Toward a Methodology for Unified Verification
of Hardware/Software Co-designs

Florian Lugou!, Ludovic Apvrille', and Aurélien Francillon?

1 Telecom ParisTech, Sophia Antipolis, France,
{firstname.lastname}@telecom-paristech.fr
2 EURECOM, Sophia Antipolis, France,

aurelien.francillon@eurecom.fr

Abstract. Critical and private applications of smart and connected ob-
jects such as health-related objects are now common, thus raising the
need to design these objects with strong security guarantees. Many re-
cent works offer practical hardware-assisted security solutions that take
advantage of a tight cooperation between hardware and software to pro-
vide system-level security guarantees. Formally and consistently proving
the efficiency of these solutions raises challenges since software and hard-
ware verifications approaches generally rely on different representations.
The paper first sketches an ideal security verification solution naturally
handling both hardware and software components. Next, it proposes an
evaluation of formal verification methods that have already been pro-
posed for mixed hardware/software systems, with regards to the ideal
method. At last, the paper presents a conceptual approach to this ideal
method relying on ProVerif, and applies this approach to a remote at-
testation system (SMART).

Keywords: hardware/software co-design, embedded system verification,
security, ProVerif, tools

1 Introduction

Embedded systems are becoming more and more present in our daily lives. Many
are now connected to the internet, even when used for vital functions. What used
to be a concern for privacy has now turned into a requirement of strong security
guarantees in critical systems. Only formal verification of these designs gives a
mathematical guarantee of security.

It’s not as unusual, now, to see medium-sized projects use custom hardware
modification as it used to be. For instance some new projects — e.g.: the ESP8266
Wi-Fi chipset — don’t use general-purpose CPU but prefer ASIPs like Processor
Designer from Synopsys or Xtensa from Cadence. In particular, research topics
have recently shown great interest in hardware-assisted security solutions ([3, 11,
21, 19]). In such designs, the overall security of the whole design relies on a tight
cooperation between the customized hardware and the software running on it.

To illustrate the problem and guide our reflexion, we chose a hardware/software
co-design that, we thought, was representative of many other hardware-assisted



security solutions which would greatly benefit from formal verification. This de-
sign is SMART, which stands for Secure and Minimal Architecture for (Estab-
lishing a Dynamic) Root of Trust and has been presented in [15]. This primitive
tackles the problem of remote attestation by relying on a slightly customized
microcontroller unit and a critical routine stored in ROM.

The process of remote attestation aims to detect devices that have been
compromised, usually by computing a hash of the part of the memory to assess
and sending back the result to a remote verifier. SMART provides the guarantee
that this hash couldn’t be calculated by the compromised device in any other
way than correctly computing it.

In SMART, the memory layout is augmented by adding two read-only sec-
tions, as presented in Figure 1. The first one contains a procedure referred to as
RC and the second one contains a key . RC can be called in order to compute
a HMAC on a memory range [a, b] passed as an argument. This HMAC is keyed
with K to prevent a compromised software from computing the hash itself.

Data Program

attests uses key

Memory

Fig. 1. SMART overview.

To be secure, the key IC should be kept secret from the remaining — potentially
compromised — software. This is guaranteed by adding a hardware protection
which only allows access to K from RC. Other hardware protection mechanisms
were added but we will not consider them in this paper.

Here, the security of the system relies on the incapacity of a compromised
device to forge a correct HMAC, which itself relies on the secrecy of the key.
It is interesting to note that the secrecy of K is a simple property, but a naive
modeling of the design would miss many possible attacks: what would happen if
RC doesn’t disable interrupts before loading the key in memory? What if control
jumps in the middle of the routine? And what if the device is rebooted during
the execution of RC?

Applying formal verification to such designs thus requires us to take into ac-
count the non-standard hardware when analyzing software to prove system-level
properties. To the best of our knowledge, no general methodology for unified
verification has been found yet. Therefore we propose, