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Abstract—We address the problem of noise and interference
corrupted channel estimation in massive MIMO systems. Interfer-
ence, which originates from pilot reuse (or contamination), can in
principle be discriminated on the basis of the distributions of path
angles and amplitudes. In this paper, we propose novel robust
channel estimation algorithms exploiting path diversity in both
angle and power domains, relying on a suitable combination of
the spatial filtering and amplitude based projection. The proposed
approaches are able to cope with a wide range of system and
topology scenarios, including those where, unlike in previous
works, interference channel may overlap with desired channels
in terms of multipath angles of arrival or exceed them in terms
of received power. In particular, we establish analytically the
conditions under which the proposed channel estimator is fully
decontaminated. Simulation results confirm the overall system
gains when using the new methods.

Index Terms—MassiveMIMO, pilot contamination, pilot decon-
tamination, channel estimation, covariance, subspace, eigenvalue
decomposition.

I. INTRODUCTION

M ASSIVE MIMO (also known as Large-Scale Antenna
Systems) introduced in [2], is widely believed to be

one of the key enablers of the future 5th generation (5G)
wireless systems thanks to its potential to substantially enhance
spectral and energy efficiencies [2], [3] compared to traditional
MIMO with fewer antennas. This technique is based on the
law of large numbers, which predicts that, as the number
of base station antennas increases, the vector channel for a
desired user terminal will grow more orthogonal to the vector
channel of an interfering user, thus allowing the base station to
reject interference by precoding, or even, as a low-complexity
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approach, simply aligning the beamforming vector with the
desired channel (“Maximum Ratio Combining”, or MRC),
providing that Channel State Information (CSI) is known at
base station. In practice however, CSI is acquired based on
training sequences sent by user terminals. Due to limited time
and frequency resources, non-orthogonal pilot sequences are
typically used by user terminals in neighboring cells, resulting
in residual channel estimation error. This effect, called pilot
contamination [4], [5], has a detrimental impact on the actual
achievable spectral and energy efficiencies in real systems. As
a result, considerable research efforts have been spent in the
last couple of years towards alleviating pilot interference in
massive MIMO networks.
Such techniques span from smart design of pilot reuse

schemes (e.g., [6], [7]) to channel estimation techniques based
on coordinated pilot allocation (e.g., [8], [9]), to methods
relying on multi-cell joint processing (e.g., [10]), to nonlinear
channel estimation techniques leveraging on some fundamental
features of massive MIMO systems (e.g., [8], [11]–[13]).
Two key features of massive MIMO channels that have been

previously reported are of particular interest here: 1) channels of
different users tend to be pairwise orthogonal when the number
of antennas increases, thus leading to a specific subspace struc-
ture for the received data vectors that depend on these channels
[12] and 2) the channel covariance matrix exhibits a low-rank-
ness property whenever the multipath impinging on the MIMO
array spans a finite angular spread [8], [14], [15]. The blind
signal subspace estimation in [12] capitalizes on the first prop-
erty. The second property has been utilized in [8], [14]–[17],
assuming the knowledge of the long-term channel covariance
matrices. While the exploitation of the two properties individ-
ually has given rise to a set of distinct original decontamina-
tion approaches, in this work we will exploit these two key fea-
tures in a combined manner. Doing so we can propose a novel
approach towards mitigating pilot contamination that exhibits
much higher levels of robustness.
More specifically, in [12], [18], the pairwise channel orthog-

onality property allows to blindly estimate the user-of-interest
channel subspace and discriminate between user-of-interest sig-
nals and interference based on the channel powers. In practice,
decontamination occurs via a projection driven by the channel
amplitudes. This approach works well within the constraint that
the interference channel is received with a power level suffi-
ciently lower than that of the desired channel, a condition hard
to guarantee for some edge-of-cell users.
In a way completely different from [12], [18], another ap-

proach based on a linear minimummean squared error (MMSE)
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estimator is adopted in [8] to estimate the channel of interest via
projection of the received signals onto the user-of-interest sub-
space. This subspace, identified by a channel covariance matrix
(a long-term one, as opposed to the instantaneous signal corre-
lation matrix of [12], [18]), is related to the angular spread of
the signal of interest [8] and enables to annihilate the interfer-
ence from users with non-overlapping domains of multipath an-
gles-of-arrival (AoA). Interestingly, this latter approach makes
no assumption on received signal amplitudes and can also dis-
criminate against interfering users that are received with sim-
ilar or even higher powers. Yet, the approach fails to decon-
taminate pilots when propagation scattering creates large angle
spread, causing spatial overlapping among desired and interfer-
ence channels.
In this paper, we point out that the strengths of these two

previously unrelated estimation methods are strongly comple-
mentary, offering a unique opportunity for developing robust
channel estimation schemes. Thus, we aim to properly merge
the two projections in complementary domains while keeping
the individual benefits. In fact, we propose a family of algo-
rithms striking various performance/complexity trade-offs.
We start by presenting a first scheme named “covari-

ance-aided amplitude based projection” that effectively com-
bines projections in the angular and amplitude domains and
exhibits robustness to interference power/angles overlapping
conditions. We present an asymptotic analysis which reveals the
conditions under which the channel estimation error due to pilot
contamination and noise can be made to vanish. An intuitive
physical interpretation of this condition for a Uniform Linear
Array (ULA) is given in the form of the residual interference
channel energy contained in the multipath components that
overlap in angle with those of the desired channel. Although
the physical explanation is given for the ULA example, the
general principle apply to other antenna placement topologies.
The obtained condition for decontamination is in general

less restrictive than the condition required by previous MMSE
and the amplitude projection-based methods taken separately
to achieve complete removal of pilot contamination.
We then propose two low-complexity alternative schemes

called “subspace and amplitude based projection” and “MMSE
+ amplitude based projection” respectively. Such schemes
achieve different complexity-performance trade-off at mod-
erate number of antennas. Specifically, the “subspace and
amplitude based projection” can be shown to reach asymptotic
(in the number of antennas) decontamination result under the
same channel topology conditions as the first scheme.
More specifically, our contributions are as follows:
• We put forward a modification of the known method of
amplitude based projection, with increased robustness.

• We propose a spatial filter which helps bring down the
power of interference while preserving the signal of in-
terest.With this spatial filter, we present a novel channel es-
timation scheme called “covariance-aided amplitude based
projection”. It combines the merits of linear MMSE esti-
mator and amplitude based projection method, yet can be
shown to have significant gains over these known schemes.

• We give asymptotic analysis on this proposed method
and provide weaker condition compared to the previous

methods where the estimation error of the proposed
method goes to zero asymptotically in the limit of large
number of antennas and data symbols. The asymptotic
analysis relies on mild technical condition such as uni-
formly boundedness of the spectral norm of channel
covariance.

• As the uniformly boundedness of the largest eigenvalue of
channel covariance was reported to be useful in previous
works (such as [19]) but not formally analyzed, we identify
in the case of ULA a sufficient propagation condition under
which the uniformly bounded spectral norm of channel co-
variance is satisfied exactly.

• Finally we propose two low-complexity alternatives of the
first method. An asymptotic performance characterization
is also given.

The paper is organized as follows: In Section II we in-
troduce the system model. Section III is a brief review of
MMSE channel estimator and its asymptotic performance. In
Section IV we briefly recall the amplitude based projection of
[12], [18], and we propose a first improvement of the method.
Then we present the novel covariance-aided amplitude based
projection in Section V.A for the setting of single user per
cell, and the asymptotic performance analysis of this method is
shown in Section V.B. Section V.C presents a generalization
of the proposed scheme to multi-user per cell scenario. In
Section VI we propose two low-complexity alternatives of our
previous method and similar asymptotic results on the system
performance are given. Section VII shows numerical results.
Finally Section VIII concludes the paper.
The notations adopted in the paper are as follows. We use

boldface to denote matrices and vectors. Specifically, de-
notes the identity matrix. , and denote
the transpose, conjugate, and conjugate transpose of a matrix
respectively. is the Moore-Penrose pseudoinverse of .

denotes the trace of a square matrix. denotes the
norm of a vector when the argument is a vector, and the spectral
norm when the argument is a matrix. In particular, if is a Her-
mitian matrix, is the largest eigenvalue of . We index
the eigenvalues of in non-increasing order and denote the -th
eigenvalue of by and its corresponding eigenvector by

. stands for the Frobenius norm. denotes the
expectation. The Kronecker product of two matrices and
is denoted by . is the vectorization of the matrix
. denotes a diagonal matrix or a block di-

agonal matrix with at the main diagonal. is used
for definition.

II. SIGNAL AND CHANNEL MODELS

We consider a network of time-synchronized1 cells, with
full spectrum reuse. Each base station (BS) is equipped with
antennas. There are single-antenna users in each cell simulta-
neously served by their base station. The cellular network oper-

1Note that assuming synchronization between uplink pilots provides a worst
case scenario from a pilot contamination point of view, since any lack of syn-
chronization will tend to statistically decorrelate the pilots. Furthermore, the
main methods that we propose in this paper, i.e., the covariance-aided ampli-
tude based projection and the subspace and amplitude based projection do not
rely on accurate time synchronization.
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ates in time-division duplexing (TDD)mode, and due to channel
reciprocity, the downlink channel is obtained at the BS by up-
link training signal and data signal. Each base station estimates
the channels of its users during a coherence time interval. The
pilot sequences inside each cell are assumed orthogonal to each
other in order to avoid intra-cell interference. However the same
pilot pool is reused in other cells, giving rise to pilot contami-
nation problem. The pilot sequence assigned to the -th user in
a certain cell is denoted by

(1)

where is the length of a pilot sequence. Without loss of gen-
erality we assume unitary average power of pilot symbols:

The channel vector between the -th user located in
the -th cell and the -th base station is denoted by . The
following classical multipath channel model [20] is adopted:

(2)

where is the arbitrary large number of i.i.d. paths, and
is the i.i.d. random phase, which is independent over channel
indices , and path index . is the steering (or phase
response) vector by the array to a path originating from the angle
of arrival :

...
(3)

where is the signal wavelength and is the antenna spacing
which is assumed fixed. Note that we can limit to
because any can be replaced by giving the same
steering vector. is the path-loss coefficient

(4)

in which is the path-loss exponent, is the geographical
distance between the user and the -th base station, and is
a constant. Note that the model is shown for a ULA example
for ease of exposition. Under this model, the covariance matrix
can be shown asymptotically to have low rank, as long as the
AoA support is bounded and strictly smaller than . How-
ever, several other channel models also exhibit similar low-rank
property [15], which is the essential characteristic exploited by
the MMSE estimator, hence our approach is not dependent on
the use of the one ring model above described. In fact, our main
results, namely Theorem 1, as well as the general principle carry
to other channel models and antenna placement topologies.
We define

(5)

and the pilot matrix

(6)

During the training phase, the received signal at the base sta-
tion is

(7)

where is the spatially and temporally white addi-
tive Gaussian noise (AWGN) with zero-mean and element-wise
variance . Then, during the uplink data transmission phase,
each user transmits data symbols. The received data signal at
base station is given by:

(8)

where is the matrix of transmitted symbols of
all users in the -th cell. The symbols are i.i.d. with zero-mean
and unit average element-wise variance. is the
AWGN noise with zero-mean and element-wise variance .
Note that the block fading channel is constant during the trans-
mission for the pilot symbols and the data symbols.

III. MMSE CHANNEL ESTIMATION

We briefly recall the MMSE channel estimator in a multi-cell
single-user per cell setting. Without loss of generality, we as-
sume cell is the target cell, and is the desired
channel, while are the interference chan-
nels. We rewrite (7) in a vectorized form,

(9)

where . A pilot sequence
is shared by all users. The pilot matrix is given by

(10)

We define the channel covariance matrices

(11)

where the expectation is taken over channel realizations.
A linear MMSE estimator for is given by

(12)

As shown in previous works [8], [15], for a base station
equipped with a ULA, the above MMSE estimator can fully
eliminate the effects of interfering channels when ,
under a specific “non-overlap” condition on the distributions
of multipath AoAs for the desired and interference channels.
This condition is formalized as follows: Assume the user in
cell is our target (desired user). Denote the angular support
of the desired channel as , (i.e., the probability density
function (PDF) of the AoA of desired channel
satisfies if and if ) and
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similarly the union of the angular supports of all interference
channels as . If , then, as ,
(12) converges to an interference-free estimate. In practice the
“non-overlap” condition is hard to guarantee and the finite-
performance of the MMSE scheme depends on angular spread
and user location, although the latter can be shaped via the use
of so-called coordinated pilot assignment (CPA) [8].

IV. AMPLITUDE BASED PROJECTION
Interestingly, angle is not the only domain where interfer-

ence can be discriminated upon, as revealed from a completely
different approach to pilot decontamination [12], [18]. In that
approach the empirical instantaneous covariance matrix built
from the received data (8) is exploited, in contrast with the use
of long-term covariance matrices in (12). Assume cell is our
target cell and each cell has users. The eigenvalue decompo-
sition (EVD) of is written as

(13)

where is a uni-
tary matrix and with its diagonal
entries sorted in a non-increasing order. By extracting the first

columns of , i.e., the eigenvectors corresponding to the
strongest eigenvalues, we obtain an orthogonal basis

(14)

The basic idea in [12], [18] is to use the orthogonal basis
as an estimate for the span of , which includes all desired
user channels in cell . Then, by projecting the received signal
onto the subspace spanned by , most of the signal of in-
terest is preserved. In contrast, the interference signal is can-
celed out thanks to the asymptotic property that the user chan-
nels are pairwise orthogonal as the number of antennas tends to
infinity. Thus after the above mentioned projection, the estimate
of the multi-user channel is given by:

(15)

Note here that interference and desired channel directions are
discriminated on the basis of channel amplitudes and not AoA,
hence the estimate is labeled “AM” for “Amplitude”. As a way
to guarantee an asymptotic separation between the signal of in-
terest and the interference in terms of power, it has been sug-
gested to introduce power control in the network [12], [18].
Remark 1 Generalized Amplitude Projection: As shown in

[12], [18], the above method works well when the desired chan-
nels and interference channels are separable in power domain,
i.e., the instantaneous powers of any desired channels are higher
than that of any interference channels. In practice however, this
assumption is not always guaranteed. For a finite number of an-
tennas, the short-term fading realization can cause the interfer-
ence subspace to spill over the desired one. An enhanced ver-
sion can somewhat mitigate this problem by considering a gen-
eralized amplitude based projection. This consists in selecting
a possibly larger number of dominant eigenvectors to
form , where is the number of eigenvalues in

that are greater than . is a design parameter that satis-
fies . See Section VII for details on the choice of .

V. COVARIANCE-AIDED AMPLITUDE BASED PROJECTION
Note that both previous methods, while being able to tackle

pilot contamination in quite different ways, perform well only
in some restricted user/channel topologies. For a ULA base sta-
tion, the MMSE method leads to interference free channel es-
timates under the strict requirement that the desired and inter-
ference channel do not overlap in their AoA regions. While the
amplitude based projection requires that no interference channel
power exceeds that of a desired channel to achieve a similar re-
sult. Unfortunately, due to the random user location and scat-
tering effects, it is quite unlikely to achieve these conditions at
all times. As a result, by combining the useful properties of both
the MMSE and the amplitude projection method, we propose
below novel estimation methods that will lead to enhanced ro-
bustness in a realistic cellular scenario.

A. Single User per Cell
For ease of exposition we first consider a simplified scenario

where intra-cell interference is ignored by assuming that each
cell has only one user, i.e., . The users in different cells
share the same pilot sequence . Then with proper modifications
we will generalize this method to the setting of multiple users
per cell in Section V.C.
The objective is to combine long-term statistics which in-

clude spatial distribution information together with short-term
empirical covariance which contains instantaneous amplitude
and direction channel information. Hence, a spatial distribution
filter can be associated to an instantaneous projection operator
to help discriminate against any interference terms whose spa-
tial directions live in a subspace orthogonal to that of the desired
channel. The intuition is that such a spatial filter may bring the
residual interference to a level that is acceptable to the instanta-
neous projection-based channel estimator.
In order to carry out the above intuition, we introduce a long-

term statistical filter , which is based on channel covariance
matrices in a way similar to that used by the MMSE filter in
(12).

(16)

Note that the linear filter allows to discriminate against the
interference in angular domain by projecting away from multi-
path AoAs that are occupied by interference. Note also that the
choice of spatial filter is justified from the fact that the full
information of desired channel is preserved, as lies in
the signal space of . In fact, the desired channel is recover-
able using another linear transformation :

(17)

as can be seen from the following equality

(18)
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where the columns of are the eigenvectors of corre-
sponding to non-zero eigenvalues.
The spatial filter is applied to the received data signal at base

station as

(19)

The amplitude-based method as shown in Section IV can now
be applied on the filtered received data to get rid of the residual
interference. Take the eigenvector corresponding to the largest
eigenvalue of the matrix :

(20)

Hence can be considered as an estimate of the direction of
the vector .
We then cancel the effect of the pre-multiplicative matrix

using in (17), and we obtain an estimate of the direction of
the channel vector as follows:

(21)

Finally, the phase and amplitude ambiguities of the desire
channel can be resolved by projecting the LS estimate onto the
subspace spanned by :

(22)

where the superscript “CA” denotes the covariance-aided am-
plitude domain projection.
The algorithm is summarized below:

Algorithm 1: Covariance-aided Amplitude based Projection

1: Take the first eigenvector of as in (20), with
being the filtered data signal.

2: Reverse the effect of the spatial filter using (21).
3: Resolve the phase and amplitude ambiguities by (22).

The complexity of this proposed estimation scheme is briefly
evaluated.
We note that the computation of the matrix inversions in (16)

has a complexity order of . However, these computa-
tions are performed in a preamble phase and their cost is neg-
ligible under the underlying assumption of channel stationarity
implicitly made in this article. In practical systems, the matrix
inversion in (16) is performed when the channel statistics are
updated. Since the channel statistics are typically updated in a
time scale much larger than the channel coherence time, i.e.,
the time scale for the applicability of Algorithm 1, then their
computational cost is negligible. Therefore, we can focus on the
complexity of Algorithm 1 only.
In step 1, the spatial filtering of the data signals in (19) and

the computation of the covariance matrix is performed
along with the computation of the dominant eigenvector of an

matrix as in (20). The former computation has a com-
plexity order while, by applying the classical power

method, the computation of the dominant vector has a com-
plexity order . Both step 2 and step 3 require multiplica-
tions of matrices by -dimensional vectors and thus both have
a complexity order . Then, the global complexity of the
algorithm is dominated by the complexity of step 1, which is

.
The ability for the above estimator to combine the advantages

of the previously known angle and amplitude projection based
estimators is now analyzed theoretically. In particular we are
interested in the conditions under which full pilot decontamina-
tion can be achieved asymptotically in the limit of the number
of antennas and data symbols . In order to facilitate the
analysis, we introduce the following condition:
Condition C1: The spectral norm of is uniformly

bounded:

and (23)

where is the set of positive integers, and is a constant.
Condition C1 can be interpreted as describing all the sce-

narios in which the channel energy is spread over a subspace
whose dimension grows with . Note that the same assump-
tion can be found in some other papers, e.g., [19]. The corre-
sponding physical condition is now investigated in the example
of a ULA with a typical antenna spacing (less than or equal
to half wavelength).
Proposition 1: Let be the AoA support of a certain user. Let
be the probability density function of AoA of that user. If
is uniformly bounded, i.e., , and lies

in a closed interval that does not include the parallel directions
with respect to the array, i.e., , then, the spectral norm
of the user’s covariance is uniformly bounded:

(24)

Proof: See Appendix A.
Note that this result is hinted upon [14] by resorting to ap-

proximation of by a circulant matrix. Our Proposition 1 here
gives a formal proof of the previous approximated result.
As another interpretation of the condition, it is worth noting

that when this condition is not satisfied, there is no guarantee
that the asymptotic pairwise orthogonality of different users’
channels holds. In other words, the quantity

may not converge to zero, which is an adverse condition for
all massive MIMO methods. However our proposed methods
still have significant performance gains under this adverse cir-
cumstance. Moreover, C1 is a sufficient condition and we be-
lieve it can be weakened.

