8000 10000
Plaintext space:[0...]

Figure 6.3: User overhead on cubieboard?2.

gate sum of users’ private data without undermining users’ privacy. An interesting feature of
the proposed scheme is that users’ joins and leaves do not incur any additional computation or
communication cost at either the users or the Aggregator. Furthermore, the scheme is provably
privacy preserving against honest-but-curious Aggregators and Collectors. Finally, we evaluated
the feasibility of our scheme on different platforms (PC, cubieboard2, Android) and we com-
pared it with the Joye-Libert scheme [92]. The benchmark results demonstrate the practicality

of the propounded solution.

110

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

S 8O) = = & 11:20 PM

_ Pie View Stat View

Figure 6.4: Energy consumption on SAMSUNG S4 - Android 4.2.2.

111

CHAPTER 6. PRIVATE AND DYNAMIC TIME-SERIES DATA AGGREGATION WITH
TRUST RELAXATION

112

Chapter

PUDA - Privacy and Unforgeability for

Aggregation

Contents
7.1 Introduction i i e e 114
7.2 Related Work o 0 o o i e e e e 115
7.3 Problem Statement 000 s 116
7.3.1 PUDA Model 117
7.3.2 Security Model 118
7.4 Idea of our PUDA protocol, 121
7.5 PUDA Instantiation it 123
7.5.1 Shi-Chan-Rieffel-Chow-Song Scheme 123
7.5.2 PUDA Scheme 123
7.6 Analysis i e e e e e e e 125
7.6.1 Aggregator Obliviousness 125
7.6.2 Aggregate Unforgeability 127
7.6.3 Performance Evaluation 132
0~ 5 0§ 5 ' - ¥ 133

113

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

7.1 Introduction

In this Chapter we consider a scenario whereby an Aggregator collects individual data from
multiple users which do not interact with each other and executes a function which outputs
an aggregate value. In contrast with the protocol presented in Chapter 6, the result is further
forwarded to a Data Analyzer which can finally extract useful information about the entire
population. Existing PPDCA protocols only focus on the problem of data confidentiality and
consider the Aggregator to be honest-but-curious: the Aggregator is curious in discovering the
content of each individual data, but performs the aggregation operation correctly. Here we con-
sider a more powerful security model, where the Aggregator is assumed to be malicious: The
Aggregator may provide a bogus aggregate value to the Data Analyzer. In order to protect
against such a malicious behavior, we propose that along with the aggregate value, the Aggre-
gator provides a proof of the correctness of the computation of the aggregate result. We also
require the Data Analyzer not to be able to communicate with each user and the result to be
publicly verifiable. Moreover, similarly to the existing solutions, the proposed protocol assures
obliviousness against the Aggregator and the Data Analyzer in the multi-user setting; meaning
that neither the Data Analyzer nor the Aggregator learns individual data inputs.

The underlying idea of our solution is that each user encrypts its data according to Shi et
al. [132] scheme using its own secret encryption key, and sends the resulting ciphertext to the
untrusted Aggregator. Users, also homomorphically tag their data using two layers of random-
ness with two different keys and they forward the tags to the Aggregator. The latter computes
the sum by applying operations on the ciphertexts and it also derives a proof for the correctness
of the result from the tags. The Aggregator finally sends the result and the proof to the Data
Analyzer. The latter verifies the correctness of the computation.

To the best of our knowledge we are the first to define a model for Privacy and Unforgeability
for Data Aggregation (PUDA). We also instantiate a PUDA scheme which mainly pursues

the following three objectives:

e Multi-user setting where multiple users produce personal sensitive data without interacting

114

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

with each other.
e Public verifiability of the aggregate value.

e Privacy of individual data for all participants.

7.2 Related Work

In [37], authors proposed a solution which is based on homomorphic message authenticators
in order to verify the computation of generic functions on outsourced data. Each data input is
authenticated with an authentication tag. A composition of the tags is computed by the cloud in
order to demonstrate the correctness of the output of a program P. Thanks to the homomorphic
properties of the tags the user can verify the correctness of the program. The main drawback of
the solution is that the verifier in order to verify the correctness of the computation has to be
involved in computations that take exactly the same time as the computation of the function
f. Backes et al. [12] proposed a generic solution for efficient verification of bounded degree
polynomials in time less than the evaluation of f. The solution is based on closed form efficient
pseudorandom function PRFE'. Contrary to our solution both solutions do not provide individual
privacy and they are not designed for a multi-user scenario.

Catalano et al. [39] employed a nifty technique to allow single users to verify computations
on encrypted data. The idea is to re-randomize the ciphertext and sign it with a homomorphic
signature. Computations then are performed on the randomized ciphertext and the original one.
However the aggregate value is not allowed to be learnt in cleartext by the untrusted aggregator
since the protocols are geared for cloud based scenarios.

In the multi-user setting, Choi et al. [47] proposed a protocol in which multiple users are
outsourcing their inputs to an untrusted server along with the definition of a functionality f.
The server computes the result in a privacy preserving manner without learning the result and
the computation is verified by a user that has contributed to the function input. The users
are forced to operate in a mon-interactive model, whereby they cannot communicate with each

other. The underlying machinery entails a novel proxy based oblivious transfer protocol, which

115

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

along with a fully homomorphic scheme and garbled circuits allows for verifiability and privacy.
However, the need of fully homomorphic encryption and garbled circuits renders the solution

impractical for a real world scenario.

7.3 Problem Statement

We are envisioning a scenario whereby a set of users U = {U;}!_; are producing sensitive data
inputs x;; at each time interval ¢t. These individual data are first encrypted into ciphertexts
ciy and further forwarded to an untrusted Aggregator A. Aggregator A aggregates all the
received ciphertexts, decrypts the aggregate and forwards the resulting plaintext to a Data
Analyzer DA together with a cryptographic proof that assures the correctness of the aggregation
operation, which in this Chapter corresponds to the sum of the users’ individual data. An
important criterion that we aim to fulfill is allowing Data Analyzer DA to verify the correctness
of the Aggregator’s output without compromising users’ privacy. Namely, at the end of the
verification operation, both Aggregator A and Data Analyzer D.A learn nothing, but the value
of the aggregation. While homomorphic signatures proposed in [29,66] seem to answer the
verifiability requirement, these solutions only consider scenarios where a single user generates
data.

In the aim of assuring both individual user’s privacy and unforgeable aggregation, we first
come up with a generic model for privacy preserving and unforgeable aggregation that identi-
fies the algorithms necessary to implement such functionalities and defines the corresponding
privacy and security models. Furthermore, we propose a concrete solution which combines an
already existing privacy preserving aggregation scheme [132] with an additively homomorphic
tag designed for bilinear groups.

Notably, a scheme that allows a malicious Aggregator to compute the sum of users’ data
in privacy preserving manner and to produce a proof of correct aggregation will start by first
running a setup phase. During setup, each user receives a secret key that will be used to encrypt
the user’s private input and to generate the corresponding authentication tag; the Aggregator

A and the Data Analyzer DA on the other hand, are provided with a secret decryption key

116

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

and a public verification key, respectively. After the key distribution, each user sends its data
encrypted and authenticated to Aggregator A, while making sure that the computed ciphertext
and the matching authentication tag leak no information about its private input. On receiving
users’ data, Aggregator A first aggregates the received ciphertexts and decrypts the sum using its
decryption key, then uses the received authentication tags to produce a proof that demonstrates
the correctness of the decrypted sum. Finally, Data Analyzer DA verifies the correctness of the

aggregation, thanks to the public verification key.

7.3.1 PUDA Model

A PUDA scheme consists of the following algorithms:

e Setup(1*) — (P, ska, {ski}u,cu, vk): It is a randomized algorithm run by a trusted dealer
KD, which on input of a security parameter A outputs the public parameters P that will
be used by subsequent algorithms, the Aggregator A’s secret key ska, the secret keys sk;

of users U; and the public verification key vk.

e EncTag(t,sk;,z;i¢) — (cit,0i4): It is a randomized algorithm which on inputs of time
interval ¢, secret key sk; of user U; and data x;;, encrypts x;; to get a ciphertext c¢;; and

computes a tag o;; that authenticates x; ;.

e Aggregate(ska, {c¢it}u,cvu, {0ittu,cu) — (sumg, op): It is a deterministic algorithm run by
the Aggregator A. It takes as inputs Aggregator A’s secret key ska, ciphertexts {¢; +}i,ev
and authentication tags {o;}u,cu, and outputs in cleartext the sum sum; of the values
{IL‘i’t}ul.e]U. Moreover, it computes a proof oy attesting the correctness of sumy, using the

authentication tags {0+ }i,cv.

e Verify(vk,sum¢, o) — {0,1}: It is a deterministic algorithm that is executed by the Data
Analyzer DA. It outputs 1 if Data Analyzer DA is convinced that the sum sum; =

> u;eui®ir}; and 0 otherwise.

117

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

7.3.2 Security Model

We only focus on the adversarial behavior of Aggregator A. The rationale behind this is that
Aggregator A is the only party in the protocol that sees all the messages exchanged during the
protocol execution: Namely, Aggregator A has access to users’ ciphertexts and it is the party
that interacts directly with the Data Analyzer. It follows that by ensuring security properties
against the Aggregator, one by the same token, ensures these security properties against both
Data Analyzer DA and external parties.

In accordance with previous work [92,132], we formalize the property of Aggregator oblivi-
ousness, which ensures that at the end of a protocol execution, Aggregator A only learns the
sum of users’ inputs x;; and nothing else. Also, we enhance the security definitions of data
aggregation with the notion of aggregate unforgeability. As the name implies, aggregate unforge-
ability guarantees that Aggregator A cannot forge a valid proof oy for a sum sum; that was not

computed correctly from users’ inputs (i.e. cannot generate a proof for sumy # > ;¢).

7.3.2.1 Aggregator Obliviousness

Aggregator obliviousness ensures that when users U; provide Aggregator A with ciphertexts
cit and authentication tags o;:, Aggregator A cannot reveal any information about indi-
vidual inputs x;;, other than the sum value) x;;. We extend the existing definition of
Aggregator Obliviousness (cf. [92,103,132]) so as to capture the fact that Aggregator A not
only has access to ciphertexts ¢;;, but also has access to the authentication tags o;; that enable
Aggregator A to generate proofs of correct aggregation.

Similarly to the work of [92, 132], we formalize Aggregator obliviousness using an

indistinguishability-based game in which Aggregator A accesses the following oracles:

® Oserup: When called by Aggregator A, this oracle initializes the system parameters; it then
gives the public parameters P, the Aggregator ’s secret key ska and public verification key

vk to A.

® Ocorrupt: When queried by Aggregator A with a user U, s identifier uid;, this oracle provides

118

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

Aggregator A with U;’s secret key denoted sk;.

® OgncTag: When queried with time ¢, user U;’s identifier uid; and a data point x;;, this
oracle outputs the ciphertext c¢;; and the authentication tag o;; of x;; computed using

U;’s secret key sk;.

e Opo: When called with a subset of users S C U and with two time-series (U, t, x?,t)uiES
and (Ui, t,] Jues such that Y af, = 37z, this oracle flips a random coin b € {0,1}
and returns an encryption of the time-serie (U, t, xgt)UzES (that is the tuple of ciphertexts

{c? }u,es) and the corresponding authentication tags {07, }ics.

Aggregator A is accessing the aforementioned oracles during a learning phase (cf. Algorithm
5) and a challenge phase (cf. Algorithm 6). In the learning phase, A calls oracle Oset,p which
in turn returns the public parameters P, the public verification key vk and the Aggregator ’s
secret key ska. It also interacts with oracle Ocorrypt to learn the secret keys sk; of users U;, and
oracle OncTag to get a set of ciphertexts ¢;; and authentication tags o; ;.

In the challenge phase, Aggregator A chooses a subset S* of users that were not corrupted in
the learning phase, and a challenge time interval ¢t* for which it did not make an encryption query.
Oracle Opp then receives two time-series X2 = (Ui,t*,xg’t*)uieg* and X} = (Ui,t*,x}’t*)t es+
from A, such that) x?jt* =D les let Then oracle Opp flips a random coin b < {0,1} and
returns to A the ciphertexts {Ci'),t* }u,es+ and the matching authentication tags {O‘ﬁt* Y es*-

At the end of the challenge phase, Aggregator A outputs a guess b* for the bit b.

We say that Aggregator A succeeds in the Aggregator obliviousness game, if its guess b*

equals b.

Algorithm 5 Learning phase of the obliviousness game

(P, ska, vk) + Osetup(l’\); // A executes the following a polynomial number of times
ski <= Ocorrupt (uid;); // A is allowed to call OncTag for all users U

(it 0it) <= OEncTag(t, uids, i ¢);

Definition 43 (Aggregator Obliviousness). Let Pr[AAC] denote the probability that Aggregator

A outputs b* = b. Then an aggregation protocol is said to ensure Aggregator obliviousness if

119

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

Algorithm 6 Challenge phase of the obliviousness game
A — t*,S%;

A— X2 XL

(Ci'),t*) le,?,t* Juess < Ono(X2, X);

A — b ;

for any polynomially bounded Aggregator A the probability Pr[AAC] < % + €(N\), where € is a

negligible function and X\ is the security parameter.

7.3.2.2 Aggregate Unforgeability

We augment the security requirements of data aggregation with the requirement of
aggregate unforgeability. More precisely, we assume that Aggregator A is not only interested
in compromising the privacy of users participating in the data aggregation protocol, but also
interested in tampering with the sum of users’ inputs. That is, Aggregator A may sometimes
have an incentive to feed Data Analyzer DA erroneous sums. Along these lines, we define
aggregate unforgeability as the security feature that ensures that Aggregator A cannot convince
Data Analyzer DA to accept a bogus sum, as long as users U; in the system are honest (i.e. they
always submit their correct input and do not collude with the Aggregator A).

In compliance with previous work [38, 66] on homomorphic signatures, we formalize ag-
gregate unforgeability via a game in which Aggregator A accesses oracles Osetyp and OgncTag-
Furthermore, given the property that anyone holding the public verification key vk can execute
the algorithm Verify, we assume that Aggregator A during the unforgeability game runs the
algorithm Verify by itself.

As shown in Algorithm 7, Aggregator A enters the aggregate unforgeability game by querying
the oracle Osetyp With a security parameter A. Oracle Oset,p accordingly returns public param-
eters P, verification key vk and the secret key ska of Aggregator A. Moreover, Aggregator A
calls oracle OgncTag With tuples (¢, uid;, z;¢) in order to receive the ciphertext ¢; ¢ encrypting x;
and the matching authenticating tag o;:, both computed using user U;’s secret key sk;. Note
that for each time interval ¢, Aggregator A is allowed to query oracle OgncTag for user U; only

once. In other words, Aggregator A cannot submit two distinct queries to oracle OgncTag With

120

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

Algorithm 7 Learning phase of the aggregate unforgeability game

P,vk < Osetup(l)‘); // A executes the following a polynomial number of times

(Ci,ta Ui,t) — OEncTag(ta uid;, xi,t);

Algorithm 8 Challenge phase of the aggregate unforgeability game
(t*, SuMmys, O't*) < .A,

the same time interval ¢ and the same user identifier uid;. Without loss of generality, we suppose
that for each time interval ¢, Aggregator A invokes oracle OncTag for all users U; in the system.

At the end of the aggregate unforgeability game (see Algorithm 8), Aggregator A outputs a
tuple (t*,sumy«, 04+). We say that Aggregator A wins the aggregate unforgeability game if one of

the following statements holds:

1. Verify(vk,sum, o4+) — 1 and Aggregator A never made a query to oracle OpncTag that
comprises time interval t*. In the remainder of this Chapter, we denote this type of forgery

Type I Forgery.

2. Verify(vk,sums, 04+) — 1 and Aggregator A has made a query to oracle OgncTag for time
t*, however the sum sumg« # Zui x;+. In what follows, we call this type of forgery Type

IT Forgery.

