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Abstract—We consider in this work 1 the Distributed Channel
State Information (DCSI) Broadcast Channel (BC) setting, in
which the various Transmitters (TXs) compute elements of the
precoder based on their individual estimates of the global multi-
user channel matrix. Previous works relative to the DCSI setting
assume the estimation errors at different TXs to be uncorrelated,
while we consider in contrast in this work that the CSI noises
can be correlated. This generalization bridges the gap between
the fully distributed and the centralized setting, and offers an
avenue to analyze partially centralized networks. In addition,
we generalize the regularized Zero Forcing (ZF) precoding by
letting each TX use a different regularization coefficient. Building
upon random matrix theory tools, we obtain a deterministic
equivalent for the rate achieved in the large system limit
from which we can optimize the regularization coefficients at
different TXs. This extended precoding scheme in which each
TX applies the optimal regularization coefficient is denoted as
”DCSI Regularized ZF” and we show by numerical simulations
that it allows to significantly reduce the negative impact of the
distributed CSI configuration and is robust to the distribution of
CSI quality level across all TXs.

Index Terms—Multiuser channels, Cooperative communica-
tion, MIMO, Feedback Communications

I. INTRODUCTION

Network (or Multi-cell) MIMO methods, whereby multiple
interfering TXs share user messages and allow for joint pre-
coding, are currently considered for next generation wireless
networks [1]. With perfect message and CSI sharing, the
different TXs can be seen as a unique virtual multiple-antenna
array serving all RXs in a multiple-antenna BC fashion [2].
Joint precoding however requires the feedback of an accurate
multi-user CSI to each TX in order to achieve near optimal
sum rate performance [3].

Although the case of imperfect, noisy or delayed, CSI has
been considered in past work [3], [4], literature typically as-
sumes centralized CSIT, i.e., that the precoding is done on the
basis of a single imperfect channel estimate which is common
at every TX. This assumption, albeit rather meaningful in
the case of a broadcast with a single transmit device, can
be challenged when the joint precoding is carried out across
distant TXs linked by heterogeneous and imperfect backhaul
links or having to communicate without backhaul (over the
air) among each other. In these cases, it is expected that the
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CSI exchange will introduce further delay and quantization
noise. It is thus practically relevant for joint precoding across
distant TXs to consider a CSI setting where each TX receives
its own channel estimate, which we denote as the distributed
CSI configuration [5].

From an information theoretic perspective, the study of TX
cooperation in the DCSI BC setting raises several intriguing
and challenging questions. First, the capacity region of the BC
under a DCSI setting is unknown. In [6], a rate characterization
at high SNR is carried out using a Degree-of-freedom (DoF)
analysis for the two TXs scenario. This study highlights the
severe penalty caused by the lack of a consistent CSI shared
by the cooperating TXs from a DoF point of view, when
using a conventional ZF precoder. Although a new DoF-
restoring decentralized precoding strategy was presented in [6]
for the two TXs case, the problem of designing precoders that
optimally tackle the DCSI setting at finite SNR is open for
any number of TXs. Hence, an important question is how to
reduce the losses due to the DCSI configuration, i.e., how to
derive a DCSI robust precoding scheme.

The DCSI model used in literature represents the local
degradation of the CSI by channel independent CSI noise
at each TX. When the CSI is exchanged between the TXs,
it is however expected that there will be some correlation
between the CSI noises at different TXs. Furthermore, there
is a growing interest in the industry for partially centralized
networks as a practical approach to improve the performance
of the network [7]. To model such settings, we extend the
DCSI model by allowing for correlation between the CSI noise
at the different TXs. This models is extremely general and
allows to bridge the gap between centralized and decentralized
setting and is a very promising tool for studying the partially
centralized networks.

This work builds upon a previous work [8] in which the
authors have derived a deterministic equivalent for the sum rate
achieved in the DCSI setting in the large antenna regime akin
to massive MIMO regime [9]. In this paper, our contributions
are threefold:
• The DCSI model is now generalized such that the CSI

noise at the different TXs can be correlated.
• The regularized ZF precoding is extended such that

each TX can transmit using a different regularization
coefficient. Regularization coefficient at each TX can be
optimized so as to maximize the sum rate.



• An efficient, low complexity and robust distributed reg-
ularized ZF scheme is implemented by counting on the
distribution of CSI quality level across all transmitters.

Notations: During the calculation we use the notation x � y
to denote that x− y a.s.−−−−−−→

K,M→∞
0.

