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Abstract

The purpose of semi-blind equalization is to exploit the information used by
blind methods as well as the information coming from known symbols. Semi{blind
techniques robustify the blind and training problems, and o�er better performance
than these two methods. We �rst present identi�ability conditions and perfor-
mance bounds for semi{blind estimation. Semi{blind methods are able to estimate
any channel, even when the position of the known symbols in the burst is arbi-
trary. Performance bounds for semi{blind multichannel estimation are provided
through the analysis of Cram�er-Rao bounds (CRBs) and a comparison of semi{
blind techniques with blind and training sequence based techniques is presented.
Three categories of semi{blind methods are considered. Optimal semi{blind meth-
ods take into account all blind information and all the information coming from the
known symbols, even if not grouped. Mainly Maximum{Likelihood (ML) methods
will be considered. Suboptimal semi{blind solutions are also investigated when the
known symbols are grouped in a training sequence: the suboptimal semi{blind cri-
teria appear as a linear combination of a training sequence criterion and a blind ML
criterion. Thirdly, we present methods that combine a given blind criterion with a
training sequence based criterion.

7.1 Introduction

7.1.1 Training Sequence based Methods and Blind Methods

Traditional equalization techniques are based on training. The sender transmits a

training sequence (TS) known at the receiver which is used to estimate the channel
coeÆcients or to directly estimate the equalizer. Most of the actual mobile com-
munication standards include a training sequence to estimate the channel, like in
GSM [1]. In most cases, training methods appear as robust methods but present
some disadvantages. Firstly, bandwidth eÆciency decreases as a non{negligible part
of the data burst may be occupied: in GSM, for example, 20% of the bits in a burst
are used for training. Furthermore, in certain communication systems, training
sequences are not available or exploitable, such as when explicit synchronization
between the receiver and the transmitter is not possible.

Blind equalization techniques allow the estimation of the channel or the equalizer
based only on the received signal without any training symbols. The introduction of
multichannels, or SIMO models where a single input symbol stream is transmitted
through multiple symbol rate linear channels, has given rise to a plethora of new
blind estimation techniques that do not require higher order{statistics. The most
popular second{order statistics (SOS) based estimation techniques su�er from a
lack of robustness: channels must satisfy diversity conditions and many blind SOS
methods fail when the channel length is overestimated. Furthermore, the blind
techniques leave an indeterminacy in the channel or the symbols, a scale or constant
phase or a discrete phase factor. This suggests that SOS blind techniques should
not be used alone but with some form of additional information. However, the same
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Figure 7.1. Semi{Blind Principle: example of a GSM burst.

may also be true for TS based methods, especially when the sequence is too short
for a certain channel length. Semi{blind techniques provide a solution to overcome
these problems.

7.1.2 Semi{Blind Principle

In this chapter, we assume a transmission by burst, i.e. the data is organized and
transmitted by burst, and we furthermore assume that known symbols are present
in each burst in the form of a training sequence aimed at estimating the channel
or simply in the form of some known symbols used for synchronization or as guard

intervals, like in the GSM or the DECT bursts. In this typical case, when using a
training or a blind technique to estimate the channel, information gets lost. Train-
ing sequence methods base the parameter estimation only on the received signal
containing known symbols and all the other observations, containing (some) un-
known symbols, are ignored. Blind methods are based on the whole received signal,
containing known and unknown symbols, possibly using hypotheses on the statistics
of the input symbols, like the fact that they are i.i.d. for example, but no use is
made of the knowledge of some input symbols. The purpose of semi{blind methods
is to combine both training sequence and blind information (see �gure 7.1) and
exploit the positive aspects of both techniques as stated in section 7.1.1.

Semi{blind techniques, because they incorporate the information of known sym-
bols, avoid the possible pitfalls of blind methods and with only a few known symbols,
any channel, single or multiple, becomes identi�able. Furthermore, exploiting the
blind information in addition to the known symbols allows the estimation of longer
channel impulse responses than is possible with a certain training sequence length,
a feature that is of interest for the application of mobile communications in moun-
tainous areas. For methods based on the second{order moments of the data (which
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we will call Gaussian methods), one known symbol is suÆcient to make any channel
identi�able. In addition, it allows the use of shorter training sequences for a given
channel length and desired estimation quality, compared to a training approach.
Apart from these robustness considerations, semi{blind techniques appear also very
interesting from a performance point of view, as their performance is superior to
that of training sequence or blind techniques separately. Semi{blind techniques are
particularly promising when TS and blind methods fail separately: the combination
of both can be successful in such cases.

In section 7.2, we describe the multichannel model. In section 7.4, we give
identi�ability conditions for FIR multichannel estimation for the deterministic and
Gaussian classes of methods. In section 7.5, the CRBs are used as a performance
measure for semi{blind estimation, which is compared to TS and blind channel
estimation. Semi-blind estimation is shown to be superior to either TS or blind
methods. In section 7.7, we describe optimal semi{blind methods which are able
to take into account all blind information and all the information coming from
the known symbols, even if not grouped. These methods are mainly based on
ML. In section 7.9, we present suboptimal deterministic semi{blind methods which
can be constructed when the known symbols are grouped in a training sequence.
The suboptimal semi{blind criteria appear as a linear combination of a TS based
criterion and a blind ML criterion. The proposed ML based methods are solved in
an iterative quadratic fashion. In section 7.10, we linearly combine a blind criterion
with a TS criterion: particularly the Subchannel Response Matching (SRM) and

Subspace Fitting (SF) blind criteria are considered. We provide a performance
study of the resulting semi{blind deterministic quadratic criteria in section 7.11.
At last, in section 7.12, we give an example of the Gaussian method: semi{blind
covariance matching.

Throughout this chapter, we shall use the following notation:
(:)�, (:)T , (:)H conjugate, transpose, conjugate transpose
(:)+ Moore{Penrose Pseudo{Inverse
tr(A), det(A) trace and determinant of matrix A
vec(A) [ATi;1 A

T
i;2 � � �ATi;n]T


 Kronecker product

�̂, �o estimate of parameter �, true value of parameter �
EX mathematical Expectation w.r.t. the random quantity X
Re(:), Im(:) real and imaginary part
I Identity matrix with adequate dimension
w.r.t. with respect to

7.2 Problem Formulation

We consider here linear modulation (nonlinear modulations such as GMSK can
be linearized with good approximation [2], [3]) over a linear channel with additive
noise. The received signal after a linear receiver �lter is then the convolution of
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Figure 7.2. Multichannel model: example with 2 subchannels.

the transmitted symbols with an overall channel impulse response, which is itself
the convolution of the transmit shaping �lter, the propagation channel and the
receiver �lter, plus additive noise. The overall channel impulse response is modeled
as FIR which for multipath propagation in mobile communications appears to be
well justi�ed. In mobile communications terminology, the single-user case will be
considered.

We describe here the FIR multichannel model used throughout the chapter.

This multichannel model applies to di�erent cases: oversampling w.r.t. the symbol
rate of a single received signal [4], [5], [6] or the separation into the real (in{phase)
and imaginary (quadrature) component of the demodulated received signal if the
symbol constellation is real [7], [8]. In the context of mobile digital communications,
a third possibility appears in the form of multiple received signals from an array of
sensors. These three sources for multiple channels can also be combined.

In the multichannel model, a sequence of symbols a(k) is received through m

channels of length N and with coeÆcients h(i) (see �gure 7.2):

y(k) =

N�1X
i=0

h(i)a(k�i) + v(k); (7.2.1)

v(k) is an additive independent white Gaussian noise, rvv(k�i) = Ev(k)v(i)H =

�
2
vIm Æki. Assume we receive M samples, concatenated in the vector Y M (k):

Y M (k) = TM (h)AM+N�1(k) + V M (k) (7.2.2)

Y M (k) = [yT (k) � � �yT (k�M+1)]T , similarly for V M (k), and the input burst is

AM+N�1(k) = [a(k) � � � a(k�M�N+2)]
T
. TM (h) is a block Toeplitz matrix with

M block rows and
�
H 0m�(M�1)

�
as �rst block row:

H = [h(0) � � � h(N � 1)] and h =
h
hT (0) � � �hT (N�1)

iT
: (7.2.3)

The channel transfer function is H(z) =
PN�1

i=0 h(i)z
�i=[H1(z)� � �Hm(z)]T , where

Hi(z) is the transfer function of the ith subchannel.
The channel length is assumed to be N which implies h(0) 6= 0 and h(N�1) 6= 0

whereas the impulse response is zero outside of the indicated range. We shall
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simplify the notation in (7.2.2) with k =M�1 to

Y = T (h)A+ V : (7.2.4)

Semi{Blind Model The vector of input symbols can be written as: A = P
�
AK

AU

�
where AK are the MK known symbols and AU the MU =M+N�1�MK unknown
symbols. The known symbols can be dispersed in the burst and P designates the
appropriate permutation matrix. For blind estimation A = AU , while A = AK =
ATS for TS based estimation. We can split the corresponding parts in the channel
output as T (h)A = TK(h)AK + TU (h)AU .

Irreducible, Reducible, and Minimum-phase Channels A channel is called irre-
ducible if its subchannels Hi(z) have no zeros in common, and reducible otherwise.
A reducible channel can be decomposed as:

H(z) =HI(z)Hc(z); (7.2.5)

where HI(z), of length NI , is irreducible and Hc(z), of length Nc = N � NI + 1,
is a monochannel for which we assume Hc(1) = hc(0) = 1 (monic). A channel
is called minimum{phase if all its zeros lie inside the unit circle. Hence H(z) is
minimum{phase if and only if Hc(z) is minimum{phase.