Definition 44 (Aggregate Unforgeability). Let Pr[AAV] denote the probability that Aggregator
A wins the aggregate unforgeability game, that is, the probability that Aggregator A outputs a
Type I Forgery or Type II Forgery that will be accepted by algorithm Verify.

An aggregation protocol is said to ensure aggregate unforgeability if for any polynomially
bounded adversary A, Pr[AAY] < e(\), where € is a negligible function in the security parameter

A.

7.4 1Idea of our PUDA protocol

In an extended model with an untrusted Aggregator, it is of utmost importance to design a

solution in which the untrusted Aggregator cannot provide bogus results to the Data Analyzer.

121

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

Such a solution will use a proof system that enables the Data Analyzer to verify the correctness
of the computation. Yet verifiability should be achieved without sacrificing privacy. Towards

this goal, we propose a protocol that relies on the following techniques:

o A homomorphic encryption algorithm that allows the Aggregator to compute the sum

without divulging individual data.

e A homomorphic tag that allows each user to authenticate the data input x;¢, in such a
way that the Aggregator can use the collected tags to construct a proof that demonstrates

to the Data Analyzer DA the correctness of the aggregate sum.

Concisely, a set of non-interacting users are connected to personal services and devices that
produce personal data. Without any coordination, each user chooses a random tag key tk; and
sends an encoding thereof, tk; to the key dealer. After collecting all encoded keys tk; by users,
the key dealer publishes the public verification key vk of this group of users. This verification
key is computed as a function of the encodings tk;. Later, the key dealer gives to each user in the
system an encryption key ek; that will be used to compute the user’s ciphertexts. Accordingly,
the secret key of each user sk; is defined as the pair of tag key tk; and encryption key ek;. Finally,
the key dealer provides the Aggregator with secret key sk4 computed as the sum of encryption
keys ek; and goes off-line.

Now at each time interval ¢, each user employs its secret key sk; to compute a ciphertext
based on the encryption algorithm of Shi et al. [132] and a homomorphic tag on its sensitive data
input. When the Aggregator collects the ciphertexts and the tags from all users, it computes
the sum sum; of users’ data and a proof oy for the sum, and forwards the sum and the proof
to the Data Analyzer. At the final step of the protocol, the Data Analyzer verifies with the
verification key vk and proof oy the validity of the result sum;. Although the modification seems
straightforward, the proof for Type II Forgery turns out to be challenging.

Thanks to the homomorphic encryption algorithm of Shi et al. [132] and the way in which we
construct our homomorphic tags, we show that our protocol ensures Aggregator obliviousness.

Moreover, we show that the Aggregator cannot forge bogus results. Finally, we note that the

122

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

Data Analyzer DA does not keep any state with respect to users’ transcripts be they ciphertexts

or tags, but it only holds the public verification key, the sum sum; and the proof oy.

7.5 PUDA Instantiation

For encryption and sum computation we employ the discrete logarithm based encryption scheme

of Shi et al. [132]:

7.5.1 Shi-Chan-Rieffel-Chow-Song Scheme

e Setup(1®): Let Gy be a group of large prime order p. A trusted key dealer KD selects a
hash function H : {0,1}* — G; . Furthermore, KD selects secret encryption keys ek; € Z,,
uniformly at random. KD distributes to each user U; the secret key ek; and it also sends

the secret key ska = — > 1" ek; to the Aggregator.

e Encrypt(ek;, z;;): Each user U; encrypts the value z;; by using its secret encryption key

ek; and outputs the corresponding ciphertext ¢; ; = H (t)eki gf“ € G.

o Aggregate({c;}u,cu, {0it}u,cu,ska): Upon receiving all the ciphertexts {c;+} ;, the
Aggregator computes: V; = ([[i, ci)H(t)ka = H(t)2?=1ekiglzi:1xi’tH(t)*Z?ﬂEki =
glzi:l ¥t ¢ Gy. Finally A learns the sum sum; = Yoy it € Zy by computing the discrete

logarithm of V; on the base gi. The sum computation is correct as long as > ;" | z;; < p.

7.5.2 PUDA Scheme

In what follows we describe our PUDA protocol:

e Setup(1®): KD outputs (p,g1,92,G1,G2,Gr) for an efficient computable bilinear map
e : Gy x Go = G, where g1 and g9 are two random generators for the multiplicative
groups Gy and Gg respectively and p is a prime number that denotes the order of all
the groups G1, Gy and Gr. Moreover a secret key a is selected by KD. Each U; selects
a random tag key tk; € Z, independently and forwards g;ki to KD. KD publishes the

verification key vk = (vki,vka) = (gg:?:ltki,gg) and distributes to each user U; € U the

123

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

secret key gf € Gp through a secure channel. Thus the secret keys of the scheme are
sk; = (ekq, tkq, gf). After publishing the public parameters P = (H,p, g1, 92, G1, G2, Gr)
and the verification key vk, KD goes off-line and it does not further participate in any

protocol phase.

EncTag(t,sk; = (ek;, tki, ¢§),zit): At each time interval ¢ each user U; encrypts the data
value x;; with its secret encryption key ek;, using the encryption algorithm, described in

section 7.5.1, which results in a ciphertext

cip = H(t)%gy"" € Gy

U; also constructs a tag o;+ € Gy with its secret tag key (tk;, gf):
oie = H(t)™ (7)™ € G

Finally U; sends (c; ¢, 0i4) to A.

Aggregate(ska, {¢it}ucu, {0it fu,cv): Aggregator A computes the sum sumg = > 00 | 244

by using the Aggregate algorithm presented in section 7.5.1.

Moreover, A aggregates the corresponding tags as follows:

ov = [T oa = [T H)™ (g1)7 = H(t)= % (g E
=1 =1

A finally forwards sum; and oy to data analyzer DA.

Verify(vk, sumy, 01): During the verification phase DA verifies the correctness of the com-
putation with the verification key vk = (vk; = 922 tki, vka = g5), by checking the following
equality:

e(0t, g2) = e(H (t), vk)e(g5"™, vko)

124

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

Verification correctness follows from bilinear pairing properties:

n

n
e(or, 92) = e([[oir 92) = ([H®)™ 97", 92) = e(H (1) T thigiim ot g))
=1 =1

n) nox ntkg N
= e(H(t) X1t gy)e(g1==1 " gy) = e(H(t), g3=" *)e(g3"™, g2)

=e(H(1), Vkl)e(giumt7 vka)

7.6 Analysis

7.6.1 Aggregator Obliviousness

Theorem 7. The proposed solution achieves Aggregator obliviousness in the random oracle

model under the decisional Diffie-Hellman (DDH) assumption in Gy.

Proof. Assume there is an Aggregator A which breaks the obliviousness of the PUDA scheme
with a non-negligible advantage e. We build in what follows an adversary B, which uses A as
a subroutine to break the Aggregator obliviousness of the private streaming aggregation (PSA)

protocol presented in [132], which is guaranteed under DDH. Without loss of generality we call

PSA OPSA

the oracles that the adversary B has access to from the PSA scheme as follows: Oggil,, Ocorrupt

PSA PSA
OEncrypt’ and OAO :

We consider in PSA as in PUDA that there are n users U; and each one of these users
possesses a secret, encryption key ek;. In the following, we show how an adversary B simulates
the Aggregator obliviousness game presented in Algorithms 5 and 6 to Aggregator A and how
therewith breaks the Aggregator obliviousness of PSA.

Learning phase: In the learning phase, adversary B proceeds as following: Whenever A

PSA

Setup with the same security

calls oracle Osetyp With a security parameter x, B queries oracle O

PSA

Setup in turn outputs the public parameters that are composed of a hash

parameter. Oracle O
function H : {0,1}* — Gq, a generator g; of the group G; of large prime order p, and the
Aggregator’s secret key ska = — > 1 ekj. B then selects the parameters of a bilinear pairing

(e,91,92,G1,Ga,Gr). B chooses uniformly at random a, {r;}y,ey and defines the verification

125

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

key vk as follows:

ka+> 7 g7 o eki+y o T iy aeki+r;
vk = (gt gy — (g i KT ey (gaimn Sk g0

This entails that tk; is defined as: aek; + r;. Finally B forwards to A the public parameters:

P = (H,p,q1,92,G1,Ga,Gr), the verification keys vk = (QQE?:ltki,gg) and the secret key of the

Aggregator ska.

Whenever A calls oracle Ocorype With a user’s identifier uid;, B relays the query uid; to

OPSA

Corrupt of the PSA scheme which in turns outputs the secret encryption key ek; of user U;. B

then returns secret key sk; = (ek;, tk;) = (ek;, aek; + r;).

Whenever A calls oracle Ognctag with query (¢, uid;,z;;), B forwards the query to the

PSA
OEncrypt

the tag associated with ciphertext ¢;; as 0, = (c;)*H(t)"" = H(t)%®kitrig!™ " = H(t)t%ig""

oracle which returns the appropriate ciphertext ¢;; = H (t)e"i gfi’t. B computes then

and transmits to A ciphertext ¢;; and tag o; ;.

Challenge phase: In the challenge phase A chooses a set of users S* that have not been
corrupted during the learning phase and a time interval t* for which A did not make
a query to oracle OgncTag- A then submits two time-series AJ = (Ui,t*,$?,t*)uieS* and

Xy = (U, t*, 2} 1 Juyes to Opo, such that Y 2. = > a},.. B simulates this oracle as follows:

It forwards the series Aj and X} to ORZ* which chooses uniformly at random a bit

b {0,1} and returns to B the ciphertexts {cgt* }ues+ encrypting Ay

Next, B constructs for all If; in S* the tag 0‘37&* corresponding to ciphertext cf’t* by com-

puting:

) apr(Y — (H(+ ek; :Cli),t* apre\i — H(+ aek;+r; a‘v?,t* — H(+ tk; az?,t*
e = (i) HE™)™ = (H(")* g,)" H(t")" = H(t") g1 " =H(t") g

126

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

Note that 03 4 corresponds to a correctly computed tag for input azgt*. Finally, B forwards
{cf,t* , af’t* }u;es+ to A. At this point, the simulated view of Aggregator A is computationally in-
distinguishable from its view in an actual Aggregator obliviousness game as defined in Algorithms

5 and 6. This leads to correct verification of the sum computed by A, more precisely:

n b n b
o OT ek 2oie T t*
(T otir92) = (T HE) gy ™" g2) = e(H ("), gy == =1 e (g 500 g8
1ES* i=1

" g
= e(H(t"),vki)e(g, ™ ", vko)

It follows that if Aggregator A is able to output a correct guess b* for the bit b with a non-
negligible advantage e: (i.e. is able to break the Aggregator obliviousness of our scheme), then
B will break the Aggregator obliviousness of the PSA scheme with the same non-negligible

advantage € by outputting the guess b*. O

As such PSA scheme ensures Aggregator obliviousness under the DDH assumption in Gy,
we can conclude that our scheme also ensures Aggregator obliviousness: PrlAA9] < 1 +¢(k) as

long as DDH holds in G;.

7.6.2 Aggregate Unforgeability

Theorem 8. Qur scheme achieves Aggregate Unforgeability for a Type 1 Forgery under

BCDH assumption in the random oracle model.

Proof. We show how to build an adversary B that solves BCDH in (G, Go, Gr). Let g1 and g2
be two generators for G; and Ga respectively. B receives the challenge (g1, g2, 97, gll’, 9%, 95, gg)
from the BCDH oracle Ogcpy and is asked to output e(gl,gg)“bC € Gp. B simulates the
interaction with A in the two phases (Setup, Learning) as follows:

Setup:

e To simulate the Oé‘gtup oracle B selects uniformly at random 2n keys {k;}7_;, {yi}i~, € Z,
and outputs the public parameters P = (k,p, 91,92, G1,G3) the verification key vk =

(vki,vky) = (912)2?:1 ki,gg) and the secret key of the Aggregator ska = — > ", yi.

127

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

Learning phase

e A is allowed to query the random oracle H for any time interval . B constructs a H— list

and responds to A query as follows:

1. If query (t) already appears in a tuple H-tuple(t : r¢, coin(t), H(t)) of the H — list it

responds to A with H (¢).

2. Otherwise it selects a random number r; € Z, and flips a random coin & {0,1}. With

probability p, coin(t) = 0 and B answers with H(t) = ¢7*. Otherwise if coin(t) =1

then B responds with H(t) = g¢;"* and updates the H— list with the new tuple

H-tuple(t : r,coin(t), H(t)).

e Whenever A submits a query (t,uid;,z;+) to the (’)“E“ncTag, B constructs a T — 1list and

responds as follows:

1. If at time interval ¢ A has never queried before the OéncTag oracle then:

1.1.

1.2

1.3.

1.4.

1.5.

1.6.

B initializes a variable ¥X; = 0.

B calls the simulated random oracle, receives the result for H(t) and appends the
tuple H-tuple(t : 7, coin(t), H(t)) to the H — list.

If coin(t) = 1 then B stops the simulation.

Otherwise it chooses the secret tag key k; where ¢ = uid; to be used as secret tag
key from the set of {k;} keys, chosen by B in the Setup phase.

B sends to A the tag o, = g% g™ = H(t)"ig{""* which is a valid tag for
the value z; ;. Notice that B can correctly compute the tag without knowing a
and b from the BCDH problem parameters g, gll’.

B chooses also a secret encryption key y; € {y;}l; € Z, and computes the
ciphertext as ¢;; = H(t)¥ gfi’t. The simulation is correct since A can check that
the sum > | z;; corresponds to the ciphertexts given by B with its decryption
key ska = —> ", yi, considering the adversary has made distinct encryption

queries for all the n users in the scheme at a time interval ¢.

128

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

1.7. B sets ¥; = ¥y + x4 and updates the T — 1ist with the tuple: (¢, uid;, i, o)

2. Else if T — list contains i’ = uid; and z;; = x&t then B fetches the corresponding o; ;

from the list and forwards it to A.
3. Else if T — list contains i’ = uid; and z;; # ¥, then B aborts.

4. Otherwise, B looks to the H— list list for the tuple indexed by t in order to get
(t : ry,coin(t), H(t)). If the tuple does not exist then B tosses a random coin and
if coin(t) = 1 then B aborts. If coin(t) = 0 then B computes the tag identically
as in 1(d)(e)(f)(g) steps: It chooses a key k; where i = uid; from the selected keys
{ki}. Tt constructs the tag as o;; = ¢} g™ = H(t)?:g{""* and the ciphertext as
ciy = H(t)ig{"". Finally B sets ¥, = %, + x;;, updates the T — 1ist with the tuple:

<t7 Uidia Lty Ui,t>-

Now, when B receives the forgery (sum*, 0¢*) at time interval ¢ = t*, it continues if sum*
gery

Y. B first queries the H-tuple for time ¢* in order to fetch the appropriate tuple.
o If coin(t*) = 0 then B aborts.

e If coin(t*) = 1 then since A outputs a valid forged o¢* at t*, it is true that the following

equation should hold:

e(ae*, go) = e(H(t*),vki)e(gi"™ , vko)

which is true when A makes n queries for time interval ¢t* for distinct users to the OéncTag

oracle during the Learning phase. As such o¢* = gf“bzki gysume”

Finally B outputs:

U't* 1 rlzrtbz kig?sumt* 1
6((asumt*)”Zki’g%) = 6((P)rtzki’gg) =
91 91

b kiy e
e((g "=)R g8) = e(gh, g8) = elg1, 92)™

129

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

Let AAUL the event when A successfully forges a Type I forgery o; for our PUDA
protocol that happens with some non-negligible probability ¢. Then Pr[BBCPH] =
Prlevent,] Prlevent;] Pr[AAV2] = p(1 — p)¥~1¢, for gy random oracle queries with the proba-
bility Pr[coin(t) = 0] = p. As such we ended up in a contradiction assuming the hardness of the
BCDH assumption and finally Pr[.AAUl] < €1, where €; is a negligible function.