II. SYSTEM MODEL

A. Transmission Model

We study a communication system where n TXs serve
jointly K Receivers (RXs) over a network MIMO channel.
Each TX is equipped with MTX antennas such that the total
number of transmit antennas is denoted by M = nMTX. Every
RX is equipped with a single antenna. We assume that the
ratio of transmit antennas with respect to the number of users
is fixed and given by

β =
M

K
≥ 1. (1)

We further assume that the RXs have perfect CSI so as to
focus on the imperfect CSI feedback and exchange among the
TXs. We consider that the RXs treat interference as noise. The
channel from the n TXs to the K RXs is represented by the
multi-user channel matrix H ∈ CK×M .

Considering linear precoding, the transmission is then de-
scribed as

y = Hx + η =

h
H
1
...
hH
K

x +

 η1

...
ηK

 (2)

where hH
i = eH

i H ∈ C1×M is the channel from all transmit
antennas to RX i with its elements i.i.d. as NC(0, 1). η =
[η1, . . . , ηK ]T ∈ CK×1 is the normalized Gaussian noise with
its elements i.i.d. as NC(0, 1).

The transmitted multi-user signal x ∈ CM×1 is obtained
from the symbol vector s = [sT

1, . . . , s
T
K ]T ∈ CK×1 with its

elements i.i.d. NC(0, 1) as

x = Ts =
[
t1, . . . , tK

]  s1

...
sK

 (3)

with T ∈ CM×K being the multi-user precoder and ti =
Tei ∈ CM×1 being the beamforming vector used to trans-
mit to RX i. We consider for clarity the sum power con-
straint ‖T‖2F = P .

Our main figure-of-merit is the average rate per user

R =
1

K

K∑
k=1

E [log2 (1 + SINRk)] (4)

where SINRk denotes the Signal-to-Interference and Noise
Ratio (SINR) at RX k and is defined as

SINRk =

∣∣hH
k tk
∣∣2

1 +
∑K
`=1, 6̀=k

∣∣hH
k t`
∣∣2 . (5)

B. Distributed CSIT Model
In the distributed CSIT model studied here, each TX re-

ceives its own CSI based on which it designs its transmission
parameters without any additional communication to the other
TXs. The actual feedback and exchange mechanism based
on which the TXs receive the multi-user channel estimate is
completely arbitrary, yet it can itself be the topic of some
interesting trade-off and optimization beyond the scope of this
paper [10], [11].

Specifically, TX j receives the multi-user channel esti-

mate Ĥ(j) =
[
ĥ

(j)
1 . . . ĥ

(j)
K

]H
∈ CK×M and designs

its transmit coefficients xj ∈ CMTX×1 solely as a function
of Ĥ(j) and the statistics of the channel. We model the
imperfect channel estimate for RX k at TX j as

ĥ
(j)
k ,

√
1− (σ

(j)
k )2hk + σ

(j)
k δ

(j)
k (6)

with δ(j)
k ∈ CM×1 having its elements i.i.d. NC(0, 1), and

all the CSI noise error terms δ(j)
k being independent of the

channel and jointly Gaussian such that

E
[
δ

(j)
k (δ

(j′)
k )H

]
= (ρ

(j,j′)
k )2IM (7)

where the parameters ρ(j,j′)
k is the CSI noise correlation factor

between TX j and TX j′. Note that ρ(j,j)
k = 1.

σ
(j)
k ∈ [0, 1] is a parameter indicating the accuracy of the

kth user channel available at TX j.
This distributed CSI model allowing for correlation between

the errors at the different TXs is very general and is one of the
main contributions of this paper. This model allows to bridge
the gap between the two extreme configuration: Distributed
with independent CSI errors and centralized CSI. Indeed, the
CSI configuration where

σ
(j)
k = σ

(j′)
k , ρ

(j,j′)
k = 1,∀j, j′ = 1, . . . , n, k = 1, . . . ,K

(8)
corresponds to the centralized CSI configuration [3], [12]
while taking ρ(j,j′)

k = 0 is the distributed CSI configuration as
previously studied in the literature [6]. The major interest of
this model is to allow for all the intermediate CSI configuration
where the CSI can then be seen as partially centralized. This is
particularly adapted to model imperfect CSI exchange where
delay and/or imperfections are introduced.