Commutativity of Convolution We shall exploit the commutativity property of
convolution:

T (h)A = Ah (7.2.6)

where: A = A1 
 Im,

A1 =

266664
a(M�1) a(M�2) � � � a(M�N)

a(M�2) . .
.

. .
. ...

... . .
.

. .
. ...

a(0) � � � � � � a(�N+1)

377775 : (7.2.7)

Minimum Zero-Forcing (ZF) Equalizer Length, E�ective Number of Channels
The Bezout identity states that for an FIR irreducible channel, FIR ZF equalizers

exist [9]. The minimum length for such a FIR ZF equalizer is

M = min fM : TM (h) has full column rankg : (7.2.8)

One may note that TM (h) has full column rank for M � M . In [10], it is shown
that if the mN elements ofH are considered random, more precisely independently
distributed with a continuous distribution, then

M =

�
N � 1

m� 1

�
with probability 1, (7.2.9)
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and M = 1 for N = 1. In this case, the channel is irreducible w.p. 1. One could
consider other (perhaps more realistic) channel models. Consider, for example, a
multipath channel with K paths in which the multichannel aspect comes from m

antennas. Without elaborating the details, it is possible to introduce an e�ective
number of channels me = rank(H) which in this case would equal (w.p. 1)

me = min fm;N;Kg : (7.2.10)

With a reduced e�ective number of channels, the value of M increases to M =�
N � 1

me � 1

�
w.p. 1. Note that in the �rst probabilistic channel model leading to

(7.2.9), ifm > N , then in factme = N , but this does not change the value ofM = 1.
Another type of channel model arises in the case of a hilly terrain. In that case, two
or more random non-zero portions of channel impulse response are disconnected by
delays. If these delays are substantial, then for the purpose of determining M , the
problem can be approached as a multi{user problem by interpreting the di�erent
chunks of the channel as channels corresponding to di�erent users. Multi{user
results for M [9] could then be applied.

In general, for an irreducible channel, M � N�1 [11] in which the upper bound
would correspond to me = 2. Note that me = 1 corresponds to a reducible channel
(in which case M =1).

7.3 Classi�cation of Semi{Blind Methods

Semi{blind methods can be classi�ed (roughly) according to the amount of a priori
knowledge on the unknown input symbols that gets exploited, see �gure 7.3:

1. No information exploited: deterministic methods.
These methods are directly based on the structure of the received signal and
particularly on the structure of the convolution matrix T (h). Among the blind
deterministic methods, one can �nd the Subspace Fitting (SF) method [12],
the Subchannel Response Matching [13] method, the deterministic Maximum
Likelihood method [14], [5] and also the least squares smoothing method or
two{sided linear prediction approach [15], [16]. Semi{blind extensions of these
blind methods already exist as stated later in this chapter.

2. Second{order statistics: Gaussian methods.
These methods exploit the second{order moments of the data. The (blind)

prediction method [5], [17] or the (blind) covariance matching method [18] be-
long to this category, but also the semi{blind Gaussian Maximum Likelihood
(GML) approach [19] which treats the unknown input symbols as Gaussian
random variables. A semi{blind covariance matching approach will be pre-
sented later in this chapter.

3. Higher{order statistics.
These methods exploits second{ and higher{order statistics of the data [20].
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Figure 7.3. Classi�cation of (semi)blind channel identi�cation methods according
to the assumed A Priori knowledge on the unknown input symbols.

4. Finite Alphabet of the input symbols.
These methods exploit the �nite alphabet nature of the input symbols. Among
these approaches, we �nd the ML methods [21].

5. Complete distribution of the input symbols.
In these methods, the true distribution of the input symbols is exploited; for
example, for BPSK, we exploit the true discrete distribution the input symbols
(i.e. their �nite alphabet plus their probabilities). The stochastic ML (SML),
which was presented in its semi{blind version in [22], belongs to this category.

The more information on the unknown input symbols gets exploited, the better
the channel estimation. However, at the same time, the associated methods are
typically more costly, with cost functions presenting local minima. In this chapter,
we mainly focus on deterministic and Gaussian methods which can be solved in a
simple way with sometimes quadratic cost functions/closed-form solutions.

7.4 Identi�ability Conditions for Semi{Blind Channel Estimation

In this section, we de�ne identi�ability conditions for semi{blind deterministic and
Gaussian channel estimation. We �rst recall results on blind estimation and then
extend them to semi{blind estimation. One remarkable property is that, in the
deterministic case, semi{blind techniques can estimate the channel even when the
known symbols are arbitrarily dispersed. The following results are detailed and
proved in [23].

7.4.1 Identi�ability De�nition

Let � be the parameter to be estimated and Y the observations. We denote by
f(Y j�) the probability density function of Y . In a regular case (i.e. in a non blind
case), � is called identi�able if [24]:

8 Y ; f(Y j�) = f(Y j�0) ) � = �
0
: (7.4.1)

This de�nition has to be adapted in the blind identi�cation case because blind
techniques can at best identify the channel up to a multiplicative factor �: � 2 C
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in the deterministic model and j�j = 1 in the Gaussian model (� is real in the case
of real symbols). The identi�ability condition (7.4.1) will be for � to equal �0 up to
the blind indeterminacy.

For both deterministic and Gaussian models, f(Y j�) is a Gaussian distribution:
identi�ability in this case means identi�ability from the mean and the covariance
of Y .

7.4.2 TS Based Channel Identi�ability

We recall here the identi�ability conditions for TS based channel estimation. From
(7.2.6), T (h)A = Ah. h is determined uniquely if and only if A has full column
rank, which corresponds to conditions (i)� (ii) below.

Necessary and suÆcient conditions [TS] The m{channel H(z) is identi�able
by TS estimation if and only if

(i) Burst Length M � N or number of known symbols MK � 2N�1.

(ii) Number of input symbol modes1� N .

The burst length M is the length of Y , expressed in symbol periods.

7.4.3 Identi�ability in the Deterministic Model

In the deterministic model, Y � N (T (h)A; �2vI) and � = [ATU h
T ]T . Identi�ability

of � is based on the mean only; the covariance matrix only contains information
about �2v , the estimation of which hence gets decoupled from the estimation of �.
AU and h are identi�able if:

T (h)A = T (h0)A0 )(
AU = A

0

U and h = h
0 for semi{blind and TS based estimation

A =
1

�

A
0 and h = �h

0 for blind estimation

(7.4.2)

with � complex, for a complex input constellation, and real, for a real input constel-
lation. Identi�ability is hence de�ned from the noise{free data T (h)A (the mean).

Blind Channel Identi�ability

SuÆcient conditions [DetB] In the deterministic model, the m{channel H(z)
and the input symbols A are blindly identi�able if

(i) H(z) is irreducible.

(ii) Burst length M � N + 2M .

1For a de�nition of the notion of modes, see for example [14], [25]
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(iii) Number of input symbol modes � N +M .

These conditions express the fact that one should have enough data with the
right properties to be able to completely describe the signal or noise subspace (i.e.
the column space of T (h) or its orthogonal complement). These conditions appear
to be suÆcient for all the deterministic methods listed in section 7.3 except for
SRM [14].

Semi{Blind Channel Identi�ability

We distinguish here between the case of grouped known symbols (training se-
quence case) and the case of arbitrarily dispersed known symbols. In both cases,
the channel can be identi�ed for the same number of (non-zero) known symbol-
s. When the known symbols are all equal to zero, the channel cannot be iden-
ti�ed when they are grouped. However, when they are dispersed in the burst,
the channel can be identi�ed (up to a scale factor). We will consider the gen-
eral case of a reducible channel H(z) = HI(z)Hc(z): M I is de�ned as MI =
min fM : TM (hI ) has full column rankg.

Grouped known Symbols
SuÆcient conditions [DetSB] In the deterministic model, the m{channel H(z)
and the unknown input symbols AU are semi{blindly identi�able if

(i) Burst length M � max(NI+2MI ; Nc�NI+1)

(ii) Number of excitation modes of the input symbols: at least NI+M I that are

not zeros of H(z) (or hence of Hc(z)).

(iii) Grouped known symbols: number MK � 2Nc�1 (which is also a necessary

condition), with number of excitation modes � Nc.

For an irreducible channel, 1 known symbol is suÆcient. For a monochannel,
2N�1 grouped known symbols are suÆcient. If 2N�1 grouped known symbols
containing N independent modes are available, condition (ii) becomes superuous.
For a reducible channel H(z) = HI(z)Hc(z), HI(z) can be identi�ed blindly while
Hc(z) can be identi�ed by TS. In general, at least as many known symbols are
needed as the number of (continuous) parameters that cannot be determined by
blind estimation.

Arbitrarily Dispersed Known Symbols In [26], we prove that the regularity of
the Fisher Information Matrix (FIM) is equivalent to local identi�ability for the
deterministic model (and also the Gaussian model). By studying the regularity of
the FIM, the treatment of the arbitrarily dispersed known symbols case (also treated
in [27] to some extent) becomes tractable. Strictly speaking, we can prove only local
identi�ability. In general, FIM regularity implies a �nite number of solutions in A

and h [28], however, for a suÆcient burst length [27] (larger than the ones given
below), the solution becomes unique and we have global identi�ability.
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� Non-Zero Known Symbols

Theorem 1: The channel H(z) is locally identi�able with probability 12 if

(i) Burst length � max(NI + 2MI ; Nc�NI+1).