O]

For the security proof against an adversary A for Type-II Forgery we first introduce a
new assumption that is used during the security analysis of our PUDA instantiation. Our new
assumption named hereafter LEOM is a variant of the LRSW assumption [110] which is proven
secure in the generic model [134] and used in the construction of the CL signatures [32].

The oracle O gom first chooses a and k;, 1 < ¢ < n in Zj;. Then it publishes the tuple

(gl,gzzzi:lki,gg). Thereafter, the adversary picks hy € G and makes queries (h,i,x;;) for

1 <7 < n to the O_gom oracle which in turn replies with hfigfxi’t for1 <i<n.
The adversary is allowed to query the oracle O gom for different h; with the restriction that
it cannot issue two queries for the same pair (hy, 7).

We say that the adversary breaks the LEOM assumption, if it outputs a tuple

(z, he, htziz1 kig‘fz) for a previously queried ¢t and z # > 7" | @i

Theorem 9. (LEOM Assumption) Given the security parameter k, the public parameters
(p,e,G1,Ga, g1,92), the public key (957922?:11%) and the oracle O gom, we say that the LEOM
assumption holds iff:

For all probabilistic polynomial time adversaries A, the following holds:

Prl(z,hyyor) « ACEMO 2 STa Ao = hENGE] < e(x)
i=1

Where €9 is a negligible function.
The security evidence of the assumption is referred to the Appendix Chapter.

Theorem 10. Our scheme guarantees aggregate unforgeability against a Type II Forgery

under the LEOM assumption in the random oracle model.

130

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

Proof. (Sketch) Here we show how an adversary B breaks the LEOM assumption by using an
Aggregator A that provides a Type IT Forgery with a non-negligible probability. Notably,

adversary B simulates oracle Osetyp as follows: It first picks secret encryptions keys {ek;}!" ; and

sets the corresponding decryption key SK4 = — """ | ek;. Then, it forwards to A the public
parameters P = (p, g1, g2, G1, G2), the public key (vky,vks) = (gQZi:1 ki,gg) of the O gom oracle

and the secret key SKy = —>"" | ek;.

Afterwards, when adversary B receives a query (t,uid;,x;;) for oracle OgncTag, adversary B
calls oracle O gom with the pair (hy = H(t),,z;;). Oracle O gom accordingly returns hfigtlwi’t
and adversary B outputs o;; = hfi gim’t. Note that if we define the tag key tk; of user U; as k;,
then the tag o;; = h¥igi™" is computed correctly.

Eventually with a non-negligible advantage, Aggregator A outputs a Type II Forgery

(t*,sum«, oy) that verifies:
C(O't* 3 92) = G(H(t*), Vkl)e(giumt*) Vk2)

where t* is previously queried by Aggregator A and sum # > 0" | T(j 7).

It follows that B breaks the LEOM assumption with a non-negligible probability by outputting
the tuple (H(t*),sum«,04). This leads to a contradiction under the LEOM assumption. We
conclude that our scheme guarantees aggregate unforgeability for a Type 11 Forgery under the

LEOM assumption. O

To conclude with the analysis the success probabilities for the aggregate unforgeability game
Pr[AAY], are taken over the union of the success probabilities for the two type of forgeries. As

such

Pr[AAY] = Pr[AAUY] 1 Pr[AAY2] < €1 (k) + e2(k)

where €1 and ez are negligible functions.

131

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

[Participant H Computation [Communication]
User 2 EXP +1 MULT 21
Aggregator (n — 1) MULT 2-1
Data Analyzer || 3PAIR+1EXP+1 MULT +1HASH -

Table 7.1: Performance of tag computation, proof construction and verification operations. [
denotes the bit-size of the prime number p.

7.6.3 Performance Evaluation

In this section we analyze the extra overhead of ensuring the aggregate unforgeability property
in our PUDA instantiation scheme. First, we consider a theoretical evaluation with respect
to the mathematical operations a participant of the protocol be it user, Aggregator or Data
Analyzer has to perform with respect to the verifiability transcripts. That is, the computation
of the tag by each user, the proof by the Aggregator and the verification of the proof by the
Data Analyzer. We also present an experimental evaluation that shows the practicality of out
scheme.

To allow the Data analyzer to verify the correctness of computations performed by an un-
trusted Aggregator each user selects uniformly and at random a secret key tk; € Z,. The
key dealer distributes to each user ¢gf € G; and publishes g5 € Gg, which calls for two
exponentiations: one in G and one in Gsy. At each time interval ¢ each user computes
oir = H(t)%i(g?)%+ € Gy, which entails two exponentiations and one multiplication in G;. For
the computation of the oy the Aggregator is involved in n — 1 multiplications in Gy : [[}" oi.
Finally the data analyzer verifies by checking the equality: e(oy, g2) z e(H(t),vki)e(g3"™, vka),
which asks for three pairing evaluations, one hash in Gi, one exponentiation in G; and one
multiplication in G (see table 7.1). The efficiency of PUDA stems from the constant time
verification with respect to the size of the users. This is of crucial importance since the Data
Analyzer may not own computational power.

We implemented the verification functionalities of PUDA with the Charm cryptographic
framework [9,10]. For pairing computations, it inherits the PBC [109] library which is also
written in C. All of our benchmarks are executed on Intel Core i5 CPU M 560 @ 2.67GHz x 4

with 8GB of memory, running Ubuntu 12.04 32bit. Charm uses 3 types of asymmetric pairings:

132

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

5 Pairings | \nvrise | unr201 | MyT224
Operation
Tag 1.2 pus 1.8 us 2.2 us
Verify 28.3pus | 42.7us | 53.5us

Table 7.2: Computational cost of PUDA operations with respect to different pairings.

Curve | yyr1s9 MNT201 MNT224
Op.
HASH in G¢ 0.139 us 0.346 us 0.296 us
HASH in Gg 25.667 us | 41.628 us | 48.305 us
MULT in Gy 0.004 us 0.0006 us 0.006 us
MULT in G2 0.040 us 0.051 us 0.054 us
MULT in G 0.012 us 0.015 us 0.016 us
EXP in G; 0.072 us 0.092 us 0.099 us
EXP in G2 0.615 us 0.757 us 0.784 us
PAIR 7.077 us 10.674 s | 13.105 us

Table 7.3: Average computation overhead of the underlying mathematical group operations for
different type of curves.

MNT159, MNT201, MNT224. We run our benchmarks with these three different types of asymmetric
pairings. The timings for all the underlying mathematical group operations are summarized in
table 7.3. There is a vast difference on the computation time of operations between G and Go
for all the different curves. The reason is the fact that the bit-length of elements in Go is much
larger than in Gy.

As shown in table 7.2, the computation of tags o;; implies a computation overhead at a
scale of milliseconds with a gradual increase as the bit size of the underlying elliptic curve
increases. The data analyzer is involved in pairing evaluations and computations at the target

group independent of the size of the data-users.

7.7 Summary

In this Chapter, we designed and analyzed a protocol for private and unforgeable aggregation.
First we modeled the security and privacy requirements. In this setting, a set of trustworthy
users submits data coupled with unforgeable tags. The purpose of the protocol is to allow a data
analyzer to verify the correctness of computation performed by a malicious Aggregator, with-
out discovering the underlying data. The challenge of the verification in aggregation protocols

that we tackled with the PUDA protocol is the fact that the privacy from the authentication

133

CHAPTER 7. PUDA - PRIVACY AND UNFORGEABILITY FOR AGGREGATION

tags is guaranteed against a malicious Aggregator. Our PUDA instantiation allows for public
verification in constant time and is provably secure under the DDH, BCDH and the new LEOM

assumption in bilinear pairing groups in the random oracle model.

134

Chapter 8

Concluding Remarks and Future Research

Contents
8.1 SUMMATY . . ¢ v v v v v bttt e 136
8.2 Future Work i i i e 140

135

CHAPTER 8. CONCLUDING REMARKS AND FUTURE RESEARCH

8.1 Summary

Privacy Preserving Data Collection and Analysis protocols significantly contribute in decision
making. The aggregation of data allows Aggregators to infer useful statistical information that
contributes to the social welfare. However, due to the nature of the personal sensitive information
that each user outsources to an untrusted party, users are reluctant to reveal their data values
in cleartext. Current solutions propose different privacy preserving mechanisms such that users’
privacy is not compromised but at the same time an untrusted party learns a statistical function
f over the entire population of users.

In this dissertation, we first defined what a Privacy Preserving Data Collection and Analysis
protocol (PPDCA) is and we presented the state-of-the-art of PPDCA protocols. We started
our analysis with noise-based techniques, in which each user adds noise to the data value such
that an untrusted Aggregator can infer noisy-statistics for the entire population of the users.
Noise-based techniques are restricted to provide noisy statistics and therefore, they are not
suitable for use case scenarios in which there is necessity for precision in the final result of the
statistical function f. Cryptographic protocols aim to address the need for precision in the
computation of f. Users encrypt their data appropriately, so as to allow partial access control
over an aggregate value. After presenting current cryptographic protocols for PPDCA, we
proceeded into a detailed taxonomy of the cryptographic protocols in the existing literature
based on different characteristics thereof. With our analysis, we identified a gap in the following

directions:

e Existing protocols are focused on a restricted family of functions f an Aggregator can

learn, such as the sum, inner product and boolean operations.

e The majority of current cryptographic solutions assume the existence of a fully trusted key
dealer, which distributes secret keys to the users and to the Aggregator. The consequences
of a fully trusted key dealer hinder the deployment of the protocols in a dynamic envi-
ronment. Namely, within a dynamic environment users are joining and leaving at every

single execution of the protocol, thus forcing existing users to receive new secret keys by

136

CHAPTER 8. CONCLUDING REMARKS AND FUTURE RESEARCH

the trusted key dealer. Moreover, this single point of trust, renders the protocols fault
intolerant, since the trusted key dealer needs to distribute new keys to all existing users

in case of a fault.

e There are no solutions supporting a stronger security model in Privacy Preserving Data
Collection and Analysis protocols. Current protocols either assume the existence of a fully
trusted Aggregator or they base their security on a honest-but-curious model in which
the Aggregator is trusted to execute the steps of the protocol correctly, but is curious in

learning any exchanged messages.

The aforementioned observations led us to the following results of this dissertation:

In Chapter 4, we presented our solution for privacy preserving clustering. Namely, in this
scenario an untrusted party wants to learn the degree of similarity of two users’ data in order
to perform clustering. Our solution entails a novel approach in which data are first transformed
to a set of bi-vectors and users encrypt the set of bi-vectors such that an untrusted Aggregator

can compare two vectors with the cosine similarity metric. Out technique assures:

e Oblivious similarity detection: An untrusted party can perform clustering on en-

crypted data without learning individual data inputs.

e Provably secure: Our protocol is provably secure in the standard model.

In Chapter 5, we analyzed a protocol for a smart grid scenario. Users encrypt their energy
consumptions and they send them to an energy supplier who acts as an Aggregator. The latter is
interested in learning the time intervals in which users consumed the maximum, for energy utility
awareness and energy forecasting. Our technique is based on an order preserving encryption
scheme, combined with a delta encoding function in order to eliminate short spontaneous spikes

in the energy consumption graph which are not continuous. Our protocol guarantees:

e Aggregator obliviousness: An untrusted Aggregator does not learn any individual
inputs but only the final result, which is the time interval in which a user consumed the

maximuin.

137

CHAPTER 8. CONCLUDING REMARKS AND FUTURE RESEARCH

e Continuous maximum consumption: A user in a home may switch on and switch
off immediately a high energy appliance. This will contribute to faulty results for the
Aggregator, since a spontaneous usage of an energy appliance for a very short period will
wrongfully dominate the aggregate statistics. We were able to capture this information
with a delta encoding function that allows an Aggregator to discern if the differences of
plaintext energy consumptions around a time window, converge to zero, which is inter-

preted as a continuous maximum energy consumption.
e Provably secure: Our protocol is provably secure.

In Chapter 6, we presented a protocol which is suitable for a dynamic population of users.
Namely, dynamic leaves and joins of users do not increase the computational and communication
overhead of existing users. Moreover, we relax the requirement for a fully trusted dealer. The
core idea of the scheme is that each user independently and without any coordination, chooses
its secret encryption key. Then, users obfuscate the secret keys with some public information
provided by the untrusted Aggregator, and they send the obfuscated keys to a semi-trusted
Collector. Finally, the Aggregator learns the sum of the values without compromising individual

privacy. In this way our protocol assures:

e Aggregator & Collector obliviousness: The protocol provides Aggregator and Col-
lector obliviousness, which assures that individual privacy is not compromised neither by
the Aggregator nor by the Collector, which helps the Aggregator in the computation of

the sum.

e Dynamicity & Fault tolerance: The Aggregator learns the sum even in case of a fault
due to a communication error. Moreover the protocol is dynamic in the sense that dynamic
leaves and joins do not affect the existing users of the protocol, since there is no need to

proceed in a new key distribution phase.

e Provably secure: Out protocol is provably secure in the random oracle model under the
intractability of well known mathematical problems against honest-but-curious Aggrega-

tors.

138

CHAPTER 8. CONCLUDING REMARKS AND FUTURE RESEARCH

We then considered the problem of verifiability of aggregation in Chapter 7. In this case
we strengthen the security requirements of the protocol with a malicious Aggregator, which can
deviate from the protocol rules and provide faulty results. The Aggregator along with the result
of f which is the sum of the values, computes a proof that allows anyone to verify the correctness

of computations. Throughout our analysis we made the following contributions:

e Aggregate unforgeability: A malicious Aggregator cannot convince a Data Analyzer

with erroneous aggregation with non negligible probability.

e Obliviousness: Individual privacy is preserved against untrusted parties of the protocol,

while the Aggregator is able to learn the sum of the data inputs.

e Constant time public verification: The running time of the verification algorithm is
constant and independent on the number of the users. Moreover, the construction allows

for public verification of the correctness of the result with a public verification key.

e Provably secure: Our protocol is provably secure under a new mathematical assumption

whose security evidence is shown in the generic group model.