C. Regularized Zero Forcing with Distributed CSIT
We address the performance of a classical MISO broadcast

precoder, namely regularized ZF [13], [14], when faced with
the above distributed CSIT model in the large system regime.
Hence, the precoder designed at TX j is assumed to take the
form

T
(j)
rZF =

(
(Ĥ(j))HĤ(j) +Mα(j)IM

)−1

(Ĥ(j))H

√
P√

Ψ(j)
(9)

with regularization factor α(j) > 0. We also define

C(j) =
(Ĥ(j))HĤ(j)

M
+ α(j)IM (10)



such that the precoder at TX j can be rewritten as

T
(j)
rZF =

1

M
(C(j))−1(Ĥ(j))H

√
P√

Ψ(j)
. (11)

The scalar Ψ(j) corresponds to the power normalization at
TX j. Hence, it holds that

Ψ(j) = ‖
(

(Ĥ(j))HĤ(j) +Mα(j)IM

)−1

(Ĥ(j))H‖2F. (12)

Upon concatenation of all TX’s precoding vectors, the effec-
tive global precoder denoted by TDCSI

rZF , is equal to

TDCSI
rZF =


EH

1 T
(1)
rZF

EH
2 T

(2)
rZF

...
EH
nT

(n)
rZF

 (13)

where EH
j ∈ CMTX×M is defined as

EH
j =

[
0MTX×(j−1)MTX

IMTX
0MTX×(n−j)MTX

]
. (14)

We furthermore denote the kth column of TDCSI
rZF (used to

serve RX k) by tDCSI
rZF,k.

Remark 1. It is important to note that TX j transmits using
the regularization coefficient α(j), which means that all the
TXs may not use the same regularization coefficient.

D. Naive Regularized ZF

When TX j is not aware of the differences between imper-
fection levels at all TXs, it chooses its regularization parameter
on the basis of its own CSI quality, which yields a naive
(suboptimal) precoding scheme. In general, this can be done
using a linear search and the large system approximation is
given in [12].

In the particular case with same quality across all links, i.e.,
σ

(j)
k = σ(j), a closed form solution exists [12]

α(j),CCSI =
1 + (σ(j))2P

1− (σ(j))2

1

βP
. (15)

Naive Regularized ZF will be our benchmark precoding
scheme. However, as it neglects the distributed nature of CSI
at different TXs, a better scheme can be designed below.

E. DCSI Robust Regularized ZF

In the DCSI configuration, each TX is aware of the statistics
of the estimates at all the TXs. Hence, it takes this knowledge
into account when choosing its regularization coefficient. As
the performance depends on the regularization coefficients of
all the TXs, this means that each TX effectively solves

(α(1),?, . . . , α(n),?) = argmax
(α(1),...,α(n))

R. (16)

To reduce complexity, a simpler design can be considered
where the same regularization coefficient is used at each TX
but still on the basis of CSI quality levels at all TX. Hence,
we will study

α? = argmax
(α,...,α)

R. (17)

Although the finite SNR rate analysis under the precoding
structure (13) and the distributed CSI model in (6) is challeng-
ing in the general case because of the dependency of one user
performance on all the channel estimates, some useful insights
can be obtained in the large antenna regime, as shown below.

III. DETERMINISTIC EQUIVALENT OF THE SINR

They key of our approach consists in studying a large
antenna regime where the number of transmit antennas and
the number of receive antennas jointly grow large with a
fixed ratio, thus allowing to use efficient tools from the field
of Random Matrix Theory (RMT). The Stieltjes transform
has proven very useful in the analysis of wireless networks
[See [12], [15]–[18] among others] and we will also follow
this approach. Hence, our approach is built on the following
fundamental result.

Theorem 1. [17], [19] Consider the resolvent matrix Q =(
HHH
M + αIM

)−1

with the matrix H ∈ CK×M with β =

M/K having its elements i.i.d. as NC(0, 1) and α > 0. Let
us note that the equation

x =

(
α+

1

β (1 + x)

)−1

(18)

admits a unique fixed point which we will denote by δ in the
following and can be obtained in closed form as

δ =
β − 1− αβ +

√
(αβ − β + 1)2 + 4αβ2

2αβ
. (19)

Let us furthermore define

Qo ,

(
αIM +

IM
β (1 + δ)

)−1

(20)

and let the matrix U be any matrix with bounded spectral
norm. Then,

1

M
tr (UQ)− 1

M
tr (UQo)

a.s.−−−−−−→
K,M→∞

0. (21)