B. Asymptotic Performance of the Proposed CA Estimator
We now look into the performance analysis of the proposed

estimation scheme. Let us define

(25)

Theorem 1: Given condition C1, if the following inequality
holds true:

(26)
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then, the estimation error of (22) vanishes:

(27)

Proof: For the sake of notational convenience, in this proof
we assume the user in cell is the target user and thus drop the
superscript . The desired channel is denoted by
and the interference channels are . Since

is considered as complex Gaussian with the
spatial correlation matrices , the channels can
be factorized as [21]

(28)

where , is i.i.d. vector with unit vari-
ance.We build the proof of Theorem 1 on the general correlation
model (28). The proof consists in three parts, corresponding to
the three steps in Algorithm 1 respectively. More specifically,
Lemma 1 (and the intermediate results towards Lemma 1) is the
first part of the proof. It shows that aligns asymptotically
with the direction of the filtered channel vector . The
second part of the proof is provided in Lemma 6, which proves
that after canceling the effect of the spatial filter using , we
obtain the direction of the true channel in . The final part
of the proof shows that by projecting the LS estimate onto the
subspace of , we resolve the phase and amplitude of the true
channel.
Lemma 1: Given condition C1, if , then

there exists a unique , such that

(29)

where .
Proof: The proof of Lemma 1 relies on several interme-

diate results, namely Lemma 2–Lemma 5.
Lemma 2: Under condition C1, the spectral norm of

satisfies:

(30)

Proof: See Appendix B.
Lemma 2 indicates that the spectral norm of the covariance of

the noise (after multiplying ) is bounded and does not scale
with . This conclusion will be exploited when we prove in
Lemma 5 that the impact of noise on the dominant eigenvector/
eigenvalue vanishes.
Lemma 3: [22] Let be a deterministic com-

plex matrix with uniformly bounded spectral radius for all .
Let where is i.i.d.
complex random variable with zero mean, unit variance, and fi-
nite eighth moment. Let be a similar vector independent of .
Then as ,

(31)

and
(32)

where denotes almost sure convergence.
Note that in this paper, the condition on the finite eighth mo-

ment always holds, as when we apply Lemma 3, the components
of the vector of interest are i.i.d. complex Gaussian variables. It
is well known that a complex Gaussian variable with zero mean,
unit variance has finite eighth moment.
Lemma 4: Given condition C1,

(33)

(34)

Proof: See Appendix C.
Lemma 5: When condition C1 is satisfied,

(35)

Proof: See Appendix D.
Lemma 5 proves that as is an asymptotic

eigenvalue of the random matrix , with its corre-
sponding eigenvector converging to up to a random
phase.
We now return to the proof of Lemma 1. Since
, one may readily obtain from Lemma 5 and (33):

(36)

and that there exists a unique , such that

(37)

which completes the proof of Lemma 1.
Now we show the second part of the proof of Theorem 1.

Note that in this part we make the implicit assumption that the
spectral norm of satisfies . A sufficient (but not
necessary) condition of such an assumption is that the spectral
norm of is finite.
Lemma 6: Given (29), we have

(38)

Proof: See Appendix E.
The final part of the proof of Theorem 1 can be found in

Appendix F, which corresponds to step 3 of Algorithm 1. The
proof shows that projecting the LS estimate onto the subspace
of will lead to noise-free estimate asymptotically as

. This concludes the proof of Theorem 1.
Interestingly, condition (26) in Theorem 1 can be replaced

with

(39)

which indicates that under suitable conditions on the spectral
norm of channel covariance, after multiplying the filter , if
the power of the desired channel is higher than that of interfer-
ence channel, then, pilot contamination disappears asymptoti-
cally, along with noise.
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Note that we have so far no assumption on antenna place-
ment in the analysis, other than the requirement for uniformly
boundedness of the spectral norm of channel covariance. In the
sequel we look into a specific model of ULA as an example and
seek to further understand the physical meaning of the proposed
method.
We still assume is the channel of interest. Denote its

angular support as . Decompose the interference channel
, as follows:

(40)

where

(41)

(42)

which means is the residual multipath component of the
interference channel within the AoA region of the desired
channel, while is the multipath component which is outside

.
Theorem 2: For a ULA base station, under condition C1, if

the residual multipath component of the interference channel
satisfies:

(43)

then, the estimation error of the estimator (22) vanishes:

(44)

Proof: See Appendix G.
Theorem 2 further confirms the fact that for a base station

equipped with ULA, only the interference multipath compo-
nents that overlap with those of the desired channel affect the
performance of our pilot decontamination method. In other
words, the spatial filter removes the energy located in all
interference multipath originating from directions that do not
overlap with those of the desired channel. It is then sufficient for
the energy of the residual interference components to be below
that of the desired channel to allow for a full decontamination.

C. Generalization to Multiple Users per Cell
Now we generalize the covariance-aided amplitude based

projection into multi-user setting where users are served
simultaneously in each cell. We consider the estimation of user
channel in the reminder of this section.
Define a matrix as a sub-matrix of after removing

its -th column:

(45)

A corresponding estimate of (45), denoted by , is obtained
by removing the -th column of , which can be an LS es-

timate, MMSE estimate, or other linear/non-linear estimate of
. For demonstration purpose only, in this paper we use the

simplest LS estimate, which already shows very good perfor-
mance.
In order to adapt the method in Section V.A to multi-user sce-

nario, we propose to first neutralize the intra-cell interference
with a Zero-Forcing (ZF) filter based on the LS estimate

, and then apply the spatial filter . After these two fil-
ters, the data signal is now:

(46)

where

(47)
and

(48)

The rest of this method proceeds as in the single user setting.
Take the dominant eigenvector of :

(49)

The estimate of the direction of is obtained by:

(50)

where

(51)

Finally the phase and amplitude ambiguities are resolved by the
training sequence, and we have the estimate of :

(52)

Note that in this method, we build the ZF type filter based
on a rough LS estimate. Further improvements can be attained
with higher quality estimate at the cost of higher complexity.
As a simple example, we can reduce the effect of noise on the
estimate by first applying EVD of , then
removing the subspace where the noise lies, and finally per-
forming LS estimation. These extensions are out of the scope
of this paper.

VI. LOW-COMPLEXITY ALTERNATIVES

In this section, we propose two alternatives of the method
shown in Section V, aiming at lower computational complexity
at the cost of mild performance loss.

A. Subspace and Amplitude Based Projection
The low-rankness of channel covariance implies that the up-

link received desired signal lives in a reduced subspace. By pro-
jecting the received data signal onto the signal space of

, we are able to preserve the signal from user in cell
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while remove the interference and noise that live in its comple-
mentary subspace. In the following, we show a subspace-based
signal space projection method that relies on the covariance of
desired channel only. For ease of exposition, we simplify the
system setup to single user per cell. Let the user in cell be the
target user. The EVD of the covariance of the desired channel is

(53)

where the diagonal entries of contains the non-negligible
eigenvalues of . Then we project the received data signal
onto the signal space of , or the column space of :

(54)

The rest of this method follows the same idea as the covariance-
aided amplitude based projection scheme. Taking the eigen-
vector corresponding to the largest eigenvalue of :

(55)

the channel estimate of is given by

(56)

where the superscript “SA” stands for “subspace and amplitude
based projection”. Note that this method does not require the co-
variance of interference channels or variance of noise. It explic-
itly relies on the assumption that the desired covariance matrix
has a low-dimensional signal subspace, with some degradations
expected when this condition is not realized in practice. In fact,
if has full rank, this method degrades to pure amplitude
based projection.
Note that this “SA” estimator has lower complexity than the

“CA” estimator (22) in the sense that 1) “SA” estimator does not
require the statistical knowledge of the interference channels or
the variance of the noise, and 2) “SA” estimator skips step 2 in
Algorithm 1.
The physical condition under which full decontamination is

achieved with this method is shown below in the case of a ULA.
We denote the angular support of desired channel by
and the multipath components of the interference channel
falling in as .
Theorem 3: For a ULA base station, if the power of interfer-

ence channel that falls into the angular support satisfies

(57)

and the channel covariance satisfies

(58)

then, the estimation error of the estimator (56) vanishes:

(59)

Proof: Due to lack of space, we skip the complete proof
and only give two key steps below. By applying the asymptotic

orthogonality between two steering vectors which are associ-
ated with different AoAs (Lemma 3 in [8]), we may readily ob-
tain:

(60)

(61)

which means the multipath components of interference that
fall outside disappear asymptotically after the projection by

. Then, (58) ensures that

(62)

where

(63)

Note that in Theorem 3 condition (58) is less restrictive than
the uniformly boundedness of the spectral norm of the channel
covariance. In the special case of zero angular spread, the rank
of channel covariance becomes one. Denote the deterministic
AoA from the user in cell to base station as .We can easily
see that the channel estimation error of (56) vanishes completely
as as long as

(64)

which occurs with probability one.
When channel covariance is not available, we can still benefit

from the subspace projection method by approximating with
a subset of discrete Fourier transform (DFT) basis as shown in
[1]. This DFT basis can be chosen based on a small number of
channel observations. The generalization to multi-user case can
be done by introducing the ZF filter (47) as in Section V.C. Due
to lack of space, we skip the details.

B. MMSE + Amplitude Based Projection
Another alternative is to directly project the MMSE estimate

onto the subspace of obtained by EVD of
as in Section IV. The estimator for the multi-user channel
is given by:

(65)

where

(66)
(67)

and
(68)

The superscript “MA” denotes MMSE + amplitude based
projection. It is worth noting that both the amplitude-based
projection and angular-based projection require large number
of antennas to achieve complete decontamination. In contrast,
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the MMSE estimator is efficient with very small number of
antennas. As grows, MMSE estimator starts to reduce
interference earlier than the previously proposed methods, as
will be shown by simulations in Section VII. However, unlike
the previously proposed schemes, this “MA” estimator cannot
achieve complete decontamination when the interference
channel is overlapping with desired channel in both angular
and power domains.