139

CHAPTER 8. CONCLUDING REMARKS AND FUTURE RESEARCH

8.2 Future Work

In this section we present possible directions for future research that stems from the results of

this dissertation.

e Multi-User Order Preserving Encryption: The protocol presented in Chapter 5 is
suitable for single user statistics. A possible line of extension would be to design and
analyze an order preserving encryption scheme that takes as input encrypted data by
different users and outputs ciphertexts which preserve their plaintext space ordering. The
design of such a scheme is challenging since any public key order preserving encryption
scheme would be insecure: An adversary which is able to encrypt with the public key of
an order preserving encryption scheme can mount an attack based on the result of the
encryption algorithm: Adversary A seeks to learn the plaintext from a ciphertext c¢. A
chooses a random value r and encrypts it with an OPE scheme, that results in ciphertext
.. If the ¢, > ¢ then A chooses 7’ < r and encrypts again. Else A chooses ' > r and

continues until it finds a match ¢, = ¢. The search is not exhaustive on the plaintext space

but logarithmic. As such a multi-user order preserving encryption scheme needs further

investigation.

e Homomorphic Group Signatures: The protocol for verification of the aggregate com-
putation presented in Chapter 7 assumes the existence of trustworthy users. That is, users
will not try to forge others’ tags. In a setting with untrusted users, whereby users have
incentives to falsely accuse other users, our protocol falls short to provide the necessary se-
curity guarantees. While group signatures can trace users’ signatures and provide sender’s
anonymity, in case of PPDCA protocols—in which there must be some homomorphism
on the signatures, such that an Aggregator can compute a signature for a function over
the received group signatures—group signatures fail to provide a solution. Therefore, a
further investigation on how homomorphic group signatures can be realized is a well worth

endeavor.

e Selective Aggregation: The protocols in Chapters 6 and 7 compute the sum of the users

140

CHAPTER 8. CONCLUDING REMARKS AND FUTURE RESEARCH

obliviously. However, in real world scenarios, statistics often need to be computed over a
sample of a population in order to extract the outliers. A trivial solution would be a Data
Analyzer to publish a predicate for the outliers. Then, each user based on the satisfiability
of the predicate on input their value, contributes with its encrypted value during the
collection phase or excludes itself from sending data. This motivates mistrustful users
to lie about their data values. Moreover, the publication of the predicate increases the
leakage information a malicious Aggregator learns. Studying the design of a protocol with
a dual privacy guarantee, which assures that the predicate is not learnt by the users and
the Aggregator aggregates only the values that satisfy the predicate, seems a particularly

interesting challenge.

e Indistinguishability obfuscation: A long standing problem in computer science has
been put forward recently [69]. Namely, the primitive of indistinguishability obfuscation
guarantees that by obfuscating a program f in f; and fo, an adversary with full power
over a machine which executes the circuits that realize the functionality f with f; and
f2, cannot distinguish the execution of f; from fs. An adversary can correctly execute
an indistinguishable obfuscated program that takes as input the secret key of the user
without learning the secret key. This observation has led to the transformation of public
key protocols in symmetric protocols, while keeping the secret key private to an adversary
[46,81]. The new primitive can lend more security in PPDCA protocols. The assumption
of non-collusion between an Aggregator and a Collector for the protocol in Chapter 6 can
be mitigated as follows: Instead of A asking for the aggregation of auxiliary information
from the Collector, each user along with the ciphertext generates an indistinguishable
obfuscated program that takes as input the auxiliary information aux;; and outputs the
aggregation of aux;; only when all indistinguishable obfuscated programs are combined.
Otherwise it outputs gibberish data. The construction of joint indistinguishable obfuscated
programs that output a correct value only when they are combined appropriately will make

great strides towards stronger security models for PPDCA protocols.

141

CHAPTER 8. CONCLUDING REMARKS AND FUTURE RESEARCH

142

Appendices

143

A Lemma7

We provide the full proof of the following lemma that has been used in Chapter 6.5.3.2:

Lemma 7. In the random oracle model, collector C cannot detect that pky « and (aux;)y, es-
are generated randomly under the decisional composite residuosity (DCR) assumption in 7y,
the quadratic residuosity (QR) assumption in Z} and the decisional Diffie-Hellman (DDH)

assumption in the subgroup of quadratic residues in Zy;.

Let Oppn be an oracle which upon a DDH query, first selects randomly ¢ in the subgroup
of quadratic residues in Z}, and the pair (a,b) € Ziy Ny)4 (¢(N) is the Euler totient of N), then
flips a random coin 8 € {0, 1}. If 8 = 0, then Oppy selects ¢ randomly from ZZ(N4> otherwise,
it sets ¢ = ab. Finally, Oppn returns the tuple (g, g%, g%, g°).

We say that an adversary B breaks the DDH assumption in the subgroup of quadratic

residues, if it can tell whether ¢¢ = ¢* or not.

Proof. (Sketch) Assume there is a collector C that detects pk 4 ;+ and (aux; ¢«)y, es+ are generated
randomly. We show in the random oracle model that there exists an adversary B that uses
collector C to break DDH in the subgroup of quadratic residues in Z}; under DCR in Z%,, and
QR in ZY.

e Let (g,9% g% ¢°) be the DDH tuple provided by Oppy to adversary B.

e Let Ry denote the subgroup of Z?VQ defined as Ry = {hN ,h e Z*NQ}. We recall that Ry
is of order ¢(N) = (p — 1)(¢ — 1) and thus there exists an isomorphism p : Z3 — Rn.

Notably, p could be defined as: V g € ZY;, p(g) = ¢ mod N2
o Let ORy denote the subgroup of Ry defined as QRy = {ﬁz, he Ry}

Game 0. This game is the collector obliviousness game: Adversary B executes the setup
algorithm by generating the users’ secret keys sk; and the Aggregator A’s secret key sk and
by publishing the public parameters P = (N, H), where H is a cryptographic hash function
H : Z — Z},. By having the user’s secret keys sk; and A’s secret key sk, adversary B can

simulate successfully the collector obliviousness game to collector C.

145

Game 1. This game is identical to the above game except for the following:

e For each time interval ¢, B publishes pk, ; = H(t)**4" € Ry instead of pk,, = H(t)*4 €

V2 (ie., the Aggregator’s secret key is actually skaN instead of ska).

e For each time interval ¢, B computes aux;; = (H(t)ski)skaN ¢ Ry instead of aux; ¢ =

(H(ty)ska e Z%,,.

Note that under the DCR assumption, C cannot tell whether pk,; and aux;; are in Ry or not,
and accordingly, Game 0 and Game 1 are computationally indistinguishable.

Game 2. In this game, we compute pky ; as H(t)?k4N mod N? and aux;; as
(H(t)*i)2kaN mod N2, Note that under the quadratic residuosity assumption in Z%, Game
1 and Game 2 are computationally indistinguishable. Indeed, if there is a distinguisher D that
is able to tell for instance whether pk,, is an element of QR x or not, then D can be used to
break the quadratic assumption in Z%, by employing the isomorphism p : Z}; — Ry. Namely,
given an element g € Z*,, one computes h = p(g) and submits h to D. If D outputs that h is of
the form h2 (iz € Rn), then one outputs that g is quadratic residue in Z},.

Game 3. This game is identical to Game 2 except that this time adversary B controls a

random oracle H and instead of generating the secret key sk randomly in Z%,,, it sets pky = g®

N2
mod N and uses the random oracle to simulate that it possesses the secret key skq = a. We
recall that (g, g%, g%, ¢¢) is the DDH tuple that adversary B received from Opp.

Without loss of generality, we assume that collector C makes ¢ hash queries to the random
oracle H.
Random Oracle Simulation. To answer the queries of the random oracle H, adversary B keeps

a table Ty of tuples (t;,r;, coini(t), H(t;)) as explained next. On a query H(t) to H, adversary

B replies as follows:

e If there is a tuple (¢,7,coin(t), H(t)) that corresponds to t in table Ty, then B returns

H(t).

e If ¢ has never been queried before, then B picks a random number r € [0, N/4], and flips

a random coin coin(t) € {0,1} such that: coin(t) = 1 with probability p, and it is equal

146

to 0 with probability 1 — p. If coin(t) = 0, then B answers with H(t) = ¢"¥ mod N2.
Otherwise, it answers with H(t) = ¢"* mod N?2. Finally, adversary B stores the tuple

(t,r,coin(t), H(t)) in table Tf.

Notice that H(t) € QRy instead of being in Z3;,, nonetheless collector C cannot detect this
fact thanks to the QR assumption in Z} and the DCR assumption in Z7,.

Now suppose that coin(t*) = 1, then H(t*) is of the form ¢" . Accordingly, B simulates
the oracle Oco, by computing pky ;« = g" N mod N? and aux; g+ = g" N mod N2. Note
that in the case where ¢ = ab, then pky 4« = H(t*)* = H(t*)*k4 and aux; ¢+ = H(t*)*ki%*4 and as
a result, collector C continues the collector obliviousness game. However, if ¢ # ab and if C has
a non-negligible advantage € in detecting that pk4 ;« and aux;;+ are randomly generated, then C
aborts the game with non-negligible advantage €. Therefore, to break the DDH assumption, B
outputs 1 when collector C continues the collector obliviousness game; and outputs 0 otherwise.

We remark here that the event coin(t*) = 1 occurs with probability IT = p(1 — p)4~!, where
q is the number of hash queries that C issues during the collector obliviousness game. The

probability IT is maximal when p = 1/q and it equals to ITpax ~ é. Therefore, the advantage ¢

of adversary B in breaking DDH is equal to é.

B LEOM Assumption

In this section we provide security evidence for the hardness of the new LEOM assumption by
presenting bounds on the success probabilities of an adversary A, which presumably breaks the
assumption. We follow the theoretical generic group model (GGM) as presented in [134]. Namely
under the GGM framework an adversary A has access to a black box that conceptualizes the
underlying mathematical group G in which the assumption takes place. A without knowing any
details about the underlying group apart from its order p is asking for encodings of its choice and
the black box replies through a random encoding function £ that maps elements from G — =
as random bit strings of size [logy p|. Since our construction operates on asymmetric bilinear

pairing groups G1, Ga, G we make use of three random encoding functions &., ¢ € [1,2,T] where

147

£ Ge — {0,1}[los2p],

Theorem 11. Suppose A is a polynomial probabilistic time adversary that solves the LEOM
assumption, making at most qg oracle queries for the underlying group operations on
G1,G2,Gr and the OLgom oracle, all counted together. All the encodings &.,c € [1,2,T]
and 8,{vw}i_, € Z, are chosen at random. Then the probability e that A on in-
put (p,&1(1),&2(1), &1(a), &1(b), &1(c), £2(6),&(32211 %)) to output a tuple (§1(a),&1(b),&i(cy =
E1(Be Y m i+ 0> xyy))) for which neither x, y # Ty nor A has made more than n

distinct queries for a fized time interval t, is bounded as:

1 2
€ < (gc + 16)
p

Proof. We assume a polynomial time simulator B that interacts with adversary A and simulates

the black box for the underlying groups Gi, Gs, Gr. B maintains 3 lists of tuples:
o Li={(F1&,):i=1,---,7}
o Lo={(Fa;,&):i=1,--- T}
o Lo ={(Fri,&érs):i=1,---,7mp}

where F1; € Zp[A, B, {Ty}1_1, A, X], F2;,Z,[A, E] and Fr; € Zy[A,B,{T',}I_, A, E, X]| are
multivariate polynomial on the indeterminants A, B,{I',}!'_;, A, E, X. Hereafter we will denote
inteterminants for polynomials with capital letters and coefficients with lowercase. The random
encodings &.;,¢ € [1,2,T] of each list L.,c € [1,2,T] are provided to the adversary A at
each step 7, where 7 = 7 + 79 + 7 + 4. The lists are initialized at step 7 = 0 by setting
71 = 1,72 = 3,70 = 0 and assigning 11 = 1,Fo1 = 1,F25 = > ' Ty, Fog = A, that
corresponds to the generators g1, go and the public information 9222:1 T gg . A has access to the
random encodings &1.1, 2,1, §2,2, §2,3 respectively.

In what follows we describe how B simulates the groups operations in Gy, Gs, Gy and the

oracle responses to OLgom. We first assume that before A queries the oracle or asks for group op-

148

erations it has already asked for the random encodings of the elements involved in the operations.
Consequently when A asks for operations in G, c € [1,2,T] for some operands &, ¢ € [1,2,T],

B checks if &, c € [1,2,T] already exists in L., ¢ € [1,2,T] and aborts if this happens.

e Group operations: A provides B two operands &.1,&.2,¢ € [1,2,T] and a bit defining
multiplication or division. B starts by incrementing 7.+ = 1, ¢ € [1,2,T]. It the computes
Fi ;. = Fi; + F1j;, where 1 < 4,5 < 7. if the operation bit is for multiplication or F. ., =
F1; — Fyj, where 1 < 1,5 < 7. if it is for division. If the new polynomial F, ;, is equal to
another polynomial F,; for some | < 7.,c € [1,2,T] in list L., c € [1,2,T] then B fetches
the corresponding &.; and forwards it to A, otherwise it chooses a fresh random &.,, €
{0, 1}1°82P and gives it to .A. B finally appends to L, c € [1,2,T] the pair (F.r., &), ¢ €

1,2,7).

e Pairing: A pairing operation in Gt consists of two random encodings &; 4, &2 ; with 1 <
1 <7 and 1 < j < 7. B first increments the counter 7+ = 1. Afterwards it computes
the pairing as the multiplication of the appropriate polynomials: Fr ., = F1 5 - Fo 5. If
the same polynomial already exists in Lr: Fr,. = Fr;,1 <1 < 7p then B clones the
random string &7, otherwise it chooses a fresh random &7, € {0, 1}1°g2p and gives it to

A. B finally appends to Lt the pair (Fr ., &1)-

e OLgom: B increments a counter 7o by 1 and sets 71+ = 3. A inputs (u,t,24,). B
computes the polynomials Fi -, , = Ay, Fi -, = A4Y),Fi, = (BT, + AAX) for the
indeterminants B,T",, A, A, X. If any of the Fy »,_,, Fi,_,, F1 already exists in £; then
B clones the associated random encodings &; ; for some [€ [1,--- ,71]. Otherwise it creates
three random encodings &1+, ,,&1.m 1, &1 € {0,1}1°82P and forwards them to A. It also

stores the pairs (Fi7_ 5,811), (F1,m_1:61,m_1)s (F1m,&1,n) in £ list.

Eventually A outputs a forgery (my, &1 fa:&1,pys &1, fay)- If A’s forgery is valid then it must

hold:
e(TT et g2)
e(Br, == " Ye(aXrim M, gb)

=1eGr (1)

149

We show now that this does not happen always. Indeed w.l.o.g we have the following form

for each polynomial in the three lists:
° Fl,i = 204t Zl,ihBFu,i + ZQJAAX, for coeflicients 20,0y %14 h, 22
o Fy;=wp;+wi;A+wy;E, for coefficients wo ;, w1 i, wa ;.

° FT,i = Yo T ﬁl’iAhBFu’i + 7’]271'EhBFu’i + ,Ol’iAA2X + 102’7;AAXE, for coefficients
Yo,is Mi> Ty M2,35 P15 P2,
Equation (1) following the aforementioned presentation of each polynomial can be rewritten

as

Fy=Fry— Frifr, (2)

for indexes k, [, 0. Simplifying the equation, since it is equal to 0, then the second part consists
of a polynomial with determinants (ATI')?, (ET)?, AA*X? (AAXE)? and the first part with
determinants (AT, ET', AA2X, AAXE). Since there are no common terms, then all are canceled
out and we are left with yox = ¥0,1%0,0. As such Fy = 0 only when yo 1 = ¥0,1%0,0-

B assigns random values («a, (3,7, J, €, z) for the indeterminants A, B,I', A, E, X and in order
for A to win in the game, it should find two identical polynomial in any of the lists L1, Lo, L7
or Fiy = 0. As such the success probability of A is bounded by the probability that one at least

of the following equations holds:

L. Fl,i(a7ﬂ>7757$) - Fl,j(a7ﬁ,7,5,x) =0:1 75]
2. Foi(6.€) — Foy(6,6) = 0:i 4
3. Fri(a,B,v,0,2) — Frj(a,8,7,6,2) =0:i#j

4. Fpi(a,B,7,6,¢,2) = Fyj(a, 8,7, 0,¢,x) =00 #
Fy ; degree is at most 3, Fb; at most 1, and Fr; at most 4. . As such they vanish with probability

,% respectively, from the Schwartz-Zippel theorem. As such summing for all possible pairs

D=

)

W

i, j for each of the aforementioned polynomials the success probability of A is bounded by:

2
€ < <7'1>3+<7'2>1+<7'T>4+4< (11 + 72+ 710 +12)
2)p 2)p 2)p p D

150

ASTl—&-Tg—I-TTng—i—ZLthenegSW

151

C Resume

La motivation pour cette theése provient de notre engagement dans un projet sur contréle d’usage,
qui a commencé comme un probleme de coté et nous a emmenés progressivement au sujet
principal de cette these. A savoir, la fonction de ces protocoles de controle d’usage est de controler
la maniere dont les données sont utilisées tout au long de leur vie, car les systemes ordinaires
de controle d’acces ne peuvent pas assurer la confidentialité pour 1'utilisation des données. Un
systeme ordinaire de controle d’acces permet & un adversaire de copier et stocker des données
supprimées, les dupliquer ou les utiliser avec malveillance et de maniére non autorisée. Un
élément essentiel d’un régime d’application de controle d’usage s’avere étre une fonction de la
détection de similarité, qui est utilisé pour détecter 1'utilisation de données malveillantes par les
parties non fiables. Notre étude d’une catégorie spécifique des opérations d’analyse de données,
telles que la détection de similarité a des fins de sécurité, nous a inciter a s’intéresser a une
catégorie plus vaste des protocoles, dans laquelle d’autres fonctions que la similarité sont évalués
par des parties non fiables pour des raisons différentes.