Using this theorem, we can now state our main result. Yet,
following the shorthand notation used in [12], we introduce
the following:

c
(j)
0,k , 1−(σ

(j)
k )2, c

(j)
1,k , (σ

(j)
k )2, c

(j)
2,k , σ

(j)
k

√
1−(σ

(j)
k )2.
(22)

Theorem 2. Considering the D-CSI network MIMO channel
described in Section II, then SINRk − SINRo

k → 0 with
SINRo

k defined as

SINRo
k ,

P

(
1
n

∑n
j=1

√
1−(σ

(j)
k )2

Γo
j,j

δ(j)

1+δ(j)

)2

1 + Iok
(23)



with Iok ∈ R defined as

Iok, P − P
n∑
j=1

n∑
j′=1

Γoj,j′√
Γoj,jΓ

o
j′,j′

[
2c

(j)
0,k

n2

δ(j)

1 + δ(j)

−

(
(ρ

(j,j′)
k )2c

(j)
2,kc

(j′)
2,k + c

(j)
0,kc

(j′)
0,k

)
δ(j)δ(j′)

n2
(
1+δ(j)

) (
1+δ(j′)

)
 (24)

where δ(j) is obtained from Theorem 1 using α(j) while Γoj,j′ ∈
R is defined as

Γoj,j′,
1
M

∑K
`=1

√
c
(j)
0,`c

(j′)
0,` +

√
c
(j)
1,`c

(j′)
1,` (ρ

(j,j′)
` )2

1+δ(j)

δ(j)
1+δ(j′)

δ(j′)
−
∑K

`=1

(√
c
(j)
0,`c

(j′)
0,` +

√
c
(j)
1,`c

(j′)
1,` (ρ

(j,j′)
` )2

)2

M .

(25)

The above deterministic SINR expression is very generic
and encompasses important sub-cases listed below.

Corollary 1. Let us consider n > 1 TXs with σ
(j)
k =

σ
(j′)
k = σk and ρ

(j,j′)
k = 1,∀j, j′ = 1, . . . , n, k = 1, . . . ,K,

which corresponds to the D-CSI setting with IDentical channel
estimate at each TX (ID-DCSI).

Let α(j) = α(j′) = α,∀j, j′ = 1, . . . , n, which indicates
that each TX implements the RZF precoder with the same
regularization parameter (such that δ(j) = δ(j′) = δ, ∀j, j′ =
1, . . . , n).

The deterministic SINR becomes:

SINRID−DCSI,o
k =

(1− σ2
k)δ2

Γo
(

1− σ2
k + (1 + δ)2σ2

k + (1+δ)2

P

)
with

Γo =
δ2

β (1 + δ)
2 − δ2

.

The above expression matches with the results for the C-CSI
expression in [12] just as expected.

Corollary 2. Let us consider n > 1 Txs and DCSI with
EQual α(j) = α(j′) = α,∀j, j′ = 1, . . . , n (EQ-DCSI). The
deterministic SINR becomes:

SINREQ−DCSI,o
k =

P
Γo

(
1
n

∑n
j=1

√
c
(j)
0,k

)2
δ2

(1+δ)2

IEQ−DCSI,ok + 1

with

IEQ−DCSIk =P − P
n∑
j=1

n∑
j′=1

δΓoj,j′

n2(1 + δ)2Γo
·
[
2c

(j)
0,k

+ δ
(

2c
(j)
0,k − c

(j)
0,kc

(j′)
0,k − (ρ

(j,j′)
k )2c

(j)
2,kc

(j′)
2,k

)]
If ρ(j,j′)

k = 0,∀j 6= j′, j, j′ = 1, . . . , n, k = 1, . . . ,K, the
above expression matches with the results for the uncorrelated
DCSI expression in [8].

IV. PROOF OF THEOREM 2

Due to space limitation, we will omit some steps of the
derivations. The omitted steps are presented in a longer version
paper [20]. The following proof significantly extends the proof
of the Theorem in [8] and is built upon the approaches in
[12] and [17]. We also make extensive use of classical RMT
lemmas recalled in the Appendix.

As a preliminary step, we introduce the following notations.

C
(j)
[k] =

Ĥ
(j)
[k] (Ĥ

(j)
[k] )

H

M
+ α(j)IM , ∀j

with

(Ĥ
(j)
[k] )

H =
[
ĥ

(j)
1 . . . ĥ

(j)
k−1 ĥ

(j)
k+1 . . . ĥ

(j)
K

]
, ∀j,

which is the matrix (Ĥ(j))H with the kth column removed.