VII. NUMERICAL RESULTS
This section contains numerical results of our different

channel estimation schemes compared with prior methods. In
the simulation, we have multiple hexagonally shaped adjacent
cells in the network. The radius of each cell is 1000 meters.
Each base station has antennas, which forms a ULA, with
half wavelength antenna spacing. The length of pilot sequence
is .
Two performance metrics are considered. The first is the nor-

malized channel estimation error

(69)

The estimation errors in the plots are obtained in Monte Carlo
simulations and finally displayed in dB scale.
The second metric is the uplink per-cell rate when MRC re-

ceiver (based on the obtained channel estimate) is used at base
station side.
In all simulations presented in this section, we assume

that the channel covariance matrix is estimated using 1000
exact channel realizations. The multipath angle of arrival of
any channel (including the interference channel) follows a
uniform distribution centered at the direction corresponding
to line-of-sight (LoS). The number of multipath is .
According to the coherence time model in [23], for a mobile
user moving at a vehicular speed of 70 km/h in an environment
of 2.6 GHz carrier frequency and 5 s high delay spread
(corresponding to an excess distance of 1.5 km), the channel
can be assumed coherent over 500 transmitted symbols. Thus
we will let in simulations, although larger coherence
time can be expected in practice for a user with lower mobility.
Note that in all simulations, the amplitude-based projection

and MMSE + amplitude based projection follow the enhanced
eigenvector selection strategy shown in Remark 1 with the de-
sign parameter .
We first illustrate Theorem 1 in Fig. 1. Suppose we have a

two-cell network, with each cell having one user. In order to
make the interference overlapping in power domain with the
desired signal, we set the path loss exponent . The power
of the interference channel has equal probability to be higher or
lower than the power of the desired channel. The user in each
cell is deliberately put in a symmetrical position such that the
multipath angular supports of the interference and the desired
channel are half overlapping with each other.
In the figure, “LS estimation” and “Pure MMSE” denote the

system performances when an LS estimator and an MMSE es-
timator (12) are used respectively. “Pure amplitude” denotes

Fig. 1. Estimation performance vs. M, 2-cell network, 1 user per cell, path loss
exponent , partially overlapping angular support, AoA spread 60 degrees,

dB.

the case when we apply the generalized amplitude based pro-
jection method only. “MMSE + amplitude” represents the pro-
posed estimator (65). “Covariance-aided amplitude” denotes the
proposed covariance-aided amplitude based projection method
(22). The curve “MMSE—no interference” shows the estima-
tion error of an MMSE estimator in an interference-free sce-
nario. As can be seen from Fig. 1, due to the overlapping inter-
ference in both angle and power domains, the performance of
all estimators saturate quickly with the number of antennas, ex-
cept the proposed covariance-aided amplitude based projection
method, which eventually outperforms interference-freeMMSE
estimation.2
In Figs. 2 and 3, we show the performance of estimation error

and the corresponding uplink per-cell rate for a 7-cell network,
with single user per cell. The users are assumed to be distributed
randomly and uniformly within their own cells excluding a cen-
tral disc with radius 100 meters. The angular spread of the user
channel (including interference channel) is 30 degrees. The path
loss exponent is now . As we may observe, the traditional
LS estimator suffers from severe pilot contamination. The pure
amplitude based method and the pure MMSE method alleviate
the pilot interference, yet saturate with the number of antennas.
These saturation effects come from the overlapping of the in-
terference and the desired channels in power and angular do-
mains respectively. The “MMSE + amplitude” approach out-
performs these two known methods as it discriminates against
interference in both amplitude and angular domains. However
this scheme cannot cope with the case of overlapping in both do-
mains. Owing to its robustness, the covariance-aided amplitude
projection method outperforms the rest in terms of both estima-
tion error and uplink per-cell rate.
We now turn our attention to multi-cell multi-user scenario.

Figs. 4 and 5 show the channel estimation performance and the

2The reason is that the performance of the interference-freeMMSE estimation
has a non-vanishing lower bound due to white Gaussian noise. On the contrary,
our proposed covariance-aided amplitude based projection method eliminates
the effects of noise and interference asymptotically.
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Fig. 2. Estimation performance vs. M, 7-cell network, one user per cell, AoA
spread 30 degrees, path loss exponent , cell-edge dB.

Fig. 3. Uplink per-cell rate vs.M, 7-cell network, one user per cell, AoA spread
30 degrees, path loss exponent , cell-edge dB.

corresponding uplink per-cell rate for a 7-cell network with each
cell having 4 users. In these two figures, we add the curve of sub-
space and amplitude based projection, which is denoted in the
figures as “Subspace + amplitude”. The other parameters remain
unchanged compared with those in Figs. 2 and 3. We can notice
that in Fig. 4 the covariance-aided amplitude projection method
has some performance loss with respect to the low-complexity
MMSE + amplitude method and the MMSE method when the
number of antennas is small. It is due to the following two facts:
1) when is small, it is well known that MMSE works well,
but not the amplitude based methods, and 2) with small , the
asymptotical orthogonality of channels of different users is not
fully exhibited, and consequently a small amount of signal of
interest is removed by the ZF filter , along with intra-cell in-
terference. However it is not disturbing in the sense that 1) as the
number of antennas grows, the covariance-aided amplitude pro-
jection method quickly outperforms the other methods; and 2)
The per-cell rate of this proposed method is still good even with

Fig. 4. Estimation performance vs. M, 7-cell network, 4 user per cell, AoA
spread 30 degrees, path loss exponent , cell-edge dB.

Fig. 5. Uplink per-cell rate vs. M, 7-cell network, 4 user per cell, AoA spread
30 degrees, path loss exponent , cell-edge dB.

moderate number of antennas, e.g., . It is also inter-
esting to note that the low-complexity alternative scheme, sub-
space and amplitude based projection method, has some minor
performance loss, yet keeps approximately the same slope as the
covariance-aided amplitude projection.

VIII. CONCLUSION

In this paper we proposed a series of robust channel esti-
mation algorithms exploiting path diversity in both angle and
amplitude domains. The first method called “covariance-aided
amplitude based projection” is robust even when the desired
channel and the interference channels overlap in multipath AoA
and are not separable just in terms of power. Two low-com-
plexity alternative schemes were proposed, namely “subspace
and amplitude based projection” and “MMSE + amplitude
based projection”. Asymptotic analysis shows the condition
under which the channel estimation error converges to zero.
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APPENDIX

A. Proof of Proposition 1
Denote the associated path loss as . The covariance is a

Toeplitz matrix, with its -th entry given by

(70)

(71)

where

(72)

Since , or in other words, , and that
, it follows that is uniformly bounded:

(73)

Thus, the Toeplitz matrix is related to the real integrable and
uniformly bounded generating function , with its entries
being Fourier coefficients of . We now resort to the known
result on the spectrum of the Toeplitz matrices
defined by the generating function . Denote by and

the essential minimum and the essential maximum of
, i.e., the infimum and the supremum of up to within a set of

measure zero. Let and .
Theorem 4 [24]: If are the

eigenvalues of , then, the spectrum of is contained
in ; moreover and

.
By invoking Theorem 4, we obtain that

. In addition, for any finite , the inequality
always holds true. This concludes the proof.

B. Proof of Lemma 2

Since and are both positive semi-
definite (PSD) Hermitian matrices, we can directly apply the
inequalities of [25] on the eigenvalues of the product of two
PSD Hermitian matrices:

(74)

It is straightforward to show that

(75)

which indicates that the spectral norm of is also uni-
formly bounded. This proves Lemma 2.

C. Proof of Lemma 4
Using the spatial correlation model (28), we may write

(76)

By an abuse of notation, we now use the operator to rep-
resent the largest singular value of a matrix. Appealing to the
singular value inequalities in [26], we can show that the max-
imum singular value of yields:

(77)

(78)

(79)

which means the spectral radius of the complex matrix
is uniformly bounded for any . Thus, ac-

cording to Lemma 3, converges almost surely
to zero. Thus (33) holds true. In a similar way, we can prove
(34). This concludes the proof of Lemma 4.

D. Proof of Lemma 5
Define

(80)

(81)

In this proof, we first consider the noise free scenario and let

(82)

where the subscript “nf” denotes noise free. We can then write

(83)

Which proves that when , an eigenvalue of the
random matrix converges to , with its corresponding
eigenvector converging to up to a random phase.
Then we consider the Hermitian matrix as a per-

turbation on . Due to the Bauer-Fike Theorem [27] on
the perturbation of eigenvalues of Hermitian matrices, together
with Lemma 2, we have for :

(84)
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(85)

(86)

The above result shows that the impact of the perturbation on the
eigenvalues of vanishes as . In other words,
is again an asymptotic eigenvalue of . Now we verify that
despite the perturbation, the eigenvector of corresponding
to the asymptotic eigenvalue also converges to up
to a random phase. To prove this, it is sufficient to show that

(87)

where is due to the definition of the spectral norm:

(88)

It follows that

(89)

which concludes the proof of Lemma 5.

E. Proof of Lemma 6
We can derive:

(90)

We treat the following quantity separately:

(91)

(92)

In a similar way, we can prove that

(93)

Combining (92) and (93), we obtain:

(94)

With analogous derivation, we can prove

(95)

Applying (94) and (95) to (90) gives:

(96)

The following equality holds:

(97)

proving that

(98)

which completes the proof of Lemma 6.

F. Proof of Theorem 1

From (38) we readily obtain

(99)

Recall from the uplink training (7), we have

(100)

and hence

(101)
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(102)

Equation (99) ensures that

(103)

which concludes the proof.

G. Proof of Theorem 2

This proof follows similar steps towards Theorem 1. Thus we
give a sketch of the proof only. Define

(104)

(105)

where . Due to the asymptotic or-
thogonality between steering vectors in disjoint angular support,
i.e., Lemma 3 in [8], we can easily show that in large antenna
limit, falls into the null space of . Thus

(106)

Then we have

Under condition C1, it is easy to show that

(107)

Given the following condition

(108)

it is clear that the dominant eigenvector of converges to
(up to a random phase), with its corresponding

eigenvalue converging to . Then, using the same
technique in the proof of Lemma 6, we obtain:

(109)

Finally, we readily obtain (44) by analogous derivations in
Appendix F.
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Robust Pilot Decontamination Based on Joint Angle
and Power Domain Discrimination

Haifan Yin, Laura Cottatellucci, David Gesbert, Fellow, IEEE, Ralf R. Müller, Senior Member, IEEE, and
Gaoning He

Abstract—We address the problem of noise and interference
corrupted channel estimation in massive MIMO systems. Interfer-
ence, which originates from pilot reuse (or contamination), can in
principle be discriminated on the basis of the distributions of path
angles and amplitudes. In this paper, we propose novel robust
channel estimation algorithms exploiting path diversity in both
angle and power domains, relying on a suitable combination of
the spatial filtering and amplitude based projection. The proposed
approaches are able to cope with a wide range of system and
topology scenarios, including those where, unlike in previous
works, interference channel may overlap with desired channels
in terms of multipath angles of arrival or exceed them in terms
of received power. In particular, we establish analytically the
conditions under which the proposed channel estimator is fully
decontaminated. Simulation results confirm the overall system
gains when using the new methods.