Dans ce type des protocoles, tout comme avec le probleme de controle d’usage, il existe
une exigence contradictoire entre la sécurité et 1'utilité, dans ce type de protocoles. Un tiers
non fiables cherche a apprendre certaines informations statistiques utiles grace a un recense-
ment des données représentant une population d’usagers. Les parties non fiables recueillent
des données provenant d’individus pendant la phase de collecte. Apres avoir recueilli toutes les
données, les agrégateurs, qui ne sont pas autorisées a avoir acces aux données individuelles, vont
essayer de les analyser, afin d’en tirer une valeur globale. Les données individuelles contien-
nent des informations personnelles et sensibles, ¢’est pourquoi les utilisateurs qui les fournissent
cherchent a protéger leur vie privée. Grace a l'analyse des données recueillies aupres des util-
isateurs, des informations statistiques utiles peuvent étre calculées en texte clair qui aidera aux
agrégateurs a prendre une décision. En tant que tel, le probléme devient un défi, lorsque les
entrées individuelles a la fonction sont obscurcis, afin d’assurer la confidentialité. Désormais,
des solutions différentes répondant a ce probleme sont appelées PPDCA, en elles utilisent deux

classes de techniques. La premiere classe repose sur ’ajout de bruit aux échantillons de données

152

afin d’assurer la confidentialité. Le bruit ajouté permet a ’agrégateur de calculer une fonction
statistique avec une erreur. L’autre variante de solutions est basée sur la cryptographie. Grace
a des techniques non-conventionnelles de cryptage et de gestion de clés, 'agrégateur non fiable
apprend le résultat d’une fonction statistique sans aucun bruit. En dépit des progres réalisés
par ces solutions cryptographiques concernant la vie privée et lefficacité, le modele de sécurité
n’implique pas un agrégateur entierement malveillant ou suppose l'existence d’un distributeur
de clés completement fiable qui distribuant des clés a chaque partie du protocole. Cette these
porte sur les techniques cryptographiques pour les protocoles PPDCA avec un modele de menace
plus fort, tout en assouplissant les hypothéses de confiance existantes, afin de mieux répondre
au déploiement de monde réel. Avant de présenter les défis et les objectifs que nous abordons,

nous présentons des scénarios de cas d’utilisation qui nous motivent.

C.1 Applications

Dans cette partie, nous fournissons, a travers des scénarios du monde réel, des preuves pour
les applications diverses des protocoles PPDCA. La confluence des serveurs puissants, des ap-
pareils informatiques omniprésents et d’informatique intelligente, permet la collection d’une
énorme quantité des données provenant des utilisateurs finaux. L’existence d’une grande quan-
tité d’informations, permet a I’agrégateur de déduire, grace a ses opérations, des informations
statistiques sur la population sous-jacente, qui améliorent la protection sociale: imaginez un scé-
nario de services médicaux, selon lequel les patients d’un hopital recoivent des renseignements
personnels sur leur santé en forme électronique. Cette information représente leur historique
médicale et elle est considéré comme une information personnelle. Les scientifiques médicaux,
d’autre part, cherchent a travailler sur les données afin d’en tirer des informations statistiques,
notamment les modeles prédictifs sophistiqués pour découvrir la prédisposition aux maladies
(cancer, crise cardiaque, des anomalies génétiques) ou pour connaitre, grace a des données
génomiques, a quel point il est probable que les descendants héritent certaines maladies. Les
données médicales, produites par une population de patients, sont recueillies par les scientifiques

médicaux qui se comportent comme des agrégateurs. La mauvaise usage de données privées des

153

patients est possible, ce qui peut avoir une conséquence négative dans la vie des patients: par
exemple, quand une compagnie d’assurance décide si un patient va devenir un client poten-
tiel ou pas, l'élicitation des données médicales a cette compagnie d’assurance peut avoir une
influence négative sur sa décision. Le probleme centrale de ce scénario, qui se passe entre les
fournisseurs des données médicales (utilisateurs) et les scientifiques médicaux, qui peuvent agir
avec malveillance, est d’assurer la confidentialité des données individuelles, tout en permettant
aux scientifiques médicaux d’effectuer certaines opérations dessus.

Dans un autre contexte, grace a la chute des cotits des appareils informatiques, les compteurs
intelligents sont beaucoup déployés dans les foyers afin de signaler la consommation d’énergie
dans un environnement de réseau électrique intelligent. Comme la consommation d’énergie,
surveillé par les compteurs intelligents, peut révéler des informations sensibles d’un foyer, tels
que le nombre de personnes, les appareils et les activités personnelles, les usagers n’ont pas trop
envie de dévoiler leurs habitudes de consommation d’énergie. De 'autre co6té du systeme de
réseau intelligent, les fournisseurs d’énergie, considérés comme des consommateurs des données,
collecte et analyse des échantillons de la consommation d’énergie de compteurs intelligents afin
de réaliser différents types d’optimisation. A partir de 'analyse de ces échantillons, ils sont en
mesure de prévoir précisément la demande d’électricité, afin de répartir I’énergie a I'avance, en
fonction des besoins de toute une population. C’est une opposition typique qui se pose donc entre
les deux bout du systeme de réseau intelligent, la vie privée d’un coté et I'utilité de I’autre coté.
Le défi du scénario de comptage intelligent est, donc, de préserver la confidentialité des données
individuelles, tout en permettant aux tiers non fiables d’avoir acces a certaines informations

globales sur les comptages.

C.2 PPDCA

Dans les scénarios mentionnés ci-dessus un tiers non fiable collecte les données provenant de
plusieurs utilisateurs. Les utilisateurs veulent protéger la confidentialité de leurs données et ils
hésitent a révéler leurs informations personnelles. D’autre part, la partie non fiable cherche

a obtenir en texte clair une fonction sur ’ensemble des données, sans apprendre des entrées

154

individuelles. Pendant une phase de collecte, un agrégateur recueille des données obscurcies.
Ensuite, au cours de la phase d’analyse, ’agrégateur effectue certaines opérations sur les données
qui lui permettent de révéler en texte clair des informations statistiques utiles sur les informations
recueillies. Les faits de préserver la confidentialité des données et de permettre ’acces spécifique
a I'information globale ont les exigences contradictoires, ce qui rend la conception de protocoles
PPDCA difficile. Examinons maintenant quelques solutions possibles de ce probleme. Cryptage
homomorphique permet des opérations sur les données cryptées, mais ne résout pas le probleme
de la dérivation d’une valeur globale en texte clair. Dans un contexte standard, basé sur le
cryptage homomorphique, 'agrégateur non fiable aurait besoin de la clé de cryptage secrete
pour décrypter le résultat global cryptées, ce qui compromettrait la vie privée des utilisateurs.
Suite a une direction différente, le probleme pourrait étre atténué avec les protocoles calculs
multi-partis (MPC). Cependant, MPC implique une surcharge importante de communication,
car les utilisateurs sont obligés d’échanger des multiples messages secrets pour que le calcul d’une
fonction sur les données puisse étre effectué. Le paradigme de cryptage fonctionnel peut étre
utilisé pour concevoir des protocoles PPDCA, mais en cas des entrées multiples les modeéles de
cryptage fonctionnels proposés seraient complexes et d’un cout prohibitif. Nous nous tournons
vers des approches plus adaptées qui portent spécifiquement sur le probleme PPDCA. L’idée
des solutions liées au bruit est d’ajouter un peu de bruit a chaque valeur de données avant
de P'envoyer a l'agrégateur. Le bruit empéche 'agrégateur de compromettre la confidentialité
individuelle, mais il est adapté de maniere appropriée pour que certaines statistiques portant
sur toutes les entrées de données puissent étre inférées. Il existe un autre approche qui utilise
des protocoles cryptographiques avec un ensemble restreint d’opérations qu’un agrégateur peut

effectuer sur ’ensemble des données.

C.3 Objectifs

Bien que 'approche le plus approprié pour PPDCA semble étre celui qui utilise des protocoles
cryptographiques, des solutions existantes, basées sur des protocoles cryptographiques, ont tou-

jours quelques limitations. Tout d’abord, les protocoles existants ne fonctionnent qu’avec un

155

ensemble basique de fonctions d’agrégation: l’extension de ceux-ci semble étre un tres bon défi
pour la recherche. De plus, des protocoles cryptographiques existants pour PPDCA souffrent
d’exigences irréalistes concernant la gestion des clés, car il existe une dépendance d’un distribu-
teur des clés entierement fiable ainsi que la nécessité de mettre a jour le matériel de clé pour la
population entiere des utilisateurs. Les utilisateurs existants du modele sont également touchés
en cas de faute, parce que les utilisateurs qui participent déja dans le protocole, ont besoin de
recevoir de nouvelles clés. Dans le cas des appareils a faibles ressources, tel que les compteurs
intelligents, en raison des contraintes de ressources de l'appareil, il est d’une grande importance
de soutenir la dynamicité et la résilience aux pannes avec faibles colits de communication. En-
fin, les protocoles cryptographiques suivent le modele de menace honnéte, mais curieux, dans
lequel I'agrégateur est semi-approuvé de suivre les regles du protocole. Nous concluons qu’il est
important d’introduire un modele de sécurité plus fort en prenant en compte adversaires plus
puissants qui cherchent & s’écarter des regles de protocole, afin d’altérer de fagon malicieuse les

résultats globaux. Les objectifs de cette these peuvent étre résumés en quelques points:

1. Fournir de nouvelles fonctionnalités qu’un agrégateur peut effectuer sur les données pour
la collecte de données sécurisées et sur I’analyse, qui ne sont pas disponibles & partir des
protocoles cryptographiques existants. Nous soulignons que les fonctionnalités étendues
devraient venir avec une récompense idéal pour la confidentialité sans la compromettre
en grande partie: I’apprentissage des statistiques globales sur I’ensemble de la population
d’utilisateurs est faisable et acceptable, mais 'apprentissage de comportement en ligne de
chaque utilisateur de la population est considéré comme la violation de la vie privée des

utilisateurs.

2. Conception d’un protocole cryptographique qui serait approprié pour une population dy-
namique des utilisateurs avec la résilience aux pannes. Nous soulignons que le soutien
de dynamicité et de tolérance aux pannes ne devrait pas compromettre la vie privée des

utilisateurs.

3. La formalisation de nouvelles définitions de sécurité qui ne existent pas dans la littérature

actuelle. En quelques mots, nous renforcons les définitions de confidentialité existantes

156

concernant inconscience de I’Aggregator, telles qu’elles ont déja été proposées, en réduisant
la quantité de confiance qui doit étre placé dans une seule entité. De plus, nous proposons
une définition intégrée de la sécurité qui garantit a la fois la confidentialité et la vérification
des calculs. D’apres 'analyse effectuée, nous présentons brievement les résultats de cette

these:

C.4 Clustering aux profils privées

Les tiers non fiables ont tendance a exploiter, de plus en plus, les informations des usagers pour
assurer une meilleure diffusion de contenu. Les systémes recueillent des données sur les utilisa-
teurs et leurs interactions avec leur environnement afin de fournir le contenu le plus adéquat et
personnalisé. Les informations utilisées, comprenant les relations sociales des usagers et leurs
intéréts personnels, sont constituées des données tres sensibles, ce qui, donc, pose le probleme
dans le domaine de la vie privée. Une solution naive du probléeme mentionné ci-dessus pourrait
étre le cryptage des données avant de les analyser. Cela ne résoudra pas le probleme puisque
les opérations ne sont pas envisageables apres le cryptage. Une solution plus adéquate pourrait
étre le cryptage des données de fagon homomorphique, pour que les propriétés statistiques des
données apres le cryptage puissent étre calculées. Bien que cette solution semble abordable, les
systemes actuels de cryptage homomorphiques ne réussissent pas a donner une solution pour un
systeme d’analyse globale appliqué aux certaines grandes échelles d’ensemble de données. L’un
des éléments constitutifs de base dans la grande majorité des scénarios d’analyse de données
est la détection de similarité. En analysant ’ensemble de données d’utilisateurs, un moteur de
recommandation peut découvrir des profils similaires et ainsi recommander & un nouvel utilisa-
teur un contenu qui a déja été consommé par d’autres utilisateurs similaires déja existants. Les
annonceurs en ligne ont cherché a augmenter leur chiffre d’affaires en examinant le comportement
en ligne des usagers. Cela implique que les détaillants en ligne externalisent des informations
personnelles sensibles aux annonceurs. Les utilisations mentionnées ci-dessus impliquent un
risque de violation de confidentialité. Etant donné que les opérations d’analyse de données sont

effectuées sur des informations personnelles confidentielles et sensibles, il est possible que la vie

157

privée des individus ne soit protégés. Ainsi, les utilisateurs et les entreprises, soit ont tendance
a ne pas soumettre leurs données a une analyse plus approfondie des tiers non fiables, soit ils
leur donnent un acces limité en raison du risque de violation de confidentialité [86, 107, 112,
127]. Des solutions radicales comprennent une limitation relative aux opérations d’analyse de
données disponibles qu'un agrégateur peut effectuer a partir de la perspective de I'analyseur, ce
qui dégrade la précision de ’analyse des données. Dans ce chapitre, nous présentons un pro-
tocole de la préservation de la vie privée pour la détection de similarité. Similarité cosinus est
capable de reconnaitre des vecteurs similaires basés sur ’angle formé entre ces deux vecteurs.
Notre mécanisme de préservation de la vie privée, trace d’abord les données des utilisateurs sous
la forme des vecteurs et ensuite chaque utilisateur crypte individuellement ses données, de sorte
que la représentation géométrique des données vectorisées soit préservée. La sécurité de cette
solution est confirmée sous la sécurité des générateurs pseudo-aléatoires. L’exactitude de la so-
lution proposée est ensuite évaluée avec I'aide d’étude sur les caractéristiques de la personnalité
des utilisateurs.

L’idée de la solution est d’appliquer des transformations sur les vecteurs originaux qui d’une
part préservent 'angle entre n’importe quel paire d’entre eux et d’autre part assurent la vie
privée. Etant donné que la rotation dans un espace a deux dimensions conserve les angles, on
applique cette transformation aux vecteurs a deux-dimensions, nommeés des sous-vecteurs qui
sont originaires du vecteur de données initial. En outre, ces sous-vecteurs sont encore dilatés
au hasard et ainsi obscurcis, mais sans encore avoir eu un impact sur ’angle. Nous avons ob-
servé des fuites de sécurité lorsque le mécanisme de cryptage ne comporte pas tous les deux
éléments, les dilatations aléatoires et les rotations. Si chaque utilisateur sélectionne unique-
ment la dilatation aléatoire comme le mécanisme de cryptage, un adversaire, apres avoir obtenu
une bonne estimation d’'un coefficient de vecteur d’un utilisateur, peut récupérer les vecteurs
bidimensionnels spécifiques en calculant l'inverse de 1’élément estimé et en le multipliant par
le coefficient crypté. Le probleme susmentionné est atténué grace a des rotations. Cependant,
un autre apparailt lorsque les rotations de vecteur aléatoires sont utilisées: si deux utilisateurs

avec des vecteurs secrets D;, D; ont respectivement la méme valeur en méme position de leurs

158

vecteurs, des vecteurs cryptés correspondants auraient la méme valeur a cette position, unique-
ment si le cryptage est fait avec une matrice de rotation Ry de l'angle 6. Ceci s’oppose a la
définition de la sécurité 36. Ainsi, pour bien préserver la similarité cosinus apres le cryptage
des vecteurs, a la fois la dilatation aléatoire et la rotation sont appliquées. Par conséquent,
grace a la rotation, I'adversaire ne peut pas découvrir des similarités entre les coordonnées d’un
vecteur. Le processus de tracer les vecteurs en sous-vecteurs diminue également la probabilité de
découvrir le vecteur d’origine, puisque chaque sous-vecteur a un facteur de dilatation différent.