(ii) Number of excitation modes � N +M I .

(iii) Number of known symbols � 2Nc � 1, which is also a necessary condi-

tion.

Note that no further conditions on the excitation modes of the known sym-
bols are required. Furthermore, a monochannel can be identi�ed if 2N � 1
arbitrarily dispersed known symbols are available.

� Known Symbols equal to Zero

When the known symbols are all equal to zero, the channel can at best be
identi�ed up to a scale factor. Indeed, T (h)A = T (h0)A0, with h

0 = �h,
A
0 = A=� and AK = A

0

K . We have shown in [26] that the channel is semi{
blindly locally identi�able up to a scale factor if and only if the FIM is 1-
singular. The position of the known symbols cannot be totally arbitrary
though. In fact, we have the following theorem:

Theorem 2: The channel H(z) is locally identi�able with probability 1 up to

a scale factor if

(i) Burst length � NI + 2MI .

(ii) Number of excitation modes � N +M I .

(iii) Number of known symbols (zeros) � 2Nc� 2, which is also a necessary

condition.

(iv) The known symbols (zeros) are \suÆciently" dispersed: there are at least

Nc�1 known symbols that do not belong to a group of Nc or more known

symbols.

If only some known symbols are equal to zero, Theorem 1 can be applied
provided condition (iv) of Theorem 2 is added.

Semi{Blind Robustness to Channel Length Overestimation

A major disadvantage of the deterministic blind methods is their non robustness
to channel length overestimation. Semi{blind estimation overcomes this problem.
Consider again a reducible channel: H(z) =HI(z)Hc(z).

SuÆcient conditions [DetSBR] In the deterministic model, the m{channel H(z)
and the unknown input symbols AU are semi{blindly identi�able when the assumed

channel length N 0 is overestimated if

2refers to the distribution of the channel coeÆcients
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(i) Burst length M � max(NI+2MI ; 2(N
0�NI+1)�N).

(ii) Number of input symbol excitation modes: at least NI+M I that are not zeros

of Hc(z).

(iii) Known symbols: MK � 2(N 0�NI)+1, grouped.
Number of known symbol modes � N

0�NI+1.

These results are also valid with probability one for arbitrarily dispersed known
symbols.

7.4.4 Identi�ability in the Gaussian Model

In the Gaussian model, Y � N (TK(h)AK ; �2aTU (h)T H
U (h)+�

2
vI) and � = [hT �

2
v ]
T .

�
2
a is the variance of the input symbols. Recall that identi�ability is identi�ability
from the mean and covariance matrix, so identi�ability in the Gaussian model
implies identi�ability in any stochastic model, since such a model can be described
in terms of the mean and the covariance plus higher{order moments.

Blind Channel Identi�ability

In the blind case, mY (�) = 0, so identi�ability is based on the covariance matrix
only. In the Gaussian model, the channel and the noise variance are said to be
identi�able if:

CY Y (h; �
2
v) = CY Y (h

0
; �

2
v

0
)) h

0 = e
j'
h and �2v

0
= �

2
v : (7.4.3)

When the signals are real, the phase factor is a sign; when they are complex, it is
a unitary complex number.

Unlike in the deterministic case, zeros can be identi�ed: it is only not possible to
determine if the zeros are minimum or maximum{phase (discrete valued ambiguity).
So if it is known that the channel is minimum-phase, the channel can be identi�ed.

Irreducible Channel
SuÆcient conditions [GaussB1] In the Gaussian model, the m{channel H(z)
is identi�able blindly up to a phase factor if

(i) H(z) is irreducible.

(ii) Burst length M �M + 1

These conditions are suÆcient conditions for the prediction, covariance matching
and GML methods. Note that not all the non{zero correlations (lag 0 to N � 1)
are necessary for identi�cation but only the �rst M + 1.
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Reducible channel Let H(z) be a reducible channel: H(z) =HI(z)Hc(z).

SuÆcient conditions [GaussB2] In the Gaussian model, the m{channel H(z)
is identi�able blindly up to a phase factor if

(i) Hc(z) is minimum{phase.

(ii) M � max(M I+1; Nc�NI+1).

In the monochannel case, the noise variance �2v cannot be estimated and hence
neither h. However, if we consider �2v as known, the channel can be identi�ed

by spectral factorization. The suÆcient conditions are for the monochannel to be
minimum-phase and the burst to be at least of length N .

Semi{Blind Channel Identi�ability

In the semi{blind case, identi�ability is based on the mean and the covariance
matrix.

Identi�ability for any channel In the semi{blind case, the Gaussian model has
the advantage of allowing identi�cation from the mean only. mY (�) = TK(h)AK =
AKh: if AK has full column rank, h can be identi�ed. The di�erence with the
training sequence case is that in the identi�cation of h from mY (�) = TK(h)AK , the
zeros due to the mean of AU also give information, which lowers the requirements
on the number of known symbols. For one non-zero known symbol a(k) (with
0 � k �M�N , i.e. not located at the edges), AK = a(k)INm. The Gaussian model
appears thus more robust than the deterministic model as it allows identi�cation of
any channel, reducible or not, multi or monochannel, under the following conditions:

SuÆcient conditions [GausSB1] In the Gaussian model, the m-channel H(z)
is semi{blindly identi�able if

(i) Burst length M � N .

(ii) At least one non-zero known symbol a(k) not located at the edges (0 � k �
M�N).

Identi�ability for an Irreducible Channel
SuÆcient conditions [GausSB2] In the Gaussian model, the m-channel H(z)
is semi{blindly identi�able if

(i) H(z) is irreducible.

(ii) At least 1 non-zero known symbol (located anywhere) appears.

These results on identi�ability indicate the superiority of the semi{blind methods
over TS and blind methods, as well as the superiority of Gaussian methods over the
deterministic methods. This last fact is especially true in the multiuser case [29].



14 Semi{Blind Methods for FIR Multichannel Estimation Chapter 7

0 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

Number of known symbols

Semi-Blind 

all symbols known

Deterministic CRBs for BPSK and Hwell

0 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

Number of known symbols
25

all symbols known

Gain: 3

Gain: 5

Gain: 3

Semi-Blind 

Training Sequence

Gain: 20

Deterministic CRBs for BPSK and Hwell

Figure 7.4. CRBs for deterministic semi{blind channel estimation (left); compar-
ison between deterministic semi{blind and TS channel estimation (right).

7.5 Performance Measure: Cram�er{Rao Bounds

We compare here the performance of semi{blind channel estimation to blind and
training based estimation through the Cram�er{Rao bounds for the channel with
the input symbols being considered as nuisance parameters. These comparisons are
illustrated by curves showing the trace of the CRBs w.r.t. the number of known
(or unknown) symbols in the input burst for a complex input constellation, QPSK,
and a real one, BPSK. The known input symbols are randomly chosen and grouped

at the beginning of the burst. The SNR, de�ned as
�
2
a khk

2

m�
2
v

(average SNR per

subchannel), is 10dB; the burst length is M = 100.
Three di�erent types of channels are tested: an irreducible channel Hwell, an

ill{conditioned channel with nearly a (common) zeroH ill, a reducible channel with
irreducible part HI and reducible part Hc.

The results are mainly shown in the deterministic case; the Gaussian curves
present similar shapes [26]. In �gure 7.4 (left), we show the CRBs of semi{blind
channel estimation for a �xed number of input symbols and variable number of
known symbols. We see a dramatic improvement of the performance with very few
known symbols.

In �gure 7.4 (right), we compare the performance of semi{blind and training
modes. For 10 known symbols, we have a gain of performance of 20 brought by
semi{blind estimation. For the same estimation quality, 10 known symbols for
semi{blind estimation require 50 known symbols for TS estimation. For 25 known
symbols, we have a performance gain of a factor 3; one requires 70 known symbols
in training mode to get the performance of semi{blind estimation.
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Figure 7.5. Comparison between deterministic blind and semi{blind channel esti-
mation for H ill.

Deterministic blind channel estimation leaves a scale factor indeterminacy in
the channel. One common way to adjust this scale factor is to impose constraints

on the parameters; di�erent constraints can be considered. Here, we consider the
blind CRB computed under a norm constraint khk2 = khok2 and a phase constraint
Im(hHho) = 0. This choice of constraints is �rst motivated by the common use of
the norm constraint. Furthermore, the resulting constrained CRB is equal to the
pseudo{inverse of the Fisher information matrix for the channel (with the input
symbols considered as nuisance parameters) [30]. This is a particular constrained
CRB as it yields the lowest value for the trace of the CRB among all sets of a minimal
number of independent constraints. The previous norm and phase constraints give
the same constrained CRB as the linear constraint hHho = h

oH
h
o: in general, a

set of constraint is equivalent to another set of linear constraints, in the sense that
they give the same constrained CRB, see [30] for further details.

In �gure 7.5, we compare semi{blind and blind modes evaluated under the norm
and phase constraints for an ill{conditioned channel. The superiority of the semi{
blind mode can be noticed especially for a small number of known symbols.

In �gure 7.6, the case of a reducible channel is shown. The CRB is drawn
w.r.t. the number of unknown symbols in the burst, for a �xed number, 10, of
known symbols. In the deterministic case, the blind part brings asymptotically no
information to the estimation of the zeros of the channel. In the Gaussian case,
however, the blind part brings information to the estimation of Hc.



16 Semi{Blind Methods for FIR Multichannel Estimation Chapter 7

0 20 40 60 80 100 120 140 160 180 200
10

−2

10
−1

Number of unknown symbols

Deterministic CRBs for BPSK - 10 known symbols

hI

hc

0 10 20 30 40 50 60 70 80 90 100
10

−3

10
−2

10
−1

Number of unknown symbols

Gaussian CRBs for QPSK - 10 known symbols

hc

hI

Figure 7.6. CRBs for deterministic (left) and Gaussian (right) semi{blind estima-
tion of a reducible channel w.r.t. the number of unknown symbols. 10 symbols are
known.

7.6 Performance Optimization Issues

Values of the known symbols (Deterministically) white input symbol sequences,
in the sense that AHA = M�

2
aI , optimize the performance of training sequence

based estimation. Optimization of the semi{blind CRB w.r.t. the known symbols
leads to channel dependent results; we expect however that such white sequences,
even if they do not strictly optimize the semi{blind performance, would be among
the best choices.

Distribution of the known symbols over the burst Should the known symbols
be grouped or separated? The answer seems again to depend on the channel. In
this section we will call \minimum{phase multichannel", a multichannel for which
all the subchannels are minimum{phase, the energy is then concentrated in the
�rst coeÆcients of the multichannel; a \maximum{phase multichannel" will have
maximum{phase subchannels.

We did tests to compare the deterministic CRBs for a minimum and maximum
phase channel Hmin and Hmax and a randomly chosen channel Hrand. In the
tables below, we show the trace of the CRBs for the three channels for a �xed
sequence of 10 known symbols, randomly chosen from a QPSK constellation (top)
or equal to 0 (bottom), grouped in the middle of the burst or uniformly dispersed
all over the burst. The burst length is M = 100. The CRBs are averaged over 1000
realizations of the unknown symbols in the case of QPSK.

Known Symbols Hmin Hmax Hrand

grouped 0.36 0.79 0.22

separated 1.33 2.38 0.24
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Known Symbols Hmin Hmax Hrand

grouped 3.23 9.99 0.78

separated 0.53 1.36 0.16

When the known symbols are chosen randomly, for the minimum and maximum{
phase channels, performance is better when the known symbols are grouped than
uniformly separated in the burst. For the random channel, both choices seem e-
quivalent. When the known symbols are all equal to 0, it is however better to have
them dispersed all over the burst in all cases.

Position of the training sequence in the burst Again, the answer depends on the
characteristics of the channel. What could be done is study the CRBs w.r.t. the
position of the training sequence for a stochastic channel model (such as e.g. COST
207 models [31]). Our simulation experience tends to indicate that the training
sequence position should be such that TK(h) has maximal energy. In other words,
putting the training sequence in the middle of the burst is never a bad choice, re-
gardless of the channel.

7.7 Optimal Semi{Blind Methods

Optimal semi{blind algorithms should ful�ll a certain number of conditions:

� They should exploit all the information coming from the known and the un-
known symbols in the burst, and especially the observations containing known
and unknown symbols at the same time. This could be a diÆcult task, as the
classical training sequence based estimation cannot do it and blind estimation
does not do it (and considers the known symbols as unknown).

� They should work when the known symbols are arbitrarily dispersed in the
burst.

� Semi{blind identi�ability conditions should also be respected: for example,
the methods should work for only one known symbol for irreducible channels,
something that is not systematically satis�ed by the suboptimal methods.

� With a suÆcient number of known symbols, the optimal semi{blind methods
should be able to identify any channel, particularly monochannels.

Optimal semi{blind methods are methods that naturally incorporate the knowl-
edge of symbols. Maximum{Likelihood methods ful�ll this condition. Methods
estimating directly the input symbols like [32] are also good candidates for optimal
semi{blind methods. We describe now the semi{blind ML methods.
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Deterministic Maximum Likelihood (DML) In DML, both the channel h and the
unknown symbols AU are to be estimated. The DML criterion can be written as:

min
h;AU

kY � T (h)Ak2 = min
h;AU

kY � TK(h)AK � TU (h)AUk2 (7.7.1)

This criterion can be optimized using alternating minimizations between h and AU
(see [33], [34] for the blind version of the algorithm and [35] for the semi{blind
version). This algorithm o�ers the advantage of decreasing the cost function at
each iteration. The blind version converges to the ML minimum asymptotically (in
SNR and/or number of data) [34]. However, this algorithm requires a large number
of iterations which renders it less practical.

When solving criterion (7.7.1) w.r.t. AU and replacing the expression of AU
found in the criterion, we get the DML criterion for h:

min
h

(Y � TK(h)AK)
H
P
?

TU (h)
(Y � TK(h)AK) (7.7.2)

PX is the orthogonal projection onto the column space of X and P
?

X = I � PX

is the projection onto its orthogonal complement. This criterion can be optimized
by the method of scoring [36], which represents a computationally heavy solution.
In section 7.9, the criterion (7.7.2) will be simpli�ed in the case of grouped known
symbols and low complexity solutions will be proposed.

Gaussian Maximum Likelihood (GML) In the Gaussian approach, the parameters
to be estimated are the channel and the noise variance. The GML criterion has the
form:

min
h;�2v

ln detCY Y + (Y � TK(h)AK)
H
C
�1
Y Y (Y � TK(h)AK) (7.7.3)

Again, this criterion can be optimized by the method of scoring [36].

Maximum Likelihood with �nite alphabet constraints on the input symbols (FA{
ML) The FA{ML criterion is similar to the DML criterion except that the �nite
alphabet (denoted Ap) constraint on the input symbols is imposed.

min
h;AU2Ap

kY � TK(h)AK � TU (h)AUk2 (7.7.4)

FA{ML can be solved by alternating minimizations between h and AU , with AU

constrained to the �nite alphabet. The most problematic estimation is that of the
symbols because of the FA constraint. In [21] where the blind version of (7.7.4) is
optimized, the FA constraint is �rst ignored and then the estimates are projected
onto the nearest discrete value of the �nite alphabet. In [37], this technique is
extended to the semi{blind case. In [38], the blind version of (7.7.4) is optimized
w.r.t. A via the Viterbi algorithm.
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Stochastic Maximum Likelihood (SML) SML considers the input symbols as
random variables. Their true distribution is taken into account: the symbols are
assumed zero mean, i.i.d., equiprobable, and with values of the �nite alphabet.

f(Y jh) =
X
A2Ap

f(Y jA; h)f(A) �
X
A2Ap

f(Y jA; h), so the SML criterion is:

min
h;�2v

1

�
2
v

X
AU2Ap

exp

�
�

1

�
2
v

kY � TK(h)AK � TU (h)AUk2
�

(7.7.5)

Direct optimization of the SML criterion represents a costly solution. The Expectation{
Maximization (EM) [39] algorithm can be used to solve SML using the Hidden
Markov Model (HMM) framework: see [40], for a description of di�erent methods.
The EM algorithm will converge to the SML solution given a good initialization. A
semi{blind SML is formulated in [22].

When the known symbols are dispersed, the \blind problem part" looses its
structure as TU (h) has no particular structural properties. As a consequence, fast
algorithms cannot be built. So for complexity reasons but also for performance
reasons (see section 7.6), when the choice is possible, it is preferable to have grouped
known symbols.

Suboptimal semi{blind criteria can be constructed when the known symbols are
grouped. The �rst group of proposed semi{blind methods is again based on ML. In
that case, a ML based semi{blind criterion can be written as:

Semi{blind Criterion = �1 Training sequence criterion + �2 Blind criterion

The weights �1 and �2 are the optimal weights in the ML sense: they are not
arbitrary and are deduced from the semi{blind ML problem. Such methods were
initiated in [19] and [41].

The most interesting semi{blind criteria are the ones based on a blind criterion
that is quadratic; the semi-blind criterion of the form above is then also quadratic.

We now mainly focus on deterministic ML methods. We describe a method to
optimize blind DML in an iterative quadratic fashion and then combine blind DML
to three di�erent TS based criteria.

7.8 Blind DML

A low cost solution to solve blind DML is based on a linear parameterization of
the noise subspace [9], [14]. For a given H(z), there exists an H?(z) such that
H?(z)H(z) = 0 and T (h?)T (h) = 0 where T (h?) is the convolution matrix built
from H?(z). For example, for m = 2 (2 subchannels), H?(z) = [�H2(z) H1(z)];
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for m > 2 di�erent choices are possible, we will consider [42]:

H?(z) =

2664
�H2(z) H1(z) 0 � � � 0

0 �H3(z) H2(z) � � �
...

...
. . .

. . . 0
Hm(z) 0 � � � 0 �H1(z)

3775 : (7.8.1)

The DML criterion for h can then be written as:

min
khk=1

Y HT H(h?)
�
T (h?)T H(h?)

�| {z }
R(h)

+
T (h?)Y : (7.8.2)

We only specify here the norm constraint on the channel; a phase constraint is
necessary in the complex channel case [30]. The channel is assumed irreducible.

Iterative Quadratic ML (IQML) is an iterative algorithm which, at each iteration
considers the denominatorR(h) = R as constant, evaluated at the channel estimate
from the previous iteration. The criterion becomes quadratic in this way. Using
the commutativity of convolution, we can write T (h?)Y = Yh; the IQML criterion
can then be written as:

min
khk=1

h
HYHR+Yh : (7.8.3)

In the noiseless case, Yho = 0: the true channel ho nulls the (quadratic) criterion
(regardless of initialization) and the solution is ho. At high SNR, a �rst iteration
gives a consistent estimate of h and a second iteration gives the ML solution. At
low SNR however, IQML results in a biased estimation of the channel and its
performance is poor. Indeed, asymptotically (M ! 1) the IQML cost function
becomes equivalent to its expected value by the law of large numbers:

tr
n
T H(h?)R+T (h?)EY Y H

o
=

tr
n
T H(h?)R+T (h?)XXH

o
+ �

2
vtr

�
T H(h?)R+T (h?)