Index Terms—MassiveMIMO, pilot contamination, pilot decon-
tamination, channel estimation, covariance, subspace, eigenvalue
decomposition.

I. INTRODUCTION

M ASSIVE MIMO (also known as Large-Scale Antenna
Systems) introduced in [2], is widely believed to be

one of the key enablers of the future 5th generation (5G)
wireless systems thanks to its potential to substantially enhance
spectral and energy efficiencies [2], [3] compared to traditional
MIMO with fewer antennas. This technique is based on the
law of large numbers, which predicts that, as the number
of base station antennas increases, the vector channel for a
desired user terminal will grow more orthogonal to the vector
channel of an interfering user, thus allowing the base station to
reject interference by precoding, or even, as a low-complexity
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approach, simply aligning the beamforming vector with the
desired channel (“Maximum Ratio Combining”, or MRC),
providing that Channel State Information (CSI) is known at
base station. In practice however, CSI is acquired based on
training sequences sent by user terminals. Due to limited time
and frequency resources, non-orthogonal pilot sequences are
typically used by user terminals in neighboring cells, resulting
in residual channel estimation error. This effect, called pilot
contamination [4], [5], has a detrimental impact on the actual
achievable spectral and energy efficiencies in real systems. As
a result, considerable research efforts have been spent in the
last couple of years towards alleviating pilot interference in
massive MIMO networks.
Such techniques span from smart design of pilot reuse

schemes (e.g., [6], [7]) to channel estimation techniques based
on coordinated pilot allocation (e.g., [8], [9]), to methods
relying on multi-cell joint processing (e.g., [10]), to nonlinear
channel estimation techniques leveraging on some fundamental
features of massive MIMO systems (e.g., [8], [11]–[13]).
Two key features of massive MIMO channels that have been

previously reported are of particular interest here: 1) channels of
different users tend to be pairwise orthogonal when the number
of antennas increases, thus leading to a specific subspace struc-
ture for the received data vectors that depend on these channels
[12] and 2) the channel covariance matrix exhibits a low-rank-
ness property whenever the multipath impinging on the MIMO
array spans a finite angular spread [8], [14], [15]. The blind
signal subspace estimation in [12] capitalizes on the first prop-
erty. The second property has been utilized in [8], [14]–[17],
assuming the knowledge of the long-term channel covariance
matrices. While the exploitation of the two properties individ-
ually has given rise to a set of distinct original decontamina-
tion approaches, in this work we will exploit these two key fea-
tures in a combined manner. Doing so we can propose a novel
approach towards mitigating pilot contamination that exhibits
much higher levels of robustness.
More specifically, in [12], [18], the pairwise channel orthog-

onality property allows to blindly estimate the user-of-interest
channel subspace and discriminate between user-of-interest sig-
nals and interference based on the channel powers. In practice,
decontamination occurs via a projection driven by the channel
amplitudes. This approach works well within the constraint that
the interference channel is received with a power level suffi-
ciently lower than that of the desired channel, a condition hard
to guarantee for some edge-of-cell users.
In a way completely different from [12], [18], another ap-

proach based on a linear minimummean squared error (MMSE)
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estimator is adopted in [8] to estimate the channel of interest via
projection of the received signals onto the user-of-interest sub-
space. This subspace, identified by a channel covariance matrix
(a long-term one, as opposed to the instantaneous signal corre-
lation matrix of [12], [18]), is related to the angular spread of
the signal of interest [8] and enables to annihilate the interfer-
ence from users with non-overlapping domains of multipath an-
gles-of-arrival (AoA). Interestingly, this latter approach makes
no assumption on received signal amplitudes and can also dis-
criminate against interfering users that are received with sim-
ilar or even higher powers. Yet, the approach fails to decon-
taminate pilots when propagation scattering creates large angle
spread, causing spatial overlapping among desired and interfer-
ence channels.
In this paper, we point out that the strengths of these two

previously unrelated estimation methods are strongly comple-
mentary, offering a unique opportunity for developing robust
channel estimation schemes. Thus, we aim to properly merge
the two projections in complementary domains while keeping
the individual benefits. In fact, we propose a family of algo-
rithms striking various performance/complexity trade-offs.
We start by presenting a first scheme named “covari-

ance-aided amplitude based projection” that effectively com-
bines projections in the angular and amplitude domains and
exhibits robustness to interference power/angles overlapping
conditions. We present an asymptotic analysis which reveals the
conditions under which the channel estimation error due to pilot
contamination and noise can be made to vanish. An intuitive
physical interpretation of this condition for a Uniform Linear
Array (ULA) is given in the form of the residual interference
channel energy contained in the multipath components that
overlap in angle with those of the desired channel. Although
the physical explanation is given for the ULA example, the
general principle apply to other antenna placement topologies.
The obtained condition for decontamination is in general

less restrictive than the condition required by previous MMSE
and the amplitude projection-based methods taken separately
to achieve complete removal of pilot contamination.
We then propose two low-complexity alternative schemes

called “subspace and amplitude based projection” and “MMSE
+ amplitude based projection” respectively. Such schemes
achieve different complexity-performance trade-off at mod-
erate number of antennas. Specifically, the “subspace and
amplitude based projection” can be shown to reach asymptotic
(in the number of antennas) decontamination result under the
same channel topology conditions as the first scheme.
More specifically, our contributions are as follows:
• We put forward a modification of the known method of
amplitude based projection, with increased robustness.

• We propose a spatial filter which helps bring down the
power of interference while preserving the signal of in-
terest.With this spatial filter, we present a novel channel es-
timation scheme called “covariance-aided amplitude based
projection”. It combines the merits of linear MMSE esti-
mator and amplitude based projection method, yet can be
shown to have significant gains over these known schemes.

• We give asymptotic analysis on this proposed method
and provide weaker condition compared to the previous

methods where the estimation error of the proposed
method goes to zero asymptotically in the limit of large
number of antennas and data symbols. The asymptotic
analysis relies on mild technical condition such as uni-
formly boundedness of the spectral norm of channel
covariance.

• As the uniformly boundedness of the largest eigenvalue of
channel covariance was reported to be useful in previous
works (such as [19]) but not formally analyzed, we identify
in the case of ULA a sufficient propagation condition under
which the uniformly bounded spectral norm of channel co-
variance is satisfied exactly.

• Finally we propose two low-complexity alternatives of the
first method. An asymptotic performance characterization
is also given.

The paper is organized as follows: In Section II we in-
troduce the system model. Section III is a brief review of
MMSE channel estimator and its asymptotic performance. In
Section IV we briefly recall the amplitude based projection of
[12], [18], and we propose a first improvement of the method.
Then we present the novel covariance-aided amplitude based
projection in Section V.A for the setting of single user per
cell, and the asymptotic performance analysis of this method is
shown in Section V.B. Section V.C presents a generalization
of the proposed scheme to multi-user per cell scenario. In
Section VI we propose two low-complexity alternatives of our
previous method and similar asymptotic results on the system
performance are given. Section VII shows numerical results.
Finally Section VIII concludes the paper.
The notations adopted in the paper are as follows. We use

boldface to denote matrices and vectors. Specifically, de-
notes the identity matrix. , and denote
the transpose, conjugate, and conjugate transpose of a matrix
respectively. is the Moore-Penrose pseudoinverse of .

denotes the trace of a square matrix. denotes the
norm of a vector when the argument is a vector, and the spectral
norm when the argument is a matrix. In particular, if is a Her-
mitian matrix, is the largest eigenvalue of . We index
the eigenvalues of in non-increasing order and denote the -th
eigenvalue of by and its corresponding eigenvector by

. stands for the Frobenius norm. denotes the
expectation. The Kronecker product of two matrices and
is denoted by . is the vectorization of the matrix
. denotes a diagonal matrix or a block di-

agonal matrix with at the main diagonal. is used
for definition.

II. SIGNAL AND CHANNEL MODELS

We consider a network of time-synchronized1 cells, with
full spectrum reuse. Each base station (BS) is equipped with
antennas. There are single-antenna users in each cell simulta-
neously served by their base station. The cellular network oper-

1Note that assuming synchronization between uplink pilots provides a worst
case scenario from a pilot contamination point of view, since any lack of syn-
chronization will tend to statistically decorrelate the pilots. Furthermore, the
main methods that we propose in this paper, i.e., the covariance-aided ampli-
tude based projection and the subspace and amplitude based projection do not
rely on accurate time synchronization.
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ates in time-division duplexing (TDD)mode, and due to channel
reciprocity, the downlink channel is obtained at the BS by up-
link training signal and data signal. Each base station estimates
the channels of its users during a coherence time interval. The
pilot sequences inside each cell are assumed orthogonal to each
other in order to avoid intra-cell interference. However the same
pilot pool is reused in other cells, giving rise to pilot contami-
nation problem. The pilot sequence assigned to the -th user in
a certain cell is denoted by

(1)

where is the length of a pilot sequence. Without loss of gen-
erality we assume unitary average power of pilot symbols:

The channel vector between the -th user located in
the -th cell and the -th base station is denoted by . The
following classical multipath channel model [20] is adopted:

(2)

where is the arbitrary large number of i.i.d. paths, and
is the i.i.d. random phase, which is independent over channel
indices , and path index . is the steering (or phase
response) vector by the array to a path originating from the angle
of arrival :

...
(3)

where is the signal wavelength and is the antenna spacing
which is assumed fixed. Note that we can limit to
because any can be replaced by giving the same
steering vector. is the path-loss coefficient

(4)

in which is the path-loss exponent, is the geographical
distance between the user and the -th base station, and is
a constant. Note that the model is shown for a ULA example
for ease of exposition. Under this model, the covariance matrix
can be shown asymptotically to have low rank, as long as the
AoA support is bounded and strictly smaller than . How-
ever, several other channel models also exhibit similar low-rank
property [15], which is the essential characteristic exploited by
the MMSE estimator, hence our approach is not dependent on
the use of the one ring model above described. In fact, our main
results, namely Theorem 1, as well as the general principle carry
to other channel models and antenna placement topologies.
We define

(5)

and the pilot matrix

(6)

During the training phase, the received signal at the base sta-
tion is

(7)

where is the spatially and temporally white addi-
tive Gaussian noise (AWGN) with zero-mean and element-wise
variance . Then, during the uplink data transmission phase,
each user transmits data symbols. The received data signal at
base station is given by:

(8)

where is the matrix of transmitted symbols of
all users in the -th cell. The symbols are i.i.d. with zero-mean
and unit average element-wise variance. is the
AWGN noise with zero-mean and element-wise variance .
Note that the block fading channel is constant during the trans-
mission for the pilot symbols and the data symbols.