A. Deterministic Equivalent for Ψ(j)

A deterministic equivalent for Ψ(j) can be found in [12], or
can be obtained using Lemma 5 with σ(j) = σ(j′) = 0:

Ψ(j) � Γoj,j

with Γoj,j defined in (25). As expected, this deterministic
equivalent does not depend on σ(j).

It should be noted that when the system becomes large,
the effective global precoder TDCSI

rZF satisfies the total power
constraint, since

‖ TDCSI
rZF ‖2F

=

n∑
j=1

tr
(
EH
j T

(j)
rZF(T

(j)
rZF)HEj

)
=

n∑
j=1

P

Γoj,j
tr
(

1

M2
EjE

H
j (C

(j))−1(Ĥ(j))HĤ(j)(C(j))−1

)
(a)
�

n∑
j=1

P

Γoj,j

Γoj,j
n

= P

where (a) follows from Lemma 5, the isotropy of the channel,
and Ψ(j) � Γoj,j′ .



B. Deterministic Equivalent for hH
k t

DCSI
rZF,k:

For the desired signal part at RX k, we can write

hH
k t

DCSI
rZF,k =

n∑
j=1

1

M

√
P√

Ψ(j)
hH
kEjE

H
j (C(j))−1ĥ

(j)
k

(a)
�
√
P

n∑
j=1

√
1

Γoj,j

1
Mh

H
kEjE

H
j (C

(j)
[k] )
−1ĥ

(j)
k

1 + 1
M (ĥ

(j)
k )H(C

(j)
[k] )
−1ĥ

(j)
k

(b)
�
√
P

n∑
j=1

√√√√1−(σ
(j)
k )2

Γoj,j

1
Mh

H
kEjE

H
j (C

(j)
[k] )
−1hk

1+ 1
M (ĥ

(j)
k )H(C

(j)
[k] )
−1ĥ

(j)
k

(c)
�
√
P

n∑
j=1

√√√√1− (σ
(j)
k )2

Γoj,j

1
M tr

(
EjE

H
j (C

(j)
[k] )
−1
)

1 + 1
M tr

(
(C

(j)
[k] )
−1
)

(d)
�
√
P

n

n∑
j=1

√√√√1− (σ
(j)
k )2

Γoj,j

δ(j)

1 + δ(j)
.

Equality (a) follows then from Lemma 1 and the use of the
deterministic equivalent derived for Ψ(j), (b) from Lemma 3,
(c) from Lemma 2, (d) from Lemma 4 and the fundamental
Theorem 1. Note that δ(j) can be calculated as illustrated
in Theorem 1 and can in fact even be calculated in closed
form. Taking the squared absolute value provides the desired
expression.

C. Deterministic Equivalent for the Interference Term

According to the definition of TDCSI in (13) and replac-
ing Ψ(j) by its deterministic equivalent yields

Ik =

K∑
`=1, 6̀=k

|hH
k t

DCSI
rZF,`|2

= hH
kT

DCSI
rZF (TDCSI

rZF )Hhk − hH
k t

DCSI
rZF,k(tDCSI

rZF,k)Hhk

=
1

M2

n∑
j=1

n∑
j′=1

P√
Ψ(j)Ψ(j′)

hH
kEjE

H
j (C(j))−1(Ĥ

(j)
[k] )

H

· Ĥ(j′)
[k] (C(j′))−1Ej′E

H
j′hk

� P

M2

n∑
j=1

n∑
j′=1

1√
Γoj,jΓ

o
j′,j′

hH
kEjE

H
j (C

(j)
[k] )
−1(Ĥ

(j)
[k] )

H

· Ĥ(j′)
[k] (C(j′))−1Ej′E

H
j′hk

+
P

M2

n∑
j=1

n∑
j′=1

1√
Γoj,jΓ

o
j′,j′

hH
kEjE

H
j

·
(
(C(j))−1−(C

(j)
[k] )
−1
)

(Ĥ
(j)
[k] )

HĤ
(j′)
[k] (C(j′))−1Ej′E

H
j′hk.

Applying Lemma 5, we obtain a deterministic equivalent for
the first summation term. For the second summation term, we

use the following relation

(C(j))−1 − (C
(j)
[k] )
−1

= (C(j))−1
(
C

(j)
[k] −C(j)

)
(C

(j)
[k] )
−1

=− 1

M
(C(j))−1

(
c
(j)
0,khkh

H
k +c

(j)
1,kδ

(j)
k (δ

(j)
k )H

+c
(j)
2,kδ

(j)
k hH

k +c
(j)
2,khk(δ

(j)
k )H

)
(C

(j)
[k] )
−1 (26)

It is important to note that c(j)0,kc
(j)
1,k = (c

(j)
2,k)2 and c(j)0,k+c

(j)
1,k =

1 as these relations will be used several times through the proof
in order to simplify the expressions obtained. Inserting (26) in
Ik yields

Ik �
P

M2

n∑
j=1

n∑
j′=1

1√
Γoj,jΓ

o
j′,j′

hH
kEjE

H
j (C

(j)
[k] )
−1(Ĥ

(j)
[k] )

H

· Ĥ(j′)
[k] (C(j′))−1Ej′E

H
j′hk

− P

M3

n∑
j=1

n∑
j′=1

hH
kEjE

H
j (C(j))−1

[
hkc

(j)
0,kh

H
k

]
√

Γoj,jΓ
o
j′,j′

· (C(j)
[k] )
−1(Ĥ

(j)
[k] )

HĤ
(j′)
[k] (C(j′))−1Ej′E

H
j′hk

− P

M3

n∑
j=1

n∑
j′=1

hH
kEjE

H
j (C(j))−1

[
δ

(j)
k c

(j)
1,k(δ

(j)
k )H

]
√

Γoj,jΓ
o
j′,j′

· (C(j)
[k] )
−1(Ĥ

(j)
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, A+B + C +D + E. (27)

We proceed by calculating each of the 5 terms in (27)
successively. Using in particular Lemma 6, we obtain

A � P
n∑
j=1

n∑
j′=1

1√
Γoj,jΓ

o
j′,j′

·

 tr
(
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·
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M
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tr
(
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M

 . (28)
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Fig. 1: Difference for the average rate per user between the
numerical simulations and the deterministic equivalent as a
function of the number of users K.

Since Ej′E
H
j′EjE

H
j = EjE

H
j ·1j=j′ , where 1j=j′ is a function

that returns 1 when j = j′ and 0 otherwise, according to
Lemma 5, it can be shown that

tr
(
EjE

H
j (C

(j)
[k] )
−1(Ĥ

(j)
[k] )

HĤ
(j′)
[k] (C

(j′)
[k] )−1

)
M2

� 1

n
Γoj,j′ (29)

Inserting (29) in (28) and using the fundamental Theorem 1
yields

A � P
n∑
j=1

n∑
j′=1

1

n
1j=j′ − c(j
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n
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Γoj,j′√
Γoj,jΓ

o
j′,j′

c
(j′)
0,k δ

(j′)

n2
(
1 + δ(j′)

) . (30)

The derivation of the B, C, D, and E terms follows exactly in
the same way after applying Lemma 6 and Lemma 5. Adding
all the terms together gives the interference term.

V. SIMULATION RESULTS

In the following, we keep β = 1 and P = 20 dB while
further simulation results will be provided in the journal
version [20].

A. Numerical Verification of Theorem 2

We now verify using Monte-Carlo simulations the accuracy
of the asymptotic expression derived in Theorem 2. We
consider a network MIMO system consisting of n = 5 TXs
and we assume that σ(j)

k ,∀j = 1, . . . , n, k = 1, . . . ,K is
uniformly distributed between (0, 1). ρ(j,j′)

k , j 6= j′,∀j, j′ =
1, . . . , n, ∀k = 1, . . . ,K is also uniformly distributed between
(0, 1) and the n × n error correlation matrix for which the
(j, j′) entry is ρ

(j,j′)
k is symmetric positive semi-definite.

The regularization parameter α(j),∀j = 1, . . . , n is chosen
uniformly distributed between (0, 1).
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Fig. 2: Average rate per user as a function of estimation error
correlation ρ.

In Fig. 1, we show the average rate per user between the
simulation and the deterministic equivalent as a function of the
number of users for a square setting where M = nMTX =
K. It confirms that Monte-Carlo simulation converges to the
deterministic equivalent as the system becomes large.

B. Analysis of the CSI Noise Correlation Factor

We now discuss the cost of the distributiveness of the
CSI. We consider a network consisting of n = 3 TXs and
K = 30 RXs and we assume that at TX 1, σ(1)

k = 0.1,∀k =

1, . . . ,K, at TX 2, σ(2)
k = 0.4,∀k = 1, . . . ,K , and at

TX 3, σ(3)
k = 0.7,∀k = 1, . . . ,K. This corresponds to an

asymmetric CSI setting where TX 1 has relatively good CSI,
TX 2 has moderate CSI and TX 3 has relatively bad CSI.

We choose CSI noise correlation factors ρ(j,j′)
k = ρ, j 6=

j′,∀j, j′ = 1, . . . , n, ∀k = 1, . . . ,K and we let ρ vary from
0 to 1. The parameter ρ controls the level of centralization
such that the CSI model varies from fully distributed CSIT
to centralized CSIT. We compare the performance obtained
using DCSI regularized ZF with the optimal regularization
coefficients α∗1, α

∗
2, α
∗
3 obtained numerically in Section II-E

and the naive regularized ZF in Section II-D where the CSI
inconsistencies between the TXs are not considered. A less
complex and more efficient case where all TXs use a common
regularization coefficient α? which is optimized numerically
is also considered in the simulations.

It can be seen in Fig. 2 that the optimization of the
regularization coefficient leads to a gain of about 30%, which
is particularly interesting given that this coefficient can be
optimized only on the basis of the long term statistics, i.e.,
at a low cost. It can also be seen that using the same
coefficient at each TX leads to a even lower complexity single
parameter optimization. If chosen the coefficient correctly, the
performance is close to the different regularization coefficients
case.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

Channel estimate accuracy parameter σ at TX2

A
v
e
ra

g
e
 p

e
r 

u
s
e
r 

ra
te

 [
B

it
s
/s

/H
z
]

DCSI robust RZF with optimal α
1
*, α

2
*, α

3
*

DCSI robust RZF with optimal α*

Naive RZF

Fig. 3: Average rate per user as a function of CSI estimate
accuracy parameter σ at TX2, with TX1 having perfect CSI.

C. Impact of the Asymmetrical CSIT

In Fig. 3, we discuss the performance obtained . In this
simulation, we consider n = 2 TXs and K = 30 RXs with
ρ

(1,2)
k = ρ

(2,1)
k = 0.4, ∀k = 1, . . . ,K. At TX 1, σ(1)

k =
0,∀k = 1, . . . ,K, which indicates that the CSI is perfect at
TX 1. At TX 2, σ(2)

k = σ, ∀k = 1, . . . ,K with σ varying from
0 to 1, meaning that the CSI at TX 2 varies from perfect CSI
to no CSI case.

When both TX have symmetrically good CSI, the optimiza-
tion of the regularization coefficient does not significantly
enhance the system performance. In contrast, when the CSI
quality at the two TXs becomes more and more asymmetric,
the gap between the proposed D-CSI robust Regularized ZF
and the naive Regularized ZF becomes non-negligible.

D. Optimal Regularization Coefficient

We now analysis how the choice of the regularization
parameter will interact with the user rate. We consider a
network consisting of n = 2 TXs and K = 50 RXs.
ρ

(1,2)
k = ρ

(2,1)
k = 0.4, ∀k = 1, . . . ,K.

Fig. 4 exploits the case when TX 1 has rather good CSI
estimate for all the user channels where (σ

(1)
k )2 = 0.1,∀ k =

1, . . . ,K, while TX 2 has rather bad CSI estimates for all
user channels where (σ

(2)
k )2 = 0.7,∀ k = 1, . . . ,K. The

heat map indicates the average per user rate when different
regularization parameters are chosen at TX 1 and TX 2. Dark
red represents higher rate and dark blue represents lower rate.
We can observe that in general the optimal regularization
coefficients at different TXs are non-equal, however, assuming
each TX has the same regularization coefficient and optimize
this coefficient based on CSI quality level for all TXs will
only have a small performance degradation from the optimal
different regularization coefficients case.

Fig. 4: Average per user rate as a function of regularization
parameter at TX 1, TX 2, TX 1 has good CSI estimate and
TX 2 has bad CSI estimate.

VI. CONCLUSION

We have studied regularized ZF joint precoding in a
distributed CSI configuration. We extend the conventional
distributed CSI scenario by allowing the CSI errors at the
different TXs to be correlated. This novelty offers new per-
spectives for modeling the CSI in partially centralized setting.
In addition, we extend the analysis of regularized ZF by
allowing each TX to choose its own regularization coefficient.
Using RMT tools, an analytical expression is derived to
approximate the average rate per user in the large system
limit. This analytical expression is then used to optimize the
regularization coefficients at the different TXs in order to
reduce the impact of the distributed CSI configuration.

APPENDIX

A. Classical Lemmas from the Literature

Lemma 1 (Resolvent Identities [17], [18]). Given any ma-
trix H ∈ CK×M , let hH

k denote its kth row and H[k] ∈
C(K−1)×M denote the matrix obtained after removing the
kth row from H. The resolvent matrices of H and H[k]

are denoted by Q ,
(
HHH + αIM

)−1
and Q[k] ,(

HH
[k]H[k] + αIM

)−1

, with α > 0, respectively. It then holds
that

Q = Q[k] −
1

M

Q[k]hkh
H
kQ[k]

1 + 1
Mh

H
kQ[k]hk

(31)

and

hH
kQ =

hH
kQ[k]

1 + 1
Mh

H
kQ[k]hk

. (32)

Lemma 2 ( [17], [18]). Let (AN )N≥1,AN ∈ CN×N be
a sequence of matrices such that lim sup ‖AN‖ < ∞, and
(xN )N≥1,xN ∈ CN×1 be a sequence of random vectors of



i.i.d. entries of zero mean, unit variance, and finite eighth order
moment independent of AN . Then,

1

N
xH
NANxN −

1

N
tr (AN )

a.s.−−−−→
N→∞

0. (33)

Lemma 3 ( [17], [18]). Let (AN )N≥1,AN ∈ CN×N be
a sequence of matrices such that lim sup ‖AN‖ < ∞, and
xN ,yN be random, mutually independent with i.i.d. entries
of zero mean, unit variance, finite eighth order moment, and
independent of AN . Then,

1

N
xH
NANyN

a.s.−−−−→
N→∞

0. (34)

Lemma 4 ( [12], [18]). Let Q and Q[k] be as given in
Lemma 1. Then, for any matrix A, we have

tr
(
A
(
Q−Q[k]

))
≤ ‖A‖2. (35)

B. New Lemmas

Lemma 5. Let h′k =
√

1− (σ′k)2hk + σ′kδ
′
k and h′′k =√

1− (σ′′k )2hk + σ′′kδ
′′
k . σ′k, σ

′′
k ∈ [0, 1] with hk indepen-

dent with δ′k, δ
′′
k . δ′k, δ

′′
k have their elements i.i.d. NC(0, 1),

E
[
δ′k(δ′′k )H

]
= ρ2

kIM . hHk ,h
′
k
H
,h′′k

H
,∀k = 1 . . .K are

the row vectors for H,H′,H′′ respectively. Let Q′ =(
H′HH′

M + α′IM

)−1

and Q′′ =
(

H′′HH′′

M + α′′IM

)−1

with
α′, α′′ > 0. Let A ∈ CM×M be of uniformly bounded spectral
norm with respect to M . Then,

1

M2
tr
(
AQ′H′HH′′Q′′

)
− tr (A)

M
Y0

a.s.−−→ 0 (36)

where Y0 is defined as

Yo,
δ′

1+δ′
δ′′

1+δ′′
1
M

∑K
`=1

√
(1−(σ′`)

2)(1− (σ′′` )2)+σ′`σ
′′
`ρ

2
`

1− δ′

1+δ′
δ′′

1+δ′′
1
M

∑K
`=1

(√
(1−(σ′`)

2)(1−(σ′′` )2)+σ′`σ
′′
`ρ

2
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(37)

Lemma 6. Let L,R, Ā ∈ CM×M be of uniformly bounded
spectral norm with respect to M and let Ā be invertible.
Let x,x′,y have i.i.d. complex entries of zero mean, variance
1/M and finite 8th order moment. x,y and x′,y are mutually
independent as well as independent of L,R, Ā. x,x′ satisfies
E
[
x′xH

]
= ρ2

M IM . Then we have:

xHLA−1Rx � uLR −
c0uLuR

1 + u

xHLA−1Ry � −c2uLuR

1 + u

xHLA′−1Ry � −ρ2 c2uLuR

1 + u

with

A = Ā + c0xx
H + c1yy

H + c2xy
H + c2yx

H

A′ = Ā + c0x
′x′H + c1yy

H + c2x
′yH + c2yx

′H

with c0 + c1 = 1 and c0c1 − c22 = 0, and

u =
tr(Ā−1)

M
, uL =

tr(LĀ−1)

M
,

uR =
tr(Ā−1R)

M
, uLR =

tr(LĀ−1R)

M
.
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