	
:

(7.8.4)

h = h
o nulls the �rst term but is not in general the minimal eigenvector of the

second term and hence of the sum.

7.8.1 Denoised IQML (DIQML)

The �rst approach [41] we propose removes the noise from the IQML criterion. We

subtract from the IQML criterion an estimate of the noise contribution (c�2v denotes
a consistent estimate of the noise variance):

min
khk=1

tr
n
PT H(h?)

�
Y Y H �c

�
2
vI

�o
, min

khk=1

0B@Y H
PT H(h?)Y �c�2v tr�PT H(h?)	| {z }

constant

1CA
, min

khk=1

n
h
HYHR+(h)Yh�c�2vtrfT (h?)R+(h)T H(h?)g

o
:

(7.8.5)
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(7.8.5) is solved in the IQML way: we consider R(h) = R as constant at each
iteration and the problem becomes quadratic:

min
khk=1

h
H
n
YHR+Y �c�2vDoh (7.8.6)

where hHDh = trfT H(h?)R+T (h?)g.
The choice for c�2v turns out to be crucial. For a �nite amount of data, the

central matrix Q = YHR+Y�c�2vD is inde�nite if c�2v is not properly chosen: in that
case, DIQML will not improve IQML. In order to have a well{de�ned minimization

problem at each iteration, we choose the c�2v which renders Q(h) positive with 1
singularity. The problem becomes:

min
khk=1;�

h
H
�
YHR+Y � �D

	
h : (7.8.7)

with the non{negativity constraint for the central matrix. � is the minimal gener-
alized eigenvalue of YHR+Y and D and h is the associated generalized eigenvector.
Asymptotically in the number of data, a �rst iteration gives a consistent estimate of
h and a second iteration gives the global minimizer whatever the initialization [43].
Also, �! �

2
v . The performance of IQML is inferior to that of DML. A similar ap-

proach was developped independently [44] with a less judicious choice for the noise
variance estimate; some related work can also be found in [45]. The next proposed
algorithm, PQML, will give the same performance as DML.

7.8.2 Pseudo Quadratic ML (PQML)

PQML [41] is an iterative algorithm which at each iteration tries to null the true
gradient of DML. This gradient can be written as P(h)h where P(h) is ideally a
positive de�nite matrix. At each iteration P(h) = P is considered as constant
(evaluated from the previous iteration). The true (unconstrained) DML gradient
can then also be interpreted as the (unconstrained) gradient of the following pseudo-
quadratic criterion:

min
khk=1

h
HP h : (7.8.8)

For the DML problem, the matrix P(h) can be written as P(h) = YHR+Y �
BH(h)B(h). When M ! 1, BH(h)B(h) ! �

2
vD + signal term. Evaluated at a

consistent h, the signal term becomes negligible, and the e�ect of BH(h)B(h) is to
remove the noise contribution from the IQML Hessian but in a (statistically) more
eÆcient way than DIQML does.

Again, for a �nite amount of data, the matrix P(h) will be inde�nite. So by
analogy with DIQML, we introduce a scalar � that will render the matrix P(h) =
YHR+Y � �BH(h)B(h) positive with one singularity. The criterion becomes:

min
khk=1;�

h
H
�
YHR+Y � � BHB

	
h : (7.8.9)
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with non{negativity constraint on the central matrix. Asymptotically, with a con-
sistent initialization, PQML converges to its minimum at the �rst iteration and
provides the same asymptotic performance as DML. Also, �! 1 in this case. Both
DIQML and PQML require a complexity that is linear in the burst length M , and
so will the semi{blind criteria presented below.

7.9 Three Suboptimal DML based Semi{Blind Criteria

7.9.1 Split of the Data

The output burst can be decomposed into 3 parts, see �gure 7.7 (top):

1. The observations containing only known symbols.

2. The N � 1 overlap observations containing known and unknown symbols.

3. The observations containing only unknown symbols.

The proposed semi{blind criteria will consider a decomposition of the data into 2
parts, with the overlap zone assimilated to the training part or to the blind part of
the semi{blind criteria.

7.9.2 Least Squares{DML

In the �rst semi{blind approach, the overlap zone is incorporated into the blind part
of the semi{blind criterion. The data is split as Y = [Y T

TS Y T
B ]
T , see �gure 7.7:

� Y TS = TTS(h)ATS +V TS groups all the observations containing only known
symbols.

� Y B = TB(h)AB+V B groups all the observations containing unknown symbols
and especially the overlap observations, where we do not exploit the knowledge
of the known symbols, which will hence be treated as unknown. So, some
information is lost. This loss of information can be critical, especially when
the training sequence is very short, of less than N symbols.

We apply the DML principle to:

Y =

�
Y TS

Y B

�
� N

��
TTS(h)ATS
TB(h)AB

�
; �

2
vI

�
(7.9.1)

As Y TS and Y B are decoupled in terms of noise components, the DML criterion
for Y is the sum of the DML criteria for Y TS and Y B :

min
h;AB

�
kY TS � TTS(h)ATSk2 + kY B � TB(h)ABk2

	
: (7.9.2)

This criterion can be optimized by alternating minimizations w.r.t. h and AB . We
can also solve w.r.t. AB and substitute the solution to get the following semi{blind
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Figure 7.7. Output Burst: split of the data for LS{DML.

DML criterion for h:

min
h

n
kY TS � TTS(h)ATSk2 + Y H

BPT HB (h?)Y B

o
: (7.9.3)

This criterion can also be optimized in the semi{blind PQML way:

min
h

�
kY TS � TTS(h)ATSk2 + h

H
�
YHBR

+
BYB � �BHBBB

�
h

	
(7.9.4)

where � is chosen as the minimal generalized eigenvalue of YHBR
+
BYB and BHBBB .

We will call (7.9.4) Least{Squares PQML (LS{PQML). LS{PQML represents a
suboptimal way of solving the semi{blind problem and the semi{blind identi�abil-
ity condition for the number of known symbols required no longer holds exactly.
For irreducible channels, the criterion requires at least N known symbols to be
well{de�ned: PB(h) = YHBR

+
BYB � �̂BHBBB is indeed positive semi{de�nite with

1 singularity, and with N known symbols, AH
TSATS has rank 1, which is suÆ-

cient to allow PB(h) to be positive de�nite. For a reducible channel with Nc � 1
zeros, asymptotically PB(h) ! XH

B R
+XB has Nc singularities, and N + Nc � 1

known symbols are necessary to have a well{conditioned problem. Furthermore,
for monochannels the semi{blind criterion reduces to its TS part since the blind
part does not add any information (in fact, the blind criterion is not de�ned for

monochannels). LS{PQML as well as the following algorithms need an initialization
and can be initialized by TS or by one of the algorithms of section 7.10.

7.9.3 Alternating Quadratic DML (AQ{DML)

Here, the overlap zone will be incorporated into the training part of the criterion.
The data is split as Y = [Y T

AQ Y
T
B ]
T , see �gure 7.8:
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� Y AQ = TAQ(h)AAQ + VAQ = T 0K(h)ATS + T 0U (h)A
0

U + VAQ groups all the
observations containing the known symbols ATS plus the overlap observations.
The unknown symbols A0U in Y AQ are considered as deterministic.

� Y B = TB(h)AU + V B groups all the observations containing only unknown
symbols which are considered as deterministic unknown quantities.

DML is applied to [Y T
AQ Y

T
B ]
T , which gives:

min
h;AB;A

0

U

�
kY AQ � T 0K(h)ATS � T

0

U (h)A
0

Uk
2 + kY B � TB(h)ABk2

	
: (7.9.5)

Semi{blind AQML proceeds as:

1. Initialization ĥ(0)

2. Iteration (i+1):

� AQML on Y AQ, initialized by ĥ(i).

Criterion min
h;A0U

kY AQ � T 0K(h)ATS � T
0

U (h)A
0

Uk
2 is solved by alternating

minimizations w.r.t. A0U and h. We keep only the estimate of A0U , to

form the new estimate of bAAQ: bA(i+1)
AQ = [ATK A

0(i+1)
U

T
]T .

� Solve the semi{blind criterion to get ĥ(i+1) (with A0U frozen).