III. MMSE CHANNEL ESTIMATION

We briefly recall the MMSE channel estimator in a multi-cell
single-user per cell setting. Without loss of generality, we as-
sume cell is the target cell, and is the desired
channel, while are the interference chan-
nels. We rewrite (7) in a vectorized form,

(9)

where . A pilot sequence
is shared by all users. The pilot matrix is given by

(10)

We define the channel covariance matrices

(11)

where the expectation is taken over channel realizations.
A linear MMSE estimator for is given by

(12)

As shown in previous works [8], [15], for a base station
equipped with a ULA, the above MMSE estimator can fully
eliminate the effects of interfering channels when ,
under a specific “non-overlap” condition on the distributions
of multipath AoAs for the desired and interference channels.
This condition is formalized as follows: Assume the user in
cell is our target (desired user). Denote the angular support
of the desired channel as , (i.e., the probability density
function (PDF) of the AoA of desired channel
satisfies if and if ) and
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similarly the union of the angular supports of all interference
channels as . If , then, as ,
(12) converges to an interference-free estimate. In practice the
“non-overlap” condition is hard to guarantee and the finite-
performance of the MMSE scheme depends on angular spread
and user location, although the latter can be shaped via the use
of so-called coordinated pilot assignment (CPA) [8].

IV. AMPLITUDE BASED PROJECTION
Interestingly, angle is not the only domain where interfer-

ence can be discriminated upon, as revealed from a completely
different approach to pilot decontamination [12], [18]. In that
approach the empirical instantaneous covariance matrix built
from the received data (8) is exploited, in contrast with the use
of long-term covariance matrices in (12). Assume cell is our
target cell and each cell has users. The eigenvalue decompo-
sition (EVD) of is written as

(13)

where is a uni-
tary matrix and with its diagonal
entries sorted in a non-increasing order. By extracting the first

columns of , i.e., the eigenvectors corresponding to the
strongest eigenvalues, we obtain an orthogonal basis

(14)

The basic idea in [12], [18] is to use the orthogonal basis
as an estimate for the span of , which includes all desired
user channels in cell . Then, by projecting the received signal
onto the subspace spanned by , most of the signal of in-
terest is preserved. In contrast, the interference signal is can-
celed out thanks to the asymptotic property that the user chan-
nels are pairwise orthogonal as the number of antennas tends to
infinity. Thus after the above mentioned projection, the estimate
of the multi-user channel is given by:

(15)

Note here that interference and desired channel directions are
discriminated on the basis of channel amplitudes and not AoA,
hence the estimate is labeled “AM” for “Amplitude”. As a way
to guarantee an asymptotic separation between the signal of in-
terest and the interference in terms of power, it has been sug-
gested to introduce power control in the network [12], [18].
Remark 1 Generalized Amplitude Projection: As shown in

[12], [18], the above method works well when the desired chan-
nels and interference channels are separable in power domain,
i.e., the instantaneous powers of any desired channels are higher
than that of any interference channels. In practice however, this
assumption is not always guaranteed. For a finite number of an-
tennas, the short-term fading realization can cause the interfer-
ence subspace to spill over the desired one. An enhanced ver-
sion can somewhat mitigate this problem by considering a gen-
eralized amplitude based projection. This consists in selecting
a possibly larger number of dominant eigenvectors to
form , where is the number of eigenvalues in

that are greater than . is a design parameter that satis-
fies . See Section VII for details on the choice of .

V. COVARIANCE-AIDED AMPLITUDE BASED PROJECTION
Note that both previous methods, while being able to tackle

pilot contamination in quite different ways, perform well only
in some restricted user/channel topologies. For a ULA base sta-
tion, the MMSE method leads to interference free channel es-
timates under the strict requirement that the desired and inter-
ference channel do not overlap in their AoA regions. While the
amplitude based projection requires that no interference channel
power exceeds that of a desired channel to achieve a similar re-
sult. Unfortunately, due to the random user location and scat-
tering effects, it is quite unlikely to achieve these conditions at
all times. As a result, by combining the useful properties of both
the MMSE and the amplitude projection method, we propose
below novel estimation methods that will lead to enhanced ro-
bustness in a realistic cellular scenario.

A. Single User per Cell
For ease of exposition we first consider a simplified scenario

where intra-cell interference is ignored by assuming that each
cell has only one user, i.e., . The users in different cells
share the same pilot sequence . Then with proper modifications
we will generalize this method to the setting of multiple users
per cell in Section V.C.
The objective is to combine long-term statistics which in-

clude spatial distribution information together with short-term
empirical covariance which contains instantaneous amplitude
and direction channel information. Hence, a spatial distribution
filter can be associated to an instantaneous projection operator
to help discriminate against any interference terms whose spa-
tial directions live in a subspace orthogonal to that of the desired
channel. The intuition is that such a spatial filter may bring the
residual interference to a level that is acceptable to the instanta-
neous projection-based channel estimator.
In order to carry out the above intuition, we introduce a long-

term statistical filter , which is based on channel covariance
matrices in a way similar to that used by the MMSE filter in
(12).

(16)

Note that the linear filter allows to discriminate against the
interference in angular domain by projecting away from multi-
path AoAs that are occupied by interference. Note also that the
choice of spatial filter is justified from the fact that the full
information of desired channel is preserved, as lies in
the signal space of . In fact, the desired channel is recover-
able using another linear transformation :

(17)

as can be seen from the following equality

(18)
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where the columns of are the eigenvectors of corre-
sponding to non-zero eigenvalues.
The spatial filter is applied to the received data signal at base

station as

(19)

The amplitude-based method as shown in Section IV can now
be applied on the filtered received data to get rid of the residual
interference. Take the eigenvector corresponding to the largest
eigenvalue of the matrix :

(20)

Hence can be considered as an estimate of the direction of
the vector .
We then cancel the effect of the pre-multiplicative matrix

using in (17), and we obtain an estimate of the direction of
the channel vector as follows:

(21)

Finally, the phase and amplitude ambiguities of the desire
channel can be resolved by projecting the LS estimate onto the
subspace spanned by :

(22)

where the superscript “CA” denotes the covariance-aided am-
plitude domain projection.
The algorithm is summarized below:

Algorithm 1: Covariance-aided Amplitude based Projection

1: Take the first eigenvector of as in (20), with
being the filtered data signal.

2: Reverse the effect of the spatial filter using (21).
3: Resolve the phase and amplitude ambiguities by (22).

The complexity of this proposed estimation scheme is briefly
evaluated.
We note that the computation of the matrix inversions in (16)

has a complexity order of . However, these computa-
tions are performed in a preamble phase and their cost is neg-
ligible under the underlying assumption of channel stationarity
implicitly made in this article. In practical systems, the matrix
inversion in (16) is performed when the channel statistics are
updated. Since the channel statistics are typically updated in a
time scale much larger than the channel coherence time, i.e.,
the time scale for the applicability of Algorithm 1, then their
computational cost is negligible. Therefore, we can focus on the
complexity of Algorithm 1 only.
In step 1, the spatial filtering of the data signals in (19) and

the computation of the covariance matrix is performed
along with the computation of the dominant eigenvector of an

matrix as in (20). The former computation has a com-
plexity order while, by applying the classical power

method, the computation of the dominant vector has a com-
plexity order . Both step 2 and step 3 require multiplica-
tions of matrices by -dimensional vectors and thus both have
a complexity order . Then, the global complexity of the
algorithm is dominated by the complexity of step 1, which is

.
The ability for the above estimator to combine the advantages

of the previously known angle and amplitude projection based
estimators is now analyzed theoretically. In particular we are
interested in the conditions under which full pilot decontamina-
tion can be achieved asymptotically in the limit of the number
of antennas and data symbols . In order to facilitate the
analysis, we introduce the following condition:
Condition C1: The spectral norm of is uniformly

bounded:

and (23)

where is the set of positive integers, and is a constant.
Condition C1 can be interpreted as describing all the sce-

narios in which the channel energy is spread over a subspace
whose dimension grows with . Note that the same assump-
tion can be found in some other papers, e.g., [19]. The corre-
sponding physical condition is now investigated in the example
of a ULA with a typical antenna spacing (less than or equal
to half wavelength).
Proposition 1: Let be the AoA support of a certain user. Let
be the probability density function of AoA of that user. If
is uniformly bounded, i.e., , and lies

in a closed interval that does not include the parallel directions
with respect to the array, i.e., , then, the spectral norm
of the user’s covariance is uniformly bounded:

(24)

Proof: See Appendix A.
Note that this result is hinted upon [14] by resorting to ap-

proximation of by a circulant matrix. Our Proposition 1 here
gives a formal proof of the previous approximated result.
As another interpretation of the condition, it is worth noting

that when this condition is not satisfied, there is no guarantee
that the asymptotic pairwise orthogonality of different users’
channels holds. In other words, the quantity

may not converge to zero, which is an adverse condition for
all massive MIMO methods. However our proposed methods
still have significant performance gains under this adverse cir-
cumstance. Moreover, C1 is a sufficient condition and we be-
lieve it can be weakened.