Contributions Notre technique assure :

e (Calculation de similarité sans avoir : Un tiers non fiable peut effectuer 'agrégation des

données cryptées sans apprendre des entrées de données individuelles.

e La sécurité confirmée : La sécurité de notre protocole est confirmée dans le modele stan-

dard.

C.5 Preservation de la vie privée par les statistiques dans le réseau intelligent

Les compteurs intelligents sont des appareils déployés dans les foyers qui ont pour ’objet de
mesurer la consommation d’énergie dans des intervalles de temps spécifiques. Ils ne mesurent
pas uniquement la consommation d’électricité mais aussi celle du gaz et de I’eau. Les raisons
de ce déploiement important des compteurs intelligents sont nombreuses. D’une part, les four-
nisseurs peuvent, ainsi, apprendre plus précisément les intervalles de temps ou chaque foyer
consomme plus d’énergie et donc ajuster de maniere appropriée la facturation de chaque client
et de prévoir la demande potentielle d’énergie. D’autre part, les habitants d’un foyer peuvent
recevoir des conseils et ainsi changer leurs habitudes de consommation d’énergie. Notamment,
apres avoir appris quelle est la période de consommation la plus élevée, un client peut préférer de
consommer ’énergie d’'une maniere plus efficace. Dans ce chapitre, nous abordons le probleme
consistant en calcul de la consommation maximale continue de I’énergie au cours des relevés,
envoyées par les compteurs intelligents individuels tout en préservant la vie privée des usagers.
Suite a ’analyse que nous avons faite dans le chapitre 3, ce type de statistiques n’existe pas

dans les ouvrages scientifiques actuels. Nous supposons que tout les deux, le fournisseur et les

159

compteurs intelligents individuels, cherchent a déterminer 'intervalle ot le compteur intelligent
consomme le plus. Une telle opération ne peut étre effectuée que par un compteur intelligent,
car il lui manque de ressources et en particulier de mémoire. Le compteur intelligent aurait be-
soin d’un nombre important de valeurs afin de trouver la valeur maximale correspondant a une
consommation continue. Cependant, la conséquence de I'externalisation de ces calculs au four-
nisseur sera naturellement la fuite des informations concernant les consommations périodiques
qui sont certainement des informations tres sensibles. Nous proposons donc une solution, dans
laquelle les compteurs intelligents envoient leur mesure périodique au fournisseur de la facon que
la confidentialité soit préservée, tout en permettant a cette organisme de calculer I'intervalle de
temps de la consommation maximale. La solution proposée est fondé sur un cryptage de main-
tien de l'ordre (OPE), qui par définition conserve l'ordre des valeurs en texte clair apres leur
cryptage sans révéler aucune information supplémentaire. De plus, afin de filtrer les maximums
spontanés (qui apparaissent, car parfois des appareils domestiques par exemple, s’allument et
s’éteignent du fagon erroné), le compteur intelligent envoie également les différences de valeurs
de consommation consécutive au fur et & mesure, en utilisant une approche ”sur la volée” de
sorte que le compteur intelligent n’a pas besoin de stocker de I'information auxiliaire. Grace
aux différences le fournisseur est capable de déterminer la période de consommation maximale
qui est continue. La sécurité de la solution proposée est confirmée avec ’aide d’une preuve
réductionniste de 'hypothese POPF-CPA [23], ce qui correspond & la notion de sécurité qui
caractérise la sécurité de 'OPE. Idée Dans cette partie, nous donnons une courte description
de notre solution. Notre modele de PPSGS réussie a faire oublier les tiers grace a un systeme
de cryptage de maintien de ’ordre dans lequel I'ordre des éléments numériques dans ’espace de
texte clair est également conservé dans 'espace de texte codé. Chaque compteur intelligent est
équipé d’un module matériel inviolable dans lequel une clé secrete est intégrée. Cette clé secrete
est utilisée pour crypter les mesurages a chaque intervalle de temps. Grace a la primitive cryp-
tographique des fonctions de maintien de ’ordre, des fonctions préservant un ordre et utilisant la
clé, choisies de maniére uniforme et au hasard, ne se distinguent pas des fonctions idéales. Ainsi,

ce n’est que 'ordre qui est révélé au fournisseur qui agit en tant qu’entité d’analyse de données.

160

Pour I'exactitude de 'analyse, une fois que le fournisseur a identifié I'intervalle de temps dans
lequel un compteur intelligent a consommé le maximum, grace a I'information supplémentaire
composée par les différences entre chaque consommation, il peut vérifier qu’en effet il y a une
consommation valable d’énergie continue maximale autour de cet intervalle de temps. Si les
différences sont convergées a 0, cela veut dire qu’il a une forte indication que les mesurages
autour de cet intervalle particulier font partie d’'une consommation continue maximale. Bien
que l'objectif de la publication des différences est de permettre aux fournisseurs d’énergie de
détecter les consommations continues d’énergie maximale, les chercheurs ont exprimé I'intérét
pour concevoir des protocoles préservant la confidentialité pour les détections de créte, pour que
les opérateurs énergétiques puissent identifier les lignes électriques surchargées [53]. En tant
que tel, notre solution est également convenable pour le cas mentionné ci-dessus. L’avantage
de notre approche est que les compteurs intelligents n’ont pas besoin de stocker les différences
ou les textes chiffrés afin d’effectuer 'analyse, mais ceux-ci sont calculées et envoyées immédi-
atement au fur et a mesure. Du point de vue des fournisseurs, la vérification d’un intervalle
de consommation maximale continue est effectuée par lot avec une seule opération. De plus,
comme il sera établi dans la section 5.2.3, les différences ne compromettent pas les exigences de
la confidentialité du modele. L’information provenant de l’identification d’une consommation
d’énergie continue améliorerra les prévisions de consommation d’énergie mais également perme-
ttra une meilleure allocation de I’énergie a ’avance des producteurs d’énergie. En outre, les
informations sur I'intervalle de la consommation d’énergie maximale peuvent étre renvoyées aux
usagers pour qu’ils puissent passer rapidement de leur utilisation habituelle d’énergie pendant les
périodes de tarif haut a celle des périodes de tarif bas. Il est impossible d’effectuer cette opéra-
tion individuellement & chaque compteur intelligent, car leurs ressources ne sont pas suffisantes
pour l'exécution des grandes opérations d’analyse de données. D’autre part, un mécanisme de
vérification de l'intégrité est indispensable pour que le fournisseur soit assuré que les mesurages
sont envoyés a partir des compteurs intelligents existants et authentifiés.

Contributions

Notre protocole assure:

161

e [’inconscience d’agrégateur: Un agrégateur non fiable n’apprend aucune des entrées indi-
viduelles. Il n’apprend que le résultat final, ce qui est en effet I'intervalle de temps dans

lequel un utilisateur consomme le maximum.

e La consommation continue maximale: Un utilisateur dans un foyer peut allumer et étein-
dre un appareil de haute énergie, immédiatement et dans n’importe quel moment. Cela
résultera en résultats erronés pour l'agrégateur, car un usage spontané d’un appareil de
I’énergie pour une période tres courte donnera les statistiques globales fausses. Nous étions
en mesure de capter cette information grace a une fonction de codage delta, qui permet a
I’agrégateur de discerner si les différences de consommations d’énergie en texte clair autour
d’un intervalle de temps, convergent a zéro, ce qui est interprété comme une consommation

maximale d’énergie continue.

e La sécurité confirmée: La sécurité de notre protocole est bien confirmée.

C.6 Protection de la vie privee pour l’agrégation de séries temporelles dans le

maniere dynamique

Nous proposons un protocole PPDCA, qui élimine le besoin d’une redistribution des clés apres
une connexion et une déconnexion d’un utilisateur, ainsi que la nécessité d’un distributeur des
clés completement fiable. Ainsi, nous renforgons le modele de menace des protocoles PPDCA
actuels avec des fonctionnalités améliorées concernant la dynamicité et la tolérance aux pannes.

Les caractéristiques du protocole amélioré peuvent étre résumées comme suit:

e Pas de distributeur de clés. Contrairement a la plupart des protocoles PPDCA, dans notre
modele il n’y a pas distributeur des clés fiable. Par contre, nous introduisons une partie
semi-fiable, appelée Collecteur, qui rassemble des informations clés partielles prises des

utilisateurs via un canal sécurisé.

e Populations dynamiques des utilisateurs soutenues. Aucune coordination n’est indispens-

able pour gérer les changements qui concernent la population des usagers. Ceci est possible

162

grace a un mécanisme de clé auto-générée, selon lequel aucun accord de clé entre utilisa-

teurs n’est exigé.

e Confidentialité. FEn ce qui concerne la confidentialité, le modele assure l’inconscience
d’agrégateur, tel qu’introduit par Elaine Shi et al. [131]. Autrement dit, l’agrégateur
non fiable n’apprend que la somme et la moyenne sur les données privées des utilisateurs
a la fin de ’exécution du protocole. Par ailleurs, nous montrons que le collecteur ne releve

aucune information sur les données privées des utilisateurs.

e Efficacité. Notre modele reprend certaines fonctionnalités de Joye et al. [92], telles que
la possibilité de calculer la somme et la moyenne sur un grand nombre d’utilisateurs sans
restrictions concernant la diversité des valeurs des utilisateurs. Il est également extensible
dans le sens que les décryptages effectués par 'agrégateur ne dépendent pas du nombre

d’utilisateurs.

Apercu
Afin d’éliminer le besoin d’un distributeur entierement fiable et pour soutenir la gestion de
groupe dynamique sans induire de communication ou de calcul supplémentaires au-dessus, nous

utilisons deux techniques:

e Le mécanisme de division de responsabilité: Chaque utilisateur, U;, envoie en méme temps,
un cryptage de son échantillon de données privées a l'agrégateur A et une autre version
obscurcie de son clé secrete, sk;, au collecteur demi-fiable C, de facon que ni 'agrégateur,
ni le collecteur, ne peuvent violer la confidentialité des échantillons individuels fournis par

les utilisateurs.

e Auto-génération de clés secrétes: Les clés secretes, utilisées pour le cryptage des échantil-
lons de données, sont générées indépendamment par les utilisateurs, sans coordination par

un distributeur des clés fiable.

Une présentation de notre solution est illustrée dans la figure 6.1. Chaque utilisateur U;

choisit indépendamment sa clé secrete sk;, alors que I’Aggregator non fiable génére une clé

163

aléatoire sk4. Pour chaque intervalle de temps t, agrégateur, A, publie une version obscurcie
pky, de la clé secrete pky. Les utilisateurs U;, d’autre part, cryptent leurs échantillons de
données privée z; ¢, avec leurs clés secretes, sk;, en utilisant le systeme de cryptage Joye-Libert,
et envoient les textes chiffrés correspondants c;;, a I'agrégateur A. Ils, également, occultent
leurs clés secretes sk; par pk 4 4, et envoient I'information auxiliaire obtenue aux;; au Collector C
via un canal sécurisé. Collecteur C calcule une fonction g(¢) a partir de 'information auxiliaire
aux;; qu’il a recu et transmet la sortie auxt a I’agrégateur A. Apres avoir regu les textes chiffrés
ci+ et Uinformation auxiliaire aux;, ’agrégateur, A, utilise sa clé secrete sk4 et apprend la somme
>+, pour l'intervalle de temps ¢. De cette fagon, nous éliminons le besoin d’un distributeur
de clés fiable qui connailt de clés privées des usagers, tout en assurant que ni 'agrégateur,
ni le collecteur ne peuvent déduire des informations sur les données individuelles des usagers.
Egalement, la gestion efficace de groupe dynamique qui ne nécessite pas de mécanisme d’aucune
mise a jour de clé est atteinte.

De cette maniere notre protocole assure :

e L’inconscience d’agrégateur et de collecteur : Le protocole assure l’inconscience
d’agrégateur et de Collector. Grace a cela la confidentialité n’est pas compromise ni par

I’agrégateur, ni par le collecteur, ce qui aide ’agrégateur de calculer la somme.

e Dinamicité et la tolérance aux pannes : L’agrégateur apprend la somme, méme en cas d’une
panne causée par une erreur de communication. De plus, le protocole est dynamique dans
le sens que les connections et déconnections dynamiques n’ont aucune influence sur les
utilisateurs existants de ce protocole, car il n’y a pas besoin de procéder a une nouvelle

phase de distribution de clé.

e La sécurité confirmée : La sécurité de notre protocole est confirmée dans le modele de
I'oracle aléatoire sous le caractere insoluble des problemes mathématiques bien connus

contre agrégateurs honnétes, mais curieux.

164

C.7 PUDA - Confidentialité et infalsifiable pour I’agrégation

Nous considérons un scénario dans lequel un agrégateur recueille des données individuelles de
plusieurs utilisateurs, qui n’interagissent pas entre eux, et ensuite exécute une fonction qui délivre
une valeur globale. Contrairement au protocole présenté dans le chapitre 6, le résultat est ensuite
transmis a un analyseur de données qui peut enfin extraire des informations utiles relatives a
I’ensemble de la population des usagers. Protocoles PPDCA existants sont concentrés unique-
ment sur le probleme de la confidentialité des données et ils considérent que l'agrégateur est
honnéte, mais curieux: 'agrégateur est curieux de découvrir le contenu de chacune des données
individuelles, mais effectue 'opération d’agrégation correctement. Ici, nous considérons un mod-
ele de sécurité plus puissant, ou 'agrégateur est supposée étre malveillant: L’agrégateur peut
fournir une valeur globale fausse a I’analyseur de données. Pour protéger contre ce comportement
malveillant, nous proposons qu’en plus des la valeur globale, I'agrégateur fournit une preuve de
I’exactitude du calcul du résultat global. Nous exigeons également que ’analyseur de données ne
puisse pas communiquer avec chaque utilisateur et que le résultat soit publiquement vérifiable.
De plus, analogue aux solutions existantes, le protocole proposé assure inconscience ’agrégateur
et analyseur de données dans le contexte multi-utilisateur; ce qui signifie que ni I’analyseur de
données, ni 'agrégateur apprend des entrées de données individuelles. L’idée sous-jacente de
notre solution est la suivante: chaque utilisateur crypte ses données selon le modele Shi et al.
[131], en utilisant sa propre clé de codage secréte, et envoie le texte chiffré obtenu & 'agrégateur
non fiable. Les utilisateurs, également étiquetent leurs données de facon homomorphique, tout
en utilisant deux couches d’aléatoire avec deux clés différentes et ils transmettent les étiquetes a
l'agrégateur. Ce dernier calcule la somme en appliquant des opérations sur les textes chiffrés et
également il dérive de ces étiquetes une preuve de 'exactitude du résultat. L’agrégateur envoie
finalement le résultat et la preuve a l'analyseur de données qui vérifie 'exactitude du calcul.
A notre connaissance, nous sommes les premiers a définir un modele PUDA. Nous instancions

également un modele PUDA qui poursuit principalement les trois objectifs suivants :

e Milieu multi-utilisateurs ou plusieurs utilisateurs produisent des données personnelles sen-

sibles sans aucune interaction entre eux.

165

e Vérifiabilité publique de la valeur globale.
e Confidentialité des données individuelles pour tous les participants.