We can perform alternating minimizations w.r.t. AB and h, starting from
ĥ
(i), based on the criterion :

min
h;AB

n
kY AQ�TAQ(h)A

(i+1)
AQ k2+kY B � T (h)ABk2

o
: (7.9.6)
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We can alternatively solve the PQML based criterion:

min
h

n
kY AQ�TAQ(h)A

(i+1)
AQ k2+hH

�
YHBR

+
B(ĥ

(i))YB�� BHB (ĥ
(i))BB(ĥ(i))

�
h

o
:

(7.9.7)

7.9.4 Weighted{Least{Squares{PQML (WLS{PQML)

WLS{PQML is based on the same decomposition as for AQ{PQML. It mixes a
deterministic and a Gaussian point of view: the unknown symbols A0U in the overlap
zone are modeled as i.i.d. Gaussian random variables of mean 0 and variance �2a.
We denote Y WLS = TWLS(h)AWLS + V WLS = T 0K(h)ATS + T 0U (h)A0U + V WLS .
GML is applied to Y WLS and DML to Y B :8><>:

Y =

�
Y WLS

Y B

�
� N

��
T 0K(h)ATS
TB(h)AB

�
;

�
CYWLSYWLS

0
0 �

2
vI

��
;

CYWLSYWLS
= �

2
aT 0U (h)T

0H
U (h) + �

2
vI

(7.9.8)

The mixed ML criterion is:

min
h;AB;�2v

n
ln detCYWLSYWLS

+(Y WLS�T 0K(h)ATS)
H
C
�1
YWLSYWLS

(Y WLS�T 0K(h)ATS)

+ ln det�2vI+
1

�
2
v

kY B � TB(h)ABk
2

�
:

(7.9.9)
We consider �2v as known (in practice, it will be estimated separately). CYWLSYWLS

is considered as constant (computed using the channel estimate from the previous
iteration). The criterion then becomes:

min
h;AB

�
kY WLS � TWLS(h)AWLSk

2

C�1
YWLSYWLS

+
1

�
2
v

kY B � TB(h)ABk2
�
: (7.9.10)

Solved in the PQML fashion, the criterion becomes:

min
h

�
kY WLS � TWLS(h)AWLSk

2

C�1YWLSYWLS

+
1

�
2
v

h
H
�
YHBR

+YB � �BHBBB
�
h

�
(7.9.11)

The approximation of considering CYWLSYWLS
as constant is justi�ed in [41] by

using a semi{blind PQML strategy.

AQ{PQML and WLS{PQML outperform LS{PQML because the information
coming from the known symbols in the overlap zone is used.

For an irreducible channel, AQ{PQML and WLS{PQML are de�ned with only
1 known symbol. For a reducible channel with Nc� 1 zeros, Nc known symbols are
suÆcient to have a well{de�ned problem.

A performance study of the criteria is provided in section 7.11.
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Figure 7.9. Semi{blind algorithms.

7.9.5 Simulations

In �gure 7.9, we show the NMSE given by all the PQML based semi{blind algo-
rithms as well as the optimal semi{blind DML in (7.7.1) solved by AQML for a
randomly chosen channel (N = 4, m = 2) and 1000 Monte-Carlo runs of the noise
and input symbols; 7 symbols are known (which is the lower limit for TS identi�abil-
ity). The PQML based semi{blind criterion and AQML are initialized by TS. The
semi{blind algorithms improve dramatically TS performance. WLS{PQML is the
best of the algorithms with performance close to the theoretical ML performance
(this was con�rmed by other simulations). We also notice the slow convergence of
AQML (which in fact requires many iterations for A0U per indicated iteration for
h).

To illustrate the lack of robustness of blind methods, we show in �gure 7.10
simulations with 5000 Monte{Carlo runs for channel, noise and input symbols:
the particularly poor performance of blind estimation can be noticed. This does
not mean that blind PQML is a weak algorithm. Among the 5000 realizations of
the channels, some gave ill{conditioned channels resulting in poor performance and
yielding poor averaged performance. The semi{blind algorithm does not su�er from

this problem.

7.10 Semi{Blind Criteria as a Combination of a Blind and a TS
Based Criteria

Some semi{blind algorithms have been proposed that linearly combine a TS and a
blind criterion: in [46] a semi{blind criterion is proposed based on the (unweighted)
Subspace Fitting (SF) criterion; in [47], [48], another one is based on the blind CMA
criterion.
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Figure 7.10. Comparison between semi{blind PQML and blind PQML.

7.10.1 Semi{Blind SRM Example

Semi{Blind Subchannel Response Matching (SRM) [49], [13], [14], [25] illustrates
the fact that one has to be careful when building a semi{blind criterion that way.
Blind SRM can be seen as a non{weighted version of IQML: minh h

HYHYh. Con-
sider the following semi{blind cost function:

� h
HYHB YBh+ kY TS � TTS(h)ATSk2 : (7.10.1)

This criterion is based on the decomposition of �gure 7.7. An intuitive way to
weigh both TS and blind parts is to associate them with the number of data they
are built from, as suggested in [46] for semi{blind subspace �tting. In the SRM
case, the optimal � would then be equal to 1.

In �gure 7.11, we show the NMSE for the channel averaged over 100 Monte{
Carlo realizations of channel (with i.i.d. coeÆcients), noise and input symbols. The
NMSE for (7.10.1) is plotted w.r.t. the value of � in dotted lines. For � = 1,
semi{blind SRM gives worse performance than TS estimation.

The blind SRM criterion gives unbiased estimates only under a constant norm
constraint for the channel. As the semi{blind criterion is optimized without con-
straints, the blind SRM part gives biased estimates which renders the performance
of the semi{blind algorithm poor. In [50], the criterion as is 7.10.1 was proposed
without being denoised or properly scaled.

For the channel estimates to be unbiased, the term YHB YB needs to be denoised.
We remove �min(YHB YB)I from YHB YB (where �min(YHB YB) denotes the minimum
eigenvalue of YHB YB). The resulting matrix Y

H
B YB��min(Y

H
B YB)I has exactly one

singularity.
Once the criterion is denoised, the choice for the weight � remains unsolved.

A way to determine this factor would be to optimize the asymptotic performance
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of the semi{blind SRM channel estimate w.r.t. �. However, since an analytical
optimization appears impossible, one would have to resort to search techniques
which would represent an increase in complexity.

In the next section, we construct semi{blind SRM as an approximation of semi{
blind DIQML: in this way, the blind SRM part will be automatically denoised and
scaled.

Semi{Blind SRM as an Approximation of DIQML

We know that the semi{blind ML criterion gives the optimal weighting between the
blind and training sequence parts:

h
HYHBR

+(h)YBh+ kY TS � TTS(h)ATSk2 : (7.10.2)

We now neglect the o�-diagonal terms in R(h): R(h) � D(h). For m = 2 channels,
the diagonal elements are constant and equal to khk2. For m > 2, the diagonal
contains the squared norm of pairs of subchannels. For example, for m = 3, the
�rst three diagonal elements are: kH1k2 + kH2]k2, kH2k2 + kH3k2, kH1k2 + kH3k2
and these three values are repeated along the diagonal M times.

With this approximation, (7.10.2) becomes:

kY TS � TTS(h)ATSk2 + h
HYHB D

+(h)YBh (7.10.3)

and we optimize this criterion in the DIQML fashion in order to denoise it; D(h) = D
is considered as constant. The semi{blind criterion becomes:

min
h

n
kY TS � TTS(h)ATSk2 + h

H
�
YHB D

�1YB �c�2vDv�ho (7.10.4)

where hHDvh = tr
�
T H
B (h?)D�1TB(h?)

	
, and c�2v is the minimal generalized eigen-

value of YHB D�1YB and Dv.
The norm of the di�erent subchannels, used to compute D, can be estimated

from the denoised sample second{order moment ryy(0) = �
2
aT1(h)T H

1 (h): r̂yy(0)�c
�
2
vI =

1
M

PM�1

k=0 y(k)yH(k)�c�2vI . As will be seen in the simulations, at low SNR,
the weight on the blind part should in fact be smaller than the true value Do of D
indicates. So instead of estimating the energy of each channel from the denoised
ryy(0), we use the noisy version. The resulting D will be larger than Do.

In general, the di�erent channels tend to have the same energy, so that D can in

turn be approximated by a multiple of an identity matrix, the multiple being[khk2m
2
.

When m = 2, this approximation is exact. With D being a multiple of identity, c�2v
is the minimal eigenvalue of YHB YB , and the semi{blind criterion becomes:

min
h

(
2

m

1

[khk2
h
H
�
YHB YB � �min(YHB YB) I

�
h+ kY TS � TTS(h)ATSk2

)
:

(7.10.5)
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Figure 7.11. Semi{blind subspace �tting built as a linear combination of blind
SRM and training sequence based criteria.

An alternative to this semi{blind SRM criterion is to use the decomposition of
�gure 7.8 and to use WLS or AQML to handle the training sequence part.

In �gure 7.11 in solid lines, we show the performance of the corrected semi{blind
criterion. The scalar � scales the blind part in (7.10.5). The value � = 1 gives
approximately the optimal performance and we notice that in fact the performance
is roughly constant in the neighborhood of � = 1.

In �gure 7.12, semi{blind SRM is used to initialize the di�erent DML based

semi{blind algorithms in the case where the training sequence is too short to esti-
mate the channel.

7.10.2 Subspace Fitting Example

Blind Subspace Fitting

Consider the sample covariance matrix of the received signal Y L of length L and
its expected value (w.r.t. the noise only, as A is deterministic):

RYLYL = TL(h)

"
M�L�1X
k=0

AL(k)A
H
L (k)

#
T H
L (h) + �

2
vI : (7.10.6)

Provided the blind deterministic identi�ability conditions [DetB] are ful�lled, the

matrix
PM�L�1

k=0 AL(k)A
H
L (k) is non-singular, so the space spanned by the matrix

TL(h)
hPM�L�1

k=0 AL(k)A
H
L (k)

i
T H
L (h) is the signal subspace. RYLYL admits L +

N � 1 (the dimension of the signal subspace) eigenvectors belonging to the signal
subspace, and Lm� (L+N � 1) eigenvectors belonging to the noise subspace and
all associated to the eigenvalue �2v . The eigendecomposition of RYLYL is:

RYLYL = VS�SV
H
S + VN�NV

H
N (7.10.7)
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Figure 7.12. DML based semi{blind algorithms initialized by semi{blind SRM.
Case of a too short training sequence to estimate the channel via TS alone.

where the columns of VS span the signal subspace and the columns of VN the
noise subspace, �N = �

2
vI . Let bVS and b

VN be estimates of the signal and noise
eigenvectors obtained from the sample covariance matrix. Signal Subspace Fitting
(SSF) tries to �t the column space of T (h) to that of bVS through the quadratic
criterion:

min
khk2=1

kP
bVN
T (h)k2 , min

khk2=1
h
HSHS h : (7.10.8)

(see citeAbedMeraim:Subsp97, for a description of the structure of S).

Semi{Blind Subspace Fitting

Consider now the following semi{blind cost function:

�MU h
HSHB SB h+ kY TS � TTS(h)ATSk2 : (7.10.9)

We adopt here the decomposition of �gure 7.7. In [46], �MU was chosen equal to
the number of data on which the blind criterion is based, i.e. � = 1.

In �gure 7.13 (left), we plot the NMSE of channel estimation w.r.t. � for di�erent
sizes L, for SNR=10dB and MK = 10 known symbols. For L = N , the semi{
blind criterion is relatively insensitive to the value of �. For L larger than N

however, the criterion is visibly very sensitive to the value of �. The choice � = 1
gives performance worse than that for training sequence based estimation for L >

N . These simulations suggest that the linearly combined semi{blind algorithm is
sensitive to the dimension of the noise subspace which varies when L varies.
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Figure 7.13. Semi{blind subspace �tting built as a linear combination of blind SF
and training sequence based criteria.
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Figure 7.14. Semi{blind subspace �tting built as a linear combination of weighted
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\Denoised" semi{blind SF

As will be seen in section 7.11, the behavior of the semi{blind criterion of the form
(7.10.9) depends heavily on the \smallest" eigenvalues of SHB SB . In particular, we
will see that if the smallest eigenvalues are forced to 0, the performance of the semi{
blind criterion is constant w.r.t. �. When the channel has Nc � 1 zeros, SHB SB has
theoreticallyNc singularities. It is found that forcing theNc (or more as discussed in
section 7.11) smallest eigenvalues to zero will render the performance less sensitive
to the value of �.

For complexity reasons, we force only one eigenvalue to zero, the smallest one,
via SHB SB � �min(SHB SB)I . Note that this does not remove a noise contribution as
in the case of semi{blind PQML or SRM; we just force the structure of estimated
quantities to be closer to that of the theoretical quantity in the blind part of the
criterion. The new semi{blind SF criterion is then:

min
h

�
�MU h

H
�
SHB SB � �min(SHB SB)I

�
h+ kY TS � TTS(h)ATSk2

	
: (7.10.10)

In �gure 7.13 (right), we show the performance of this algorithm w.r.t. � for 500
Monte{Carlo realizations of the channel, noise and input symbols. We can notice
the signi�cant e�ect of the denoising on the semi{blind algorithm performance. The
performance still depends on the value of � though (in fact this denoising is not
suÆcient here to render the performance optimal and constant around � = 1).

Denoised and scaled semi{blind SF

As a heuristic solution, we propose to scale the blind part of the semi{blind SF
criterion by the dimension N of the noise subspace. The resulting criterion is:

min
h

�
�

MU

N
h
H
�
SHB SB � �min(SHB SB)I

�
h+ kY TS � TTS(h)ATSk2

�
: (7.10.11)

In �gure 7.14, we show the performance of this algorithm in the case of random
channels with 2 subchannels (left) and 4 subchannels (right). We see that this
semi{blind SF criterion gives satisfactory results for � = 1.

7.11 Performance of Semi{Blind Quadratic Criteria

We consider here the following general semi{blind quadratic criterion of the form:

min
h

n
�MUh

H b
QBh+ kY TS � TTS(h)ATSk2

o
: (7.11.1)

For instance, bQB = 1
MU

h
YHB R+YB��̂BHBBB

i
for semi{blind PQML, bQB = 2

m[khk2MU�
YHB YB��min(Y

H
B YB)I

�
for semi{blind SRM and bQB = 1

N

�
SHB SB��min(SHB SB)I

�
for semi{blind SF. bQB tends asymptotically to QB which has Nc eigenvalues equal
to zero if the channel has Nc � 1 zeros (e.g. due to channel length overestimation).
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Let bQB = cW1
b�1cWH

1 + cW2
b�2cWH

2 be the eigencomposition of bQB , b�2 ! 0 asymp-

totically. Note that the smallest eigenvalue of bQB is 0 for the semi{blind criteria
proposed. One can show that the elements of b�2 (not exactly equal to 0) are of
order 1=MU for PQML, SRM and SF.

The solution of (7.11.1) is:

ĥ =
�
�MU

b
QB +AH

TSATS

��1
AH
TSY TS : (7.11.2)

we get for the channel estimation error �h = ĥ� h
o:

�h = ��MU

�
�MU

b
QB +AH

TSATS

��1 b
QBh

o+
�
�MU

b
QB +AH

TSATS

��1
AH
TSV TS :

(7.11.3)
We study the performance of the semi{blind criterion (7.11.1) for the asymptotic

cases:

� MU and MK in�nite, with condition

p
MU

MK

! 0, which accounts for the fact

that the TS part of the criterion should not be negligible w.r.t. the blind
part [51].

� MU in�nite, MK �nite, with MK � 2N � 1.

A related asymptotic analysis exists in [52] for semi{blind subspace; the second
asymptotic condition isMK �MU , withMK in�nite however. For each asymptotic
condition, the channel estimate is unbiased.

7.11.1 MU and MK in�nite

In that case, it can be shown as in [53], [43] that:

C�h�h =
�
�QB + ��

2
a

��1�
�
2 E

h e
QBh

o
h
oH e

Q
H
B

i
+

�

MU

�
2
v�

2
a

��
�QB + ��

2
a

��1
;

(7.11.4)

with � =
MK

MU

and e
QB = b

QB � QB ; E
h e
QBh

o
h
oH e

Q
H
B

i
is of order 1=MU . The

performance in that case depends on the value of �. Strictly speaking, in order
to optimize the performance, it would be necessary to �nd the optimal �, which
represents an additional computational cost and hence is typically avoided.

7.11.2 MU in�nite, MK �nite

We assume in this analysis that MK � 2N � 1, which also means that AH
TSATS is

invertible. Let the Cholesky decomposition of AH
TSATS be:

AH
TSATS =

�
AH
TSATS

�1=2 �AH
TSATS

�H=2
= R1=2RH=2

: (7.11.5)
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Then�
�MU

b
QB +AH

TSATS

��1
= R�H=2

�
�MUR�1=2 bQBR�H=2 + I

��1
R�1=2 :

(7.11.6)

Let the eigendecomposition of R�1=2 bQBR�H=2 = b
Q
0

B now be:

b
Q
0

B = cW 0b�0cW 0H = cW 0

1
b�01cW 0H

1 + cW 0

2
b�02cW 0H

2 : (7.11.7)

b�02 ! 0 asymptotically in the amount of data M or in SNR. We have�
�MUR�1=2 bQBR�H=2 + I

��1
=
�
�MU

cW 0b�0cW 0H + I

��1
=cW 0

�
�MU

b�0 + I

��1 cW 0H = cW 0
1

�
�MU

b�01+I��1 cW 0H
1 + cW 0

2

�
�MU

b�02+I��1 cW 0H
2 :

(7.11.8)
Consider now the following cases:

� Irreducible channel:
In that case, b�02 has only one element: b�02 = 0. At �rst order, the �rst term
of the last equation in (7.11.8) is negligible�

�MUR�1=2 bQBR�H=2 + I

��1
= cW 0

2
cW 0H
2

= W 0
2W 0H

2 at �rst order
= PRH=2W2

(7.11.9)

In that case, the �rst term in (7.11.3) is negligible, and the performance of
the semi{blind algorithm does not depend on the (�nite) value of �.

� Reducible channel:�
�MUR�1=2 bQBR�H=2 + I

��1
= cW 0

2

�
�MU

b�02 + I

��1 cW 0H
2 (7.11.10)

As the non{zero elements of b�02 are of order 1
MU

, the term �MU
b�02 is not

negligible w.r.t. I . The expression for the performance will then vary with
�. A way to overcome this would be to force b�02 to zero: in that case, the
performance becomes independent of �. This solution would require structural
knowledge about the channel, and the eigendecomposition of bQB, which adds
some complexity.

In any case, if b�02 = 0, the estimation performance is:

C�h�h = �
2
vW2

�
WH

2 A
H
TSATSW2

��1
WH

2 : (7.11.11)

If b�02 6= 0, the performance is inferior to the one in (7.11.11). Expression 7.11.11 can
be interpreted as the performance of the estimation of Hc(z) by training sequence
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with perfect knowledge of the irreducible part HI(z). Indeed, the vector channel

can be decomposed as h = TIhc where TI is block Toeplitz with
�
h
T
I 01�(Nc�1)m

�T
as �rst column. The TS criterion for hc is:

min
hc
kY TS �ATSTIhck2 (7.11.12)

and the corresponding performance of estimation of h (knowing hI) is:

C�h�h = �
2
vTI

�
T
H
I A

H
TSATSTI

��1
T
H
I : (7.11.13)

As TI andW2 have the same column space, both expressions (7.11.11) and (7.11.13)
are equal.