B. Asymptotic Performance of the Proposed CA Estimator
We now look into the performance analysis of the proposed

estimation scheme. Let us define

(25)

Theorem 1: Given condition C1, if the following inequality
holds true:

(26)
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then, the estimation error of (22) vanishes:

(27)

Proof: For the sake of notational convenience, in this proof
we assume the user in cell is the target user and thus drop the
superscript . The desired channel is denoted by
and the interference channels are . Since

is considered as complex Gaussian with the
spatial correlation matrices , the channels can
be factorized as [21]

(28)

where , is i.i.d. vector with unit vari-
ance.We build the proof of Theorem 1 on the general correlation
model (28). The proof consists in three parts, corresponding to
the three steps in Algorithm 1 respectively. More specifically,
Lemma 1 (and the intermediate results towards Lemma 1) is the
first part of the proof. It shows that aligns asymptotically
with the direction of the filtered channel vector . The
second part of the proof is provided in Lemma 6, which proves
that after canceling the effect of the spatial filter using , we
obtain the direction of the true channel in . The final part
of the proof shows that by projecting the LS estimate onto the
subspace of , we resolve the phase and amplitude of the true
channel.
Lemma 1: Given condition C1, if , then

there exists a unique , such that

(29)

where .
Proof: The proof of Lemma 1 relies on several interme-

diate results, namely Lemma 2–Lemma 5.
Lemma 2: Under condition C1, the spectral norm of

satisfies:

(30)

Proof: See Appendix B.
Lemma 2 indicates that the spectral norm of the covariance of

the noise (after multiplying ) is bounded and does not scale
with . This conclusion will be exploited when we prove in
Lemma 5 that the impact of noise on the dominant eigenvector/
eigenvalue vanishes.
Lemma 3: [22] Let be a deterministic com-

plex matrix with uniformly bounded spectral radius for all .
Let where is i.i.d.
complex random variable with zero mean, unit variance, and fi-
nite eighth moment. Let be a similar vector independent of .
Then as ,

(31)

and
(32)

where denotes almost sure convergence.
Note that in this paper, the condition on the finite eighth mo-

ment always holds, as when we apply Lemma 3, the components
of the vector of interest are i.i.d. complex Gaussian variables. It
is well known that a complex Gaussian variable with zero mean,
unit variance has finite eighth moment.
Lemma 4: Given condition C1,

(33)

(34)

Proof: See Appendix C.
Lemma 5: When condition C1 is satisfied,

(35)

Proof: See Appendix D.
Lemma 5 proves that as is an asymptotic

eigenvalue of the random matrix , with its corre-
sponding eigenvector converging to up to a random
phase.
We now return to the proof of Lemma 1. Since
, one may readily obtain from Lemma 5 and (33):

(36)

and that there exists a unique , such that

(37)

which completes the proof of Lemma 1.
Now we show the second part of the proof of Theorem 1.

Note that in this part we make the implicit assumption that the
spectral norm of satisfies . A sufficient (but not
necessary) condition of such an assumption is that the spectral
norm of is finite.
Lemma 6: Given (29), we have

(38)

Proof: See Appendix E.
The final part of the proof of Theorem 1 can be found in

Appendix F, which corresponds to step 3 of Algorithm 1. The
proof shows that projecting the LS estimate onto the subspace
of will lead to noise-free estimate asymptotically as

. This concludes the proof of Theorem 1.
Interestingly, condition (26) in Theorem 1 can be replaced

with

(39)

which indicates that under suitable conditions on the spectral
norm of channel covariance, after multiplying the filter , if
the power of the desired channel is higher than that of interfer-
ence channel, then, pilot contamination disappears asymptoti-
cally, along with noise.
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Note that we have so far no assumption on antenna place-
ment in the analysis, other than the requirement for uniformly
boundedness of the spectral norm of channel covariance. In the
sequel we look into a specific model of ULA as an example and
seek to further understand the physical meaning of the proposed
method.
We still assume is the channel of interest. Denote its

angular support as . Decompose the interference channel
, as follows:

(40)

where

(41)

(42)

which means is the residual multipath component of the
interference channel within the AoA region of the desired
channel, while is the multipath component which is outside

.
Theorem 2: For a ULA base station, under condition C1, if

the residual multipath component of the interference channel
satisfies:

(43)

then, the estimation error of the estimator (22) vanishes:

(44)

Proof: See Appendix G.
Theorem 2 further confirms the fact that for a base station

equipped with ULA, only the interference multipath compo-
nents that overlap with those of the desired channel affect the
performance of our pilot decontamination method. In other
words, the spatial filter removes the energy located in all
interference multipath originating from directions that do not
overlap with those of the desired channel. It is then sufficient for
the energy of the residual interference components to be below
that of the desired channel to allow for a full decontamination.

C. Generalization to Multiple Users per Cell
Now we generalize the covariance-aided amplitude based

projection into multi-user setting where users are served
simultaneously in each cell. We consider the estimation of user
channel in the reminder of this section.
Define a matrix as a sub-matrix of after removing

its -th column:

(45)

A corresponding estimate of (45), denoted by , is obtained
by removing the -th column of , which can be an LS es-

timate, MMSE estimate, or other linear/non-linear estimate of
. For demonstration purpose only, in this paper we use the

simplest LS estimate, which already shows very good perfor-
mance.
In order to adapt the method in Section V.A to multi-user sce-

nario, we propose to first neutralize the intra-cell interference
with a Zero-Forcing (ZF) filter based on the LS estimate

, and then apply the spatial filter . After these two fil-
ters, the data signal is now:

(46)

where

(47)
and

(48)

The rest of this method proceeds as in the single user setting.
Take the dominant eigenvector of :

(49)

The estimate of the direction of is obtained by:

(50)

where

(51)

Finally the phase and amplitude ambiguities are resolved by the
training sequence, and we have the estimate of :

(52)

Note that in this method, we build the ZF type filter based
on a rough LS estimate. Further improvements can be attained
with higher quality estimate at the cost of higher complexity.
As a simple example, we can reduce the effect of noise on the
estimate by first applying EVD of , then
removing the subspace where the noise lies, and finally per-
forming LS estimation. These extensions are out of the scope
of this paper.

VI. LOW-COMPLEXITY ALTERNATIVES

In this section, we propose two alternatives of the method
shown in Section V, aiming at lower computational complexity
at the cost of mild performance loss.

A. Subspace and Amplitude Based Projection
The low-rankness of channel covariance implies that the up-

link received desired signal lives in a reduced subspace. By pro-
jecting the received data signal onto the signal space of

, we are able to preserve the signal from user in cell
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while remove the interference and noise that live in its comple-
mentary subspace. In the following, we show a subspace-based
signal space projection method that relies on the covariance of
desired channel only. For ease of exposition, we simplify the
system setup to single user per cell. Let the user in cell be the
target user. The EVD of the covariance of the desired channel is

(53)

where the diagonal entries of contains the non-negligible
eigenvalues of . Then we project the received data signal
onto the signal space of , or the column space of :

(54)

The rest of this method follows the same idea as the covariance-
aided amplitude based projection scheme. Taking the eigen-
vector corresponding to the largest eigenvalue of :

(55)

the channel estimate of is given by

(56)

where the superscript “SA” stands for “subspace and amplitude
based projection”. Note that this method does not require the co-
variance of interference channels or variance of noise. It explic-
itly relies on the assumption that the desired covariance matrix
has a low-dimensional signal subspace, with some degradations
expected when this condition is not realized in practice. In fact,
if has full rank, this method degrades to pure amplitude
based projection.
Note that this “SA” estimator has lower complexity than the

“CA” estimator (22) in the sense that 1) “SA” estimator does not
require the statistical knowledge of the interference channels or
the variance of the noise, and 2) “SA” estimator skips step 2 in
Algorithm 1.
The physical condition under which full decontamination is

achieved with this method is shown below in the case of a ULA.
We denote the angular support of desired channel by
and the multipath components of the interference channel
falling in as .
Theorem 3: For a ULA base station, if the power of interfer-

ence channel that falls into the angular support satisfies

(57)

and the channel covariance satisfies

(58)

then, the estimation error of the estimator (56) vanishes:

(59)

Proof: Due to lack of space, we skip the complete proof
and only give two key steps below. By applying the asymptotic

orthogonality between two steering vectors which are associ-
ated with different AoAs (Lemma 3 in [8]), we may readily ob-
tain:

(60)

(61)

which means the multipath components of interference that
fall outside disappear asymptotically after the projection by

. Then, (58) ensures that

(62)

where

(63)

Note that in Theorem 3 condition (58) is less restrictive than
the uniformly boundedness of the spectral norm of the channel
covariance. In the special case of zero angular spread, the rank
of channel covariance becomes one. Denote the deterministic
AoA from the user in cell to base station as .We can easily
see that the channel estimation error of (56) vanishes completely
as as long as

(64)

which occurs with probability one.
When channel covariance is not available, we can still benefit

from the subspace projection method by approximating with
a subset of discrete Fourier transform (DFT) basis as shown in
[1]. This DFT basis can be chosen based on a small number of
channel observations. The generalization to multi-user case can
be done by introducing the ZF filter (47) as in Section V.C. Due
to lack of space, we skip the details.

B. MMSE + Amplitude Based Projection
Another alternative is to directly project the MMSE estimate

onto the subspace of obtained by EVD of
as in Section IV. The estimator for the multi-user channel
is given by:

(65)

where

(66)
(67)

and
(68)

The superscript “MA” denotes MMSE + amplitude based
projection. It is worth noting that both the amplitude-based
projection and angular-based projection require large number
of antennas to achieve complete decontamination. In contrast,
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the MMSE estimator is efficient with very small number of
antennas. As grows, MMSE estimator starts to reduce
interference earlier than the previously proposed methods, as
will be shown by simulations in Section VII. However, unlike
the previously proposed schemes, this “MA” estimator cannot
achieve complete decontamination when the interference
channel is overlapping with desired channel in both angular
and power domains.