Apercu de PUDA

Quand il s’agit d’'un modele étendu avec un agrégateur non fiable, il est extrémement im-
portant de concevoir une solution dans laquelle I’agrégateur non fiable ne peut pas fournir des
résultats faux a ’analyseur de données. Une telle solution utilisera un systeme de preuve qui
permet & 'analyseur de données de vérifier I'exactitude du calcul. Pourtant la vérifiabilité de-
vrait se réaliser sans sacrifier la confidentialité. Pour atteindre cet objectif, nous proposons un

protocole qui s’appuie sur les techniques suivantes:

e Un algorithme de cryptage homomorphique qui permet a 'agrégateur de calculer la somme,

sans dévoiler les données individuelles

e Une étiquette homomorphique qui permet & chaque utilisateur d’authentifier 'entrée de
données xi t, de sorte que l'agrégateur puisse utiliser les étiquettes recueillies, pour con-
stituer une preuve démontrant a lanalyseur de données DA l'exactitude de la somme

globale.

L’explication la plus concise est la suivante: un ensemble d’utilisateurs sans interférence sont
connectés a des services personnelles et appareils qui produisent des données personnelles. Sans
aucune coordination, chaque utilisateur choisit une clé d’étiquette aléatoire, tk; , et envoie un
codage de celle-ci, tk;, au distributeur de clés. Apres avoir recueilli toutes les clés codées, tk;,
des utilisateurs, le distributeur des clé publie la clé de vérification publique, VK, de ce groupe
d’utilisateurs. Cette clé de vérification est calculé comme une fonction du codage tk;. Ensuite,
le distributeur de clés donne a chaque utilisateur dans le systéeme une clé de cryptage, ek;, qui
sera utilisée pour calculer les textes chiffrés des utilisateur. Par conséquent, la clé secrete de
chaque utilisateur, ski, est définie comme la paire constituée de la clé d’étiquette, tk;, et la clé
de cryptage, ek;. Finalement, le distributeur de clés fournit 'agrégateur avec une clé secrete,
sk4, calculée comme la somme des clés codées, ek;, et ensuite se met hors ligne. Or, a chaque

intervalle de temps t, chaque utilisateur utilise sa clé secrete, sk;, pour calculer un texte chiffré

166

basé sur l'algorithme de cryptage de Shi et al. [131] et une étiquette homomorphique sur son
entrée de données sensibles. Lorsque l'agrégateur collecte les textes chiffrés et les étiquettes de
tous les utilisateurs, il calcule la somme, sum;, des données des utilisateurs et une preuve de la
somme, oy, et ensuite les transmet a 'analyseur de données. Lors de I’étape finale du protocole,
I’analyseur de données vérifie avec la clé de vérification, VK, et la preuve oy, la validité du
résultat, sum;. Bien que la modification semble simple et évidente, la preuve de Falsification -
type II s’avere étre complexe. Grace a ’algorithme de cryptage homomorphique de Shi et al.
[131] et a la maniere dont nous construisons nos étiquettes homomorphiques, nous montrons que
notre protocole assure inconscience de 'agrégateur. De plus, nous montrons que ’agrégateur ne
peut pas forger des résultats faux. Enfin, nous constatons que I’Analyseur de données DA ne
conserve aucune forme des transcriptions des utilisateurs textes chiffrés, mais il ne retient que
la clé de vérification publique, la somme, sum; et la preuve, o;.

Contributions

En réalisant notre analyse, nous avons fait les contributions suivantes:

e Agrégation infalsifiable: Un agrégateur malveillant ne peut pas convaincre un analyseur

de données avec une agrégation erronée avec une probabilité non négligeable.

e L’inconscience: La confidentialité individuelle est préservée contre les parties non fiables

du protocole, tandis que ’agrégateur peut apprendre la somme des entrées de données.

e Vérification publique du temps constant: Le temps d’exécution de I'algorithme de vérifi-
cation est constant et ne dépend pas du nombre d’utilisateurs. De plus, la construction
permet la vérification publique de 'exactitude du resultat avec une clé de vérification

publique.

e La sécurité confirmée: La sécurité de notre protocole est confirmé grace a une nouvelle
hypothese mathématique dont la preuve de la sécurité est montré dans le modele de groupe

générique

167

C.8 Conclusion

PPDCA contribuent considérablement a la prise de décision. L’agrégation des données permet
aux agrégateurs de déduire des informations statistiques utiles, contribuant a la protection so-
ciale. Cependant, les usagers sont réticents a révéler leurs valeurs de données en clairtext, a
cause de la nature des informations personnelles sensibles que chaque usager confie a un tiers
non fiable. Les solutions actuelles proposent des différents mécanismes de la protection de la vie
privée des usagers. Ils préservent la vie privée des usagers, mais en méme temps ils donnent la
possibilité a un tiers non fiable d’apprendre une fonction statistique f sur ’ensemble de la popu-
lation d’usagers. Dans cette these, nous avons d’abord défini ce qu’est un protocole PPDCA et
ensuite nous avons présenté 1’état de I'art des protocoles PPDCA. Nous avons commencé notre
analyse avec des techniques basées sur le bruit. D’apres ces techniques, chaque usager ajoute du
bruit a la valeur de données, de facon qu'un agrégateur non fiable puisse déduire des statistiques
bruyantes pour I’ensemble de la population des usagers. Les techniques basées sur le bruit sont
limitées a fournir des statistiques bruyantes et donc, elles ne conviennent pas aux scénarios de
cas d’utilisation dans lesquels la précision dans le résultat final de la fonction statistique f est
indispensable. Les protocoles cryptographiques ont pour l'objectif de répondre au besoin de
précision dans le calcul de f. Les usagers cryptent leurs données de fagon appropriée, afin de
permettre le controle d’acces partiel sur une valeur globale. Apres avoir présenté les proto-
coles cryptographiques actuels pour PPDCA, nous avons procédé a une taxonomie détaillée des
protocoles cryptographiques dans la littérature déja existante basées sur des caractéristiques dif-
férentes de ceux-ci. En faisant notre analyse, nous avons identifié une lacune dans les directions

suivantes:

e Les protocoles existants sont concentrés sur une famille restreinte des fonctions f, qu’un
agrégateur peut apprendre, telle que la somme, le produit intérieur et des opérations

booléennes.

e La majorité des solutions cryptographiques actuelles supposent qu’il existe un revendeur

de clé completement fiable, qui distribue des clés secrétes aux usagers et a 'agrégateur. Les

168

conséquences d’un revendeur de clé entierement fiable entravent le déploiement des proto-
coles dans un environnement dynamique. A savoir, dans un environnement dynamique les
usagers se joinder et se laisser a chaque exécution du protocole, obligeant ainsi les usagers
existants d’obtenir de nouvelles clés secretes par le revendeur de clé fiable. De plus, ce
point de confiance, rend la faute des protocoles intolérante, puisque en cas de faute, le

revendeur de clé fiable doit distribuer de nouvelles clés a tous les usagers existants.

e Il n’y a pas de solutions soutenant un modele de sécurité plus forte dans les protocoles
PPDCA. Les protocoles actuels ont deux fonctionnalités. Soit ils supposent qu’il existe
un agrégateur entierement fiable, soit ils appuient leur sécurité sur un modele honnéte
mais curieux, dans lequel I'agrégateur est fiable pour exécuter correctement les étapes du

protocole, mais aussi il est curieux d’apprendre toute messages échangés.
Ainsi, on a introduit quatre protocoles pour PPDCA:
e Un protocol permettant de calculer la similarité entree deux profils privées.

e Un protocol qui facilite le calcul de l'intervalle de temps dans laquelle la consommation
énergétique d’un utilisateur a été maximale, sans divulguer les valeurs individuelles de

cette consommation.

e Un protocol dynamique pour I'aggregation des séries temporelles sans distributeur des clés.

e Un protocol PPDCA avec verification de calcul.

169

170

Bibliography

[1] http://amturing.acm.org/award_winners/rivest_1403005.cfm.

2]
3]

[4]

Cubieboard. http://cubieboard.org/.
Recognition european project, 2011.

G. Acs and C. Castelluccia. I have a dream! (differentially private smart metering). In

Information Hiding, pages 118-132, 2011.

D. Agrawal and C. C. Aggarwal. On the design and quantification of privacy preserving
data mining algorithms. In Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, PODS ’01, pages 247-255, New York, NY,
USA, 2001. ACM.

R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order-preserving encryption for numeric

data. In SIGMOD Conference, pages 563574, 2004.

R. Agrawal and R. Srikant. Privacy-preserving data mining. In ACM Sigmod Record,
volume 29, pages 439-450. ACM, 2000.

R. Agrawal and R. Srikant. Privacy-preserving data mining, 2000.

J. A. Akinyele and M. G. an Aviel D. Rubin. Charm: A tool for rapid cryptographic

prototyping. http://www.charm-crypto.com/Main.html.

171

[10]

[13]

[14]

[17]

J. A. Akinyele, M. Green, and A. D. Rubin. Charm: A framework for rapidly prototyping
cryptosystems. TACR Cryptology ePrint Archive, 2011:617, 2011. http://eprint.iacr.

org/2011/617 .pdf.

G. Ateniese, J. Camenisch, S. Hohenberger, and B. de Medeiros. Practical group signatures

without random oracles. TACR Cryptology ePrint Archive, 2005:385, 2005.

M. Backes, D. Fiore, and R. M. Reischuk. Verifiable delegation of computation on out-
sourced data. In ACM Conference on Computer and Communications Security, pages

863-874, 2013.

S. Barker, A. Mishra, D. Irwin, E. Cecchet, P. Shenoy, and J. Albrecht. Smart*: An open
data set and tools for enabling research in sustainable homes. In 1st KDD Workshop on

Data Mining Applications In Sustainability, 2011.

P. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In B. Preneel
and S. Tavares, editors, Selected Areas in Cryptography, volume 3897 of Lecture Notes in

Computer Science, pages 319-331. Springer Berlin Heidelberg, 2006.

G. Barthe, G. Danezis, B. Grégoire, C. Kunz, and S. Z. Béguelin. Verified computational

differential privacy with applications to smart metering. In CSF, pages 287-301, 2013.

M. Bellare. Practice-oriented provable security. In Lectures on Data Security, Modern
Cryptology in Theory and Practice, Summer School, Aarhus, Denmark, July 1998, pages
1-15, London, UK, UK, 1999. Springer-Verlag.

M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Proceedings of the 1st ACM conference on Computer and communi-

cations security, pages 62-73. ACM, 1993.

F. Benhamouda, M. Joye, and B. Libert. A new framework for privacy-preserving aggre-

gation of time-series data. https://hal.inria.fr/hal-01181321, 2015.

E. Bertino, I. N. Fovino, and L. P. Provenza. A framework for evaluating privacy preserving

data mining algorithms®. Data Min. Knowl. Discov., 11(2):121-154, Sept. 2005.

172

[20]

[21]

23]

[24]

E. Bertino, D. Lin, and W. Jiang. A survey of quantification of privacy preserving data

mining algorithms. In Privacy-preserving data mining, pages 183-205. Springer US, 2008.

I. Bilogrevic, J. Freudiger, E. De Cristofaro, and E. Uzun. What’s the gist? privacy-
preserving aggregation of user profiles. In Computer Security-ESORICS 2014, pages 128—

145. Springer International Publishing, 2014.

A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: The sulq framework.
In Proceedings of the Twenty-fourth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS ’05, pages 128-138, New York, NY, USA, 2005.
ACM.

A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-preserving symmetric encryp-
tion. In FUROCRYPT, pages 224-241, 2009.

A. Boldyreva, N. Chenette, and A. O’Neill. Order-preserving encryption revisited: Im-

proved security analysis and alternative solutions. In CRYPTO, pages 578-595, 2011.

J. Bolot, N. Fawaz, S. Muthukrishnan, A. Nikolov, and N. Taft. Private decayed predicate
sums on streams. In Proceedings of the 16th International Conference on Database Theory,

ICDT 13, pages 284-295, New York, NY, USA, 2013. ACM.

D. Boneh and X. Boyen. Short signatures without random oracles and the sdh assumption

in bilinear groups. Journal of Cryptology, 21(2):149-177, 2008.

D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances in Cryptology—
CRYPTO 2004, pages 41-55. Springer Berlin Heidelberg, 2004.

D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. In Advances
in Cryptology-CRYPTO 2001, pages 213-229. Springer Berlin Heidelberg, 2001.

D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In EUROCRYPT, pages 416-432, 2003.

173

[30]

[31]

[36]

D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. In Advances
in Cryptology-ASIACRYPT 2001, pages 514-532. Springer Berlin Heidelberg, 2001.

D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges.
In Y. Ishai, editor, Theory of Cryptography, volume 6597 of Lecture Notes in Computer

Science, pages 253-273. Springer Berlin Heidelberg, 2011.

J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In Advances in Cryptology - CRYPTO 2004, 24th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings,

pages 56-72, 2004.

R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited. J.

ACM, 51(4):557-594, 2004.

J. Cao, Q. Xiao, G. Ghinita, N. Li, E. Bertino, and K.-L.. Tan. Efficient and accurate
strategies for differentially-private sliding window queries. In Proceedings of the 16th In-
ternational Conference on Extending Database Technology, EDBT 13, pages 191-202, New
York, NY, USA, 2013. ACM.

C. Castelluccia, A. C.-F. Chan, E. Mykletun, and G. Tsudik. Efficient and provably
secure aggregation of encrypted data in wireless sensor networks. ACM Trans. Sen. Netw.,

5(3):20:1-20:36, June 2009.

C. Castelluccia, E. Mykletun, and G. Tsudik. Efficient aggregation of encrypted data
in wireless sensor networks. In Mobile and Ubiquitous Systems: Networking and Services,
2005. MobiQuitous 2005. The Second Annual International Conference on, pages 109-117,
July 2005.

D. Catalano and D. Fiore. Practical homomorphic macs for arithmetic circuits. In EFU-

ROCRYPT, pages 336-352, 2013.

174

[38]

[40]

[43]

[44]

D. Catalano, D. Fiore, and B. Warinschi. Homomorphic signatures with efficient verifica-
tion for polynomial functions. In Advances in Cryptology—CRYPTO 201/, pages 371-389.
Springer Berlin Heidelberg, 2014.

D. Catalano, A. Marcedone, and O. Puglisi. Authenticating computation on groups: New
homomorphic primitives and applications. In Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Application of Cryptology and
Information Security, Kaoshiung, Taiwan, R.0.C., December 7-11, 2014, Proceedings,
Part II, pages 193212, 2014.

T.-H. H. Chan, M. Li, E. Shi, and W. Xu. Differentially private continual monitoring of
heavy hitters from distributed streams. In Proceedings of the 12th International Conference
on Privacy Enhancing Technologies, PETS’12, pages 140-159, Berlin, Heidelberg, 2012.

Springer-Verlag.

T.-H. H. Chan, E. Shi, and D. Song. Private and continual release of statistics. ACM

Trans. Inf. Syst. Secur., 14(3):26:1-26:24, Nov. 2011.

T.-H. H. Chan, E. Shi, and D. Song. Privacy-preserving stream aggregation with fault

tolerance. In Financial Cryptography, pages 200214, 2012.

S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee. Toward privacy in public

databases. In Theory of Cryptography, pages 363-385. Springer, 2005.

S. Chawla, C. Dwork, F. McSherry, and K. Talwar. On the utility of privacy-preserving
histograms. Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence,

2005.

R. Chen, I. E. Akkus, and P. Francis. Splitx: High-performance private analytics. SIG-
COMM Comput. Commun. Rev., 43(4):315-326, Aug. 2013.

R. Cheng, J. Yan, C. Guan, F. Zhang, and K. Ren. Verifiable searchable symmetric en-

cryption from indistinguishability obfuscation. In Proceedings of the 10th ACM Symposium

175

[47]

[48]

[49]

[50]

[53]

on Information, Computer and Communications Security, ASIA CCS ’15, pages 621-626,
New York, NY, USA, 2015. ACM.

S. G. Choi, J. Katz, R. Kumaresan, and C. Cid. Multi-client non-interactive verifiable
computation. In Proceedings of the 10th Theory of Cryptography Conference on Theory of
Cryptography, TCC’13, pages 499-518, Berlin, Heidelberg, 2013. Springer-Verlag.

C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Y. Zhu. Tools for privacy preserving
distributed data mining. ACM SIGKDD Ezplorations, 4:2003, 2003.

F. Cohen. Introductory information protection, 1995.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms (3.

ed.). MIT Press, 2009.

T. Dalenius. Finding a needle in a haystack - or identifying anonymous census record.

Journal of Official Statistics, 2:329-336, 1986.

G. Danezis, C. Fournet, M. Kohlweiss, and S. Zanella-Béguelin. Smart meter aggregation
via secret-sharing. In Proceedings of the First ACM Workshop on Smart Energy Grid
Security, SEGS ’13, pages 75-80, New York, NY, USA, 2013. ACM.

B. Defend and K. Kursawe. Implementation of privacy-friendly aggregation for the smart
grid. In Proceedings of the First ACM Workshop on Smart Energy Grid Security, SEGS
13, pages 65—74, New York, NY, USA, 2013. ACM.

A. W. Dent. A note on game-hopping proofs. TACR Cryptology ePrint Archive, 2006:260,

2006.

C. Dwork. Differential privacy. In Automata, languages and programming, pages 1-12.

Springer, 2006.

C. Dwork. Differential privacy: A survey of results. In Theory and Applications of Models

of Computation, pages 1-19. Springer, 2008.

176

[57]

[58]

[59]

[60]

[61]

[63]

[64]

[66]

C. Dwork. Differential privacy in new settings. In SODA, pages 174-183. STAM, 2010.

C. Dwork. A firm foundation for private data analysis. Commun. ACM, 54(1):86-95, Jan.

2011.

C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Pri-
vacy via distributed noise generation. In Proceedings of the 24th Annual International Con-
ference on The Theory and Applications of Cryptographic Techniques, EUROCRYPT’06,
pages 486-503, Berlin, Heidelberg, 2006. Springer-Verlag.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in
private data analysis. In Proceedings of the Third Conference on Theory of Cryptography,
TCC’06, pages 265—284, Berlin, Heidelberg, 2006. Springer-Verlag.

C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential privacy under continual
observation. In Proceedings of the 42nd ACM symposium on Theory of computing, pages
715-724. ACM, 2010.

C. Dwork and K. Nissim. Privacy-preserving datamining on vertically partitioned

databases. In Advances in Cryptology—CRYPTO 2004, pages 528-544. Springer, 2004.

Z. Erkin and G. Tsudik. Private computation of spatial and temporal power consumption

with smart meters. In ACNS, pages 561-577, 2012.

A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy preserv-
ing data mining. In Proceedings of the Twenty-second ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 03, pages 211-222, New York, NY,
USA, 2003. ACM.

L. Fan and L. Xiong. Real-time aggregate monitoring with differential privacy. In Proceed-
ings of the 21st ACM international conference on Information and knowledge management,

pages 2169-2173. ACM, 2012.

D. M. Freeman. Improved security for linearly homomorphic signatures: A generic frame-

work. In Public Key Cryptography - PKC 2012 - 15th International Conference on Practice

177

[70]

[71]

[72]

and Theory in Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012. Proceed-

ings, pages 697-714, 2012.

G. Frey, M. Muller, and H. G. Ruck. The tate pairing and the discrete logarithm applied

to elliptic curve cryptosystems. IEEE Trans. Inf. Theor., 45(5):1717-1719, Sept. 2006.

S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers. Discrete
Appl. Math., 156(16):3113-3121, Sept. 2008.

S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indis-
tinguishability obfuscation and functional encryption for all circuits. In Foundations of
Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 40-49, Oct
2013.

D. Genkin, A. Shamir, and E. Tromer. RSA key extraction via low-bandwidth acoustic
cryptanalysis. In Advances in Cryptology - CRYPTO 201 - 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pages
444-461, 2014.

A. Ghosh, T. Roughgarden, and M. Sundararajan. Universally utility-maximizing privacy
mechanisms. In Proceedings of the Forty-first Annual ACM Symposium on Theory of
Computing, STOC ’09, pages 351-360, New York, NY, USA, 2009. ACM.

B. Goethals, S. Laur, H. Lipmaa, and T. Mielikdinen. On private scalar product computa-
tion for privacy-preserving data mining. In Proceedings of the 7th international conference
on Information Security and Cryptology, ICISC’04, pages 104—120, Berlin, Heidelberg,

2005. Springer-Verlag.

L. R. Goldberg. An Alternative "Description of Personality”: the Big-Five Factor Struc-

ture. Journal of Personality and Social Psychology, 59(6):1216-29, Dec. 1990.

O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cam-

bridge University Press, 2004.

178

[75]

[76]

[80]

0. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J. ACM,

33(4):792-807, Aug. 1986

S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F. Liu, A. Sahai, E. Shi, and
H. Zhou. Multi-input functional encryption. In Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Copenhagen, Denmark, May 11-15, 201/. Proceedings, pages 578602,
2014.

S. Goldwasser and S. Micali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In Proceedings of the 14th Annual ACM Symposium
on Theory of Computing, May 5-7, 1982, San Francisco, California, USA, pages 365-377,
1982.

S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270—

299, 1984.

S. Goryczka, L. Xiong, and V. Sunderam. Secure multiparty aggregation with differential
privacy: A comparative study. In Proceedings of the Joint EDBT/ICDT 2013 Workshops,
EDBT ’13, pages 155-163, New York, NY, USA, 2013. ACM.

C. P. L. Gouvéa and J. Lépez. High speed implementation of authenticated encryption
for the msp430x microcontroller. In Proceedings of the 2nd international conference on
Cryptology and Information Security in Latin America, LATINCRYPT 12, pages 288-304,

Berlin, Heidelberg, 2012. Springer-Verlag.

C. Guan, K. Ren, F. Zhang, F. Kerschbaum, and J. Yu. A symmetric-key based proofs of

retrievability supporting public verification. In ESORICS 2015.

F. Giinther, M. Manulis, and A. Peter. Privacy-enhanced participatory sensing with
collusion resistance and data aggregation. In Cryptology and Network Security - 13th
International Conference, CANS 2014, Heraklion, Crete, Greece, October 22-24, 2014.

Proceedings, pages 321-336, 2014.

179

[83]

[36]

[91]

[92]

J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino,
A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we remember: Cold-boot attacks
on encryption keys. Commun. ACM, 52(5):91-98, May 2009.

M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially
private histograms through consistency. Proc. VLDB Endow., 3(1-2):1021-1032, Sept.

2010.

V. S. Iyengar. Transforming data to satisfy privacy constraints. In Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and data mining,
KDD ’02, pages 279-288, New York, NY, USA, 2002. ACM.

M. Jawurek, M. Johns, and K. Rieck. Smart metering de-pseudonymization. In Proceedings
of the 27th Annual Computer Security Applications Conference, ACSAC 11, pages 227—
236, New York, NY, USA, 2011. ACM.

M. Jawurek and F. Kerschbaum. Fault-tolerant privacy-preserving statistics. In Privacy

Enhancing Technologies, pages 221-238, 2012.

O. P. John, E. M. Donahue, and R. L. Kentle. The big five inventory versions 4a and 54.
Berkeley: University of California, Berkeley, Institute of Personality and Social Research,
1991.

O. P. John, L. P. Naumann, and C. J. Soto. Paradigm shift to the integrative big five trait

taxonomy. Handbook of personality: Theory and research, 3:114-158, 2008.

W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.

Contemporary mathematics, 26(189-206):1-1, 1984.

A. Joux. A ome round protocol for tripartite diffie-hellman. Journal of Cryptology,
17(4):263-276, 2004.

M. Joye and B. Libert. A scalable scheme for privacy-preserving aggregation of time-series

data. In Financial Cryptography, 2013.

180

[93]

[94]

[101]

[102]

S. Kamara, P. Mohassel, and M. Raykova. Outsourcing multi-party computation. Cryp-

tology ePrint Archive, Report 2011/272, 2011. http://eprint.iacr.org/.

M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of association rules
on horizontally partitioned data. IEEE Trans. on Knowl. and Data Eng., 16(9):1026-1037,

Sept. 2004.

H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the privacy preserving properties
of random data perturbation techniques. In Data Mining, 2003. ICDM 2003. Third IEEE

International Conference on, pages 99-106, Nov 2003.

G. Kellaris and S. Papadopoulos. Practical differential privacy via grouping and smoothing.
In Proceedings of the 39th international conference on Very Large Data Bases, pages 301—
312. VLDB Endowment, 2013.

G. Kellaris, S. Papadopoulos, X. Xiao, and D. Papadias. Differentially private event

sequences over infinite streams. Proceedings of the VLDB Endowment, 7(12), 2014.
A. Kiayias. History of the scytale, 2013.

N. Koblitz. Elliptic curve cryptosystems. Mathematics of computation, 48(177):203-209,
1987.

P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems. In Advances in Cryptology - CRYPTO °96, 16th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 18-22, 1996, Proceedings, pages 104—
113, 1996.

P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in Cryp-
tology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa Barbara,

California, USA, August 15-19, 1999, Proceedings, pages 388-397, 1999.

K. Kursawe, G. Danezis, and M. Kohlweiss. Privacy-friendly aggregation for the smart-

grid. In PETS, pages 175-191, 2011.

181

103]

[104]

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

I. Leontiadis, K. Elkhyaoui, and R. Molva. Private and dynamic time-series data aggre-
gation with trust relaxation. In CANS, Lecture Notes in Computer Science. Springer,

2014.

Q. Li and G. Cao. Efficient privacy-preserving stream aggregation in mobile sensing with

low aggregation error. In PETS, pages 60-81, 2013.

J. Lin. Divergence measures based on the shannon entropy. IEEE Transactions on Infor-

mation theory, 37:145-151, 1991.

Y. Lindell and B. Pinkas. Privacy preserving data mining. In CRYPTO, pages 36-54,
2000.

M. Lisovich, D. Mulligan, and S. Wicker. Inferring personal information from demand-

response systems. Security Privacy, IEEFE, 8(1):11-20, Jan.-Feb.

K. Liu, H. Kargupta, and J. Ryan. Random projection-based multiplicative data pertur-
bation for privacy preserving distributed data mining. Knowledge and Data Engineering,

IEEE Transactions on, 18(1):92-106, Jan 2006.
B. Lynn. The stanford pairing based crypto library. http://crypto.stanford.edu/pbc.

A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. Heys
and C. Adams, editors, Selected Areas in Cryptography, volume 1758 of Lecture Notes in

Computer Science, pages 184-199. Springer Berlin Heidelberg, 2000.

C. D. Manning, P. Raghavan, and H. Schiitze. Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA, 2008.

S. McLaughlin, P. McDaniel, and W. Aiello. Protecting consumer privacy from electric load
monitoring. In Proceedings of the 18th ACM conference on Computer and communications

security, CCS ’11, pages 87-98, New York, NY, USA, 2011. ACM.

182

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

F. McSherry and K. Talwar. Mechanism design via differential privacy. In Proceedings of
the 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS 07, pages
94-103, Washington, DC, USA, 2007. IEEE Computer Society.

V. Miller. Use of elliptic curves in cryptography. In H. Williams, editor, Advances in
Cryptology-CRYPTO 1985 Proceedings, volume 218 of Lecture Notes in Computer Science,

pages 417-426. Springer Berlin Heidelberg, 1986.

D. Mir, S. Muthukrishnan, A. Nikolov, and R. N. Wright. Pan-private algorithms via
statistics on sketches. In Proceedings of the Thirtieth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’11, pages 37-48, New York, NY,
USA, 2011. ACM.

1. Mironov, O. Pandey, O. Reingold, and S. P. Vadhan. Computational differential pri-
vacy. In Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, pages 126-142,
2009.

A. Miyaji, M. Nakabayashi, and S. TAKANO. New explicit conditions of elliptic curve

traces for fr-reduction, 2001.

A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse datasets. In
Proceedings of the 2008 IEEE Symposium on Security and Privacy, SP ’08, pages 111-125,
Washington, DC, USA, 2008. IEEE Computer Society.

S. R. M. Oliveira and et al. Privacy-preserving clustering by object similarity-based rep-
resentation and dimensionality reduction transformation. In ICDM 2004, pages 21-30,

2004.

S. R. M. Oliveira and O. R. Zaiane. Privacy preserving clustering by data transformation.

JIDM, 1(1):37-52, 2010.

183

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

M. Onen and R. Molva. Secure data aggregation with multiple encryption. In Proceedings
of the 4th Furopean Conference on Wireless Sensor Networks, EWSN’07, pages 117-132,

Berlin, Heidelberg, 2007. Springer-Verlag.

D. Page, N. Smart, and F. Vercauteren. A comparison of mnt curves and supersingular
curves. Applicable Algebra in Engineering, Communication and Computing, 17(5):379-392,
2006.

P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Advances in Cryptology - EUROCRYPT °99, International Conference on the Theory and
Application of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Pro-
ceeding, pages 223-238, 1999.

V. Rastogi and S. Nath. Differentially private aggregation of distributed time-series with
transformation and encryption. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, SIGMOD ’10, pages 735-746, New York, NY, USA,
2010. ACM.

R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and

public-key cryptosystems. Commun. ACM, 21(2):120-126, 1978.

P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Definitions, implica-
tions, and separations for preimage resistance, second-preimage resistance, and collision
resistance. In B. Roy and W. Meier, editors, Fast Software Encryption, volume 3017 of

Lecture Notes in Computer Science, pages 371-388. Springer Berlin Heidelberg, 2004.

I. Rouf, H. Mustafa, M. Xu, W. Xu, R. Miller, and M. Gruteser. Neighborhood watch:
security and privacy analysis of automatic meter reading systems. In Proceedings of the

2012 ACM conference on Computer and communications security, CCS '12, pages 462473,
New York, NY, USA, 2012. ACM.

P. Samarati. Protecting respondents’ identities in microdata release. IEFEE Trans. on

Knowl. and Data Eng., 13(6):1010-1027, Nov. 2001.

184

[129]

[130]

[131]

[132]

[133]

[134]

135]

[136]

[137]

[138]

[139]

P. Samarati and L. Sweeney. Protecting privacy when disclosing information: k-anonymity

and its enforcement through generalization and suppression. Technical report, 1998.

K. P. Samuel Kotz, Tomasz J. Kozubowski. The laplace distribution and generalizations:

A revisit with applications to communications, economics, engineering and finance. 2001.

R. Sarathy and K. Muralidhar. Evaluating laplace noise addition to satisfy differential

privacy for numeric data. Trans. Data Privacy, 4(1):1-17, Apr. 2011.

E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. Song. Privacy-preserving aggregation

of time-series data. In NDSS, 2011.

R. Shokri. Privacy games: Optimal user-centric data obfuscation. Proceedings on Privacy

Enhancing Technologies, 2015(2):1-17, 2015.

V. Shoup. Lower bounds for discrete logarithms and related problems. In Advances in
Cryptology - EUROCRYPT ’97, International Conference on the Theory and Application
of Cryptographic Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding, pages
256-266, 1997.

V. Shoup. Sequences of games: a tool for taming complexity in security proofs. IACR

Cryptology ePrint Archive, 2004:332, 2004.
S. Singh. The alternative history of public-key cryptography, 1999.

A. Sorniotti and R. Molva. Secret handshakes with revocation support. In D. Lee and
S. Hong, editors, Information, Security and Cryptology-ICISC 2009, volume 5984 of Lec-

ture Notes in Computer Science, pages 274-299. Springer Berlin Heidelberg, 2010.

L. Sweeney. k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness

Knowl.-Based Syst., 10(5):557-570, Oct. 2002.

V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin, and Y. Theodoridis.
State-of-the-art in privacy preserving data mining. SIGMOD Rec., 33(1):50-57, Mar. 2004.

185

[140] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet transforms. [EEE

Trans. on Knowl. and Data Eng., 23(8):1200-1214, Aug. 2011.

186