When b�02 = 0, the channel estimate can be rewritten as:

ĥ = cW2

�cWH
2 A

H
TSATS

cW2

��1 cWH
2 A

H
TSY TS (7.11.14)

The projected semi{blind subspace estimate proposed in [52] is

ĥ = cW2
cWH
2

�
AH
TSATS

��1
AH
TSY TS (7.11.15)

and is based on the approximation AH
TSATS �MK�

2
aI ; its performance is however

not very good because of this approximation.
Furthermore, when considering expression (7.11.4), with MK �nite, we �nd

expression (7.11.11) so the asymptotic expression in MK and MU is valid when
MK is �nite also. So, when �02 is forced to 0, there is a continuity between both

expressions (7.11.4) and (7.11.11); so expression (7.11.4) is valid in any case and
should be used to characterize the performance of the semi{blind criteria. This is
however not true when the Nc smallest eigenvalues of bQB are not exactly equal to 0:
in that case there is a discontinuity in the expressions, and the two analyses do not
yield the same results. In general, in this last case, it may not be obvious to know
in practice which analysis between MK in�nite orMK �nite is the appropriate one.

In practice, even when the criterion is correctly denoised, the performance for
a small MK is not constant w.r.t. �. For randomly chosen channels, in general,
the matrix b

QB exhibits in fact more than Nc small eigenvalues (the extra small
eigenvalues are suÆciently small to inuence the performance).

We consider here semi{blind SRM and we desire to force n eigenvalues of YHB YB
to zero. Let �n be the largest of the n smallest eigenvalues of YHB YB . In order
to denoise, we form the matrix YHB YB � �nI and force its negative eigenvalues to
zero. For randomly chosen channels of length 5 (so a priori irreducible channels)
we force n = 1 to 5 eigenvalues (the smallest ones) to zero: in �gure 7.15 (right),
we show the resulting NMSE for 1000 runs of the channel, noise and input symbols.
For a number of 3 to 5 eigenvalues forced to 0, we see that the performance is not
dependent on the value of �; however the performance is degraded compared to the
performance with 1 and 2 eigenvalues forced to 0. In �gure 7.15 (left), we show the
average distribution of the eigenvalues of YHB YB .
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Figure 7.15. Semi{blind SRM: D=1{5 eigenvalues forced to 0.
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The number of eigenvalues to force to 0 depends on various parameters such
as the channel impulse response and the SNR. We propose here alternatively a
more adaptive denoising. We form YHB YB � ��min(YHB YB)I , where � � 1 is an
ampli�cation factor, and force to 0 the negative eigenvalues. In �gure 7.16 (left),
we show the NMSE for 500 realizations of the channel (a priori irreducible), noise
and the input symbols; in �gure 7.16 (right), the channels have 2 zeros. We see that
performance improves as � grows for � � 2: � 2 (1:5; 2) gives satisfactory results.

The proposed denoised PQML, SRM and SF based algorithms force to zero
only one eigenvalue and as already stated have a performance that depends on
�. However, the algorithms were constructed (weighted) such that the optimal
� is approximately equal to 1: this solution is preferable (to forcing more (n)
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eigenvalues to zero) because it is less complex. The � ampli�cation mechanism
just mentioned may be considered as a computationally cheap improvement though
(forcing nonnegative de�niteness can be done using the Cholesky decomposition).

7.11.3 Optimally Weighted Quadratic Criteria

MU and MK in�nite

We consider a semi{blind criterion built from a quadratic blind criterion of the form
minh h

HUHB UBh with UBh!0 (for MU ! 1 or SNR !1). We consider the case
of an in�nite (large) amount of known and unknown symbols. We know the optimal
weighting matrix W of the weighted least{squares criterion

min
h

 UBh
Y TS � TTS(h)ATS


W+

(7.11.16)

(with a decomposition based on �gure 7.7). Indeed:

W = E

�
UBho

Y TS � TTS(ho)ATS

��
UBho

Y TS � TTS(ho)ATS

�H
=

�
WB 0
0 �

2
vI

�
(7.11.17)

with WB = E
�
UBhohoHUHB

�
. The optimally weighted semi{blind criterion be-

comes:

min
h

�
h
HUHBW

+
BUBh+

1

�
2
v

kY TS � TTS(h)ATSk2
�

(7.11.18)

For these asymptotic conditions, �nding the right scale factor � to optimize the per-
formance of the non{weighted part of the criterion is diÆcult as already mentioned
in section 7.11.1, however �nding the right weighting matrix is easier.

In fact, semi{blind DML (7.9.3) is built as an optimally weighted combination
of the blind and TS criteria and SRM can be seen as an approximation of this
weighted criterion. We have not tested the weighted version of the SF criterion [54]:
the introduction of N may perhaps be justi�ed by the blind weighting matrix.

MK �nite

We force the smallest eigenvalues of UHBW
+
BUB to 0, as we did in the PQML, SRM

and SF case. As seen in the previous analysis, only the null space of the asymptotic
value of UHBW

+
BUB counts; this null space remains unchanged with the weighting.

So in the �nite MK case, the performance of the weighted combination is the same
as for the unweighted combination.

7.12 Gaussian Methods

In the Gaussian case, semi{blind criteria can be similarly built as the sum of a
blind and a TS based criterion as in the deterministic case. The decomposition of
the data should be di�erent though: indeed, not only the noise in the blind and
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TS parts should be decoupled but also the signal contributions. However, we have
veri�ed in simulations that the correlations in the signal part can be ignored and
the same decompositions as in the deterministic case can be adopted: see [35] for
the semi{blind GML example.

We consider here the example of semi{blind covariance matching. The blind
covariance matching [18], [55] method �ts the theoretical expression for the co-
variance matrix, RL(�) = �

2
aTL(h)T H

L (h) + �
2
vI , to an estimate of the covariance

matrix, bRL = 1
M�L

PM�L�1
k=0 Y L(k)Y

H
L (k). Let r(�) = vecfRL(�)g, r̂ = vecf bRLg,

the covariance matching criterion can be written as:

min
h

(r(�) � r̂)
HW+

B (r(�) � r̂) (7.12.1)

(we consider here �2v as known). WB is a weighting matrix. A good approximation
of the optimal weighting matrix is [35], [56]:

W(1)

B =
1

MU � L

R
T
L 
RL : (7.12.2)

The weighted semi{bind cost function then is:

(MU�L) (r(�) � r̂)
H �

R
�T
L 
R

�1
L

�
(r(�) � r̂)+

1

�
2
v

kY TS�TTS(h)ATSk2: (7.12.3)

We can solve here the blind part by alternating minimizations as follows. We rewrite
RL as RL(�) = �

2
aTL(h1)T H

L (h2) + �
2
vI . The blind covariance matching criterion

can then be written as

min
h1;h2

�
vecf

�
TL(h1)T H

L (h2) + �
2
vI
�
� bRLg

�H
W�1

B

�
vecf

�
TL(h1)T H

L (h2) + �
2
vI
�
� bRLg

�
(7.12.4)

We minimize alternatively between h1 and h2 (each minimization problem is quadrat-
ic) until convergence.

We show the NMSE given by the criterion (7.12.3) (which corresponds to (7.12.4)

for the blind part with the (quasi{)optimal weighting W(1)

B given in (7.12.2)) in
�gure 7.17; � scales the blind part of the criterion. We also show the performance

corresponding to the weighting matrices W(2)

B = 1
MU�L

diag(RL) 
 diag(RL) and

W(3)

B = 1
MU�L

�
khk2

m
I

�


�
khk2

m
I

�
= 1

MU�L

khk4

m2 I (
khk2

m
is the mean value of the

diagonal elements of RL), as well as W
(4)

B = 1
MU�L

I . In this simulation, we can
observe the quasi{optimality of the value � = 1 and the relative insensitivity of
the performance around � = 1 for the weighted criteria (7.12.3) and the criteria

corresponding to the weightings W(2)

B and W(3)

B , this is not the case for W(4)

B .

The weighting in (7.12.3) gives better results than the weightings W(2)

B and W(3)

B

however.
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Figure 7.17. Semi{blind covariance matching built as a linear combination of
blind covariance matching and training sequence based criteria.

7.13 Conclusion

Di�erent ways of building semi{blind criteria have been presented. The optimal
semi{blind criteria should be based on methods that naturally incorporate the
knowledge of symbols: this is the case of ML methods, which we discussed here, and
also of methods that estimate the symbols directly such as the one in [32]. These
optimal methods provide semi{blind solutions when the symbols are arbitrarily dis-
persed in the burst. This symbol con�guration is undesirable in general as the
associated semi{blind criteria will require computationally demanding algorithms.

For grouped known symbols, i.e. a training sequence, low complexity solutions
can be built because the structure of the blind problem is kept. By neglecting
some information about the known or unknown symbols, ML easily allows one
to construct semi{blind criteria that are a linear combination of a blind and a
training sequence based criterion. Especially when the training sequence is short, it
appears important to be able to take into account the overlap zone where known and
unknown symbols appear at the same time. One of the solutions we have proposed
for that is to combine blind DML with the optimally weighted least squares criterion;
this combination corresponds to a mixed deterministic and Gaussian point of view
and was shown to give the best results in our simulations.

The last part of this chapter dealt with the construction of a semi{blind criterion
built as a linear combination of a given blind criterion and a TS based criterion. We
have proposed the examples of SRM, SF and covariance matching. Furthermore, a
performance study of quadratic semi{blind criteria have been presented: we have
seen conditions for the semi{blind criterion to be insensitive to the value of the
weights in the linear combination and nearly optimal for the weight values that
were proposed.
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