VII. NUMERICAL RESULTS
This section contains numerical results of our different

channel estimation schemes compared with prior methods. In
the simulation, we have multiple hexagonally shaped adjacent
cells in the network. The radius of each cell is 1000 meters.
Each base station has antennas, which forms a ULA, with
half wavelength antenna spacing. The length of pilot sequence
is .
Two performance metrics are considered. The first is the nor-

malized channel estimation error

(69)

The estimation errors in the plots are obtained in Monte Carlo
simulations and finally displayed in dB scale.
The second metric is the uplink per-cell rate when MRC re-

ceiver (based on the obtained channel estimate) is used at base
station side.
In all simulations presented in this section, we assume

that the channel covariance matrix is estimated using 1000
exact channel realizations. The multipath angle of arrival of
any channel (including the interference channel) follows a
uniform distribution centered at the direction corresponding
to line-of-sight (LoS). The number of multipath is .
According to the coherence time model in [23], for a mobile
user moving at a vehicular speed of 70 km/h in an environment
of 2.6 GHz carrier frequency and 5 s high delay spread
(corresponding to an excess distance of 1.5 km), the channel
can be assumed coherent over 500 transmitted symbols. Thus
we will let in simulations, although larger coherence
time can be expected in practice for a user with lower mobility.
Note that in all simulations, the amplitude-based projection

and MMSE + amplitude based projection follow the enhanced
eigenvector selection strategy shown in Remark 1 with the de-
sign parameter .
We first illustrate Theorem 1 in Fig. 1. Suppose we have a

two-cell network, with each cell having one user. In order to
make the interference overlapping in power domain with the
desired signal, we set the path loss exponent . The power
of the interference channel has equal probability to be higher or
lower than the power of the desired channel. The user in each
cell is deliberately put in a symmetrical position such that the
multipath angular supports of the interference and the desired
channel are half overlapping with each other.
In the figure, “LS estimation” and “Pure MMSE” denote the

system performances when an LS estimator and an MMSE es-
timator (12) are used respectively. “Pure amplitude” denotes

Fig. 1. Estimation performance vs. M, 2-cell network, 1 user per cell, path loss
exponent , partially overlapping angular support, AoA spread 60 degrees,

dB.

the case when we apply the generalized amplitude based pro-
jection method only. “MMSE + amplitude” represents the pro-
posed estimator (65). “Covariance-aided amplitude” denotes the
proposed covariance-aided amplitude based projection method
(22). The curve “MMSE—no interference” shows the estima-
tion error of an MMSE estimator in an interference-free sce-
nario. As can be seen from Fig. 1, due to the overlapping inter-
ference in both angle and power domains, the performance of
all estimators saturate quickly with the number of antennas, ex-
cept the proposed covariance-aided amplitude based projection
method, which eventually outperforms interference-freeMMSE
estimation.2
In Figs. 2 and 3, we show the performance of estimation error

and the corresponding uplink per-cell rate for a 7-cell network,
with single user per cell. The users are assumed to be distributed
randomly and uniformly within their own cells excluding a cen-
tral disc with radius 100 meters. The angular spread of the user
channel (including interference channel) is 30 degrees. The path
loss exponent is now . As we may observe, the traditional
LS estimator suffers from severe pilot contamination. The pure
amplitude based method and the pure MMSE method alleviate
the pilot interference, yet saturate with the number of antennas.
These saturation effects come from the overlapping of the in-
terference and the desired channels in power and angular do-
mains respectively. The “MMSE + amplitude” approach out-
performs these two known methods as it discriminates against
interference in both amplitude and angular domains. However
this scheme cannot cope with the case of overlapping in both do-
mains. Owing to its robustness, the covariance-aided amplitude
projection method outperforms the rest in terms of both estima-
tion error and uplink per-cell rate.
We now turn our attention to multi-cell multi-user scenario.

Figs. 4 and 5 show the channel estimation performance and the

2The reason is that the performance of the interference-freeMMSE estimation
has a non-vanishing lower bound due to white Gaussian noise. On the contrary,
our proposed covariance-aided amplitude based projection method eliminates
the effects of noise and interference asymptotically.



IEE
E P

ro
of P

rin
t

Ver
sio

n

10 IEEE TRANSACTIONS ON SIGNAL PROCESSING

Fig. 2. Estimation performance vs. M, 7-cell network, one user per cell, AoA
spread 30 degrees, path loss exponent , cell-edge dB.

Fig. 3. Uplink per-cell rate vs.M, 7-cell network, one user per cell, AoA spread
30 degrees, path loss exponent , cell-edge dB.

corresponding uplink per-cell rate for a 7-cell network with each
cell having 4 users. In these two figures, we add the curve of sub-
space and amplitude based projection, which is denoted in the
figures as “Subspace + amplitude”. The other parameters remain
unchanged compared with those in Figs. 2 and 3. We can notice
that in Fig. 4 the covariance-aided amplitude projection method
has some performance loss with respect to the low-complexity
MMSE + amplitude method and the MMSE method when the
number of antennas is small. It is due to the following two facts:
1) when is small, it is well known that MMSE works well,
but not the amplitude based methods, and 2) with small , the
asymptotical orthogonality of channels of different users is not
fully exhibited, and consequently a small amount of signal of
interest is removed by the ZF filter , along with intra-cell in-
terference. However it is not disturbing in the sense that 1) as the
number of antennas grows, the covariance-aided amplitude pro-
jection method quickly outperforms the other methods; and 2)
The per-cell rate of this proposed method is still good even with

Fig. 4. Estimation performance vs. M, 7-cell network, 4 user per cell, AoA
spread 30 degrees, path loss exponent , cell-edge dB.

Fig. 5. Uplink per-cell rate vs. M, 7-cell network, 4 user per cell, AoA spread
30 degrees, path loss exponent , cell-edge dB.

moderate number of antennas, e.g., . It is also inter-
esting to note that the low-complexity alternative scheme, sub-
space and amplitude based projection method, has some minor
performance loss, yet keeps approximately the same slope as the
covariance-aided amplitude projection.

VIII. CONCLUSION

In this paper we proposed a series of robust channel esti-
mation algorithms exploiting path diversity in both angle and
amplitude domains. The first method called “covariance-aided
amplitude based projection” is robust even when the desired
channel and the interference channels overlap in multipath AoA
and are not separable just in terms of power. Two low-com-
plexity alternative schemes were proposed, namely “subspace
and amplitude based projection” and “MMSE + amplitude
based projection”. Asymptotic analysis shows the condition
under which the channel estimation error converges to zero.
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APPENDIX

A. Proof of Proposition 1
Denote the associated path loss as . The covariance is a

Toeplitz matrix, with its -th entry given by

(70)

(71)

where

(72)

Since , or in other words, , and that
, it follows that is uniformly bounded:

(73)

Thus, the Toeplitz matrix is related to the real integrable and
uniformly bounded generating function , with its entries
being Fourier coefficients of . We now resort to the known
result on the spectrum of the Toeplitz matrices
defined by the generating function . Denote by and

the essential minimum and the essential maximum of
, i.e., the infimum and the supremum of up to within a set of

measure zero. Let and .
Theorem 4 [24]: If are the

eigenvalues of , then, the spectrum of is contained
in ; moreover and

.
By invoking Theorem 4, we obtain that

. In addition, for any finite , the inequality
always holds true. This concludes the proof.

B. Proof of Lemma 2

Since and are both positive semi-
definite (PSD) Hermitian matrices, we can directly apply the
inequalities of [25] on the eigenvalues of the product of two
PSD Hermitian matrices:

(74)

It is straightforward to show that

(75)

which indicates that the spectral norm of is also uni-
formly bounded. This proves Lemma 2.

C. Proof of Lemma 4
Using the spatial correlation model (28), we may write

(76)

By an abuse of notation, we now use the operator to rep-
resent the largest singular value of a matrix. Appealing to the
singular value inequalities in [26], we can show that the max-
imum singular value of yields:

(77)

(78)

(79)

which means the spectral radius of the complex matrix
is uniformly bounded for any . Thus, ac-

cording to Lemma 3, converges almost surely
to zero. Thus (33) holds true. In a similar way, we can prove
(34). This concludes the proof of Lemma 4.

D. Proof of Lemma 5
Define

(80)

(81)

In this proof, we first consider the noise free scenario and let

(82)

where the subscript “nf” denotes noise free. We can then write

(83)

Which proves that when , an eigenvalue of the
random matrix converges to , with its corresponding
eigenvector converging to up to a random phase.
Then we consider the Hermitian matrix as a per-

turbation on . Due to the Bauer-Fike Theorem [27] on
the perturbation of eigenvalues of Hermitian matrices, together
with Lemma 2, we have for :

(84)
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(85)

(86)

The above result shows that the impact of the perturbation on the
eigenvalues of vanishes as . In other words,
is again an asymptotic eigenvalue of . Now we verify that
despite the perturbation, the eigenvector of corresponding
to the asymptotic eigenvalue also converges to up
to a random phase. To prove this, it is sufficient to show that

(87)

where is due to the definition of the spectral norm:

(88)

It follows that

(89)

which concludes the proof of Lemma 5.

E. Proof of Lemma 6
We can derive:

(90)

We treat the following quantity separately:

(91)

(92)

In a similar way, we can prove that

(93)

Combining (92) and (93), we obtain:

(94)

With analogous derivation, we can prove

(95)

Applying (94) and (95) to (90) gives:

(96)

The following equality holds:

(97)

proving that

(98)

which completes the proof of Lemma 6.

F. Proof of Theorem 1

From (38) we readily obtain

(99)

Recall from the uplink training (7), we have

(100)

and hence

(101)
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(102)

Equation (99) ensures that

(103)

which concludes the proof.

G. Proof of Theorem 2

This proof follows similar steps towards Theorem 1. Thus we
give a sketch of the proof only. Define

(104)

(105)

where . Due to the asymptotic or-
thogonality between steering vectors in disjoint angular support,
i.e., Lemma 3 in [8], we can easily show that in large antenna
limit, falls into the null space of . Thus

(106)

Then we have

Under condition C1, it is easy to show that

(107)

Given the following condition

(108)

it is clear that the dominant eigenvector of converges to
(up to a random phase), with its corresponding

eigenvalue converging to . Then, using the same
technique in the proof of Lemma 6, we obtain:

(109)

Finally, we readily obtain (44) by analogous derivations in
Appendix F.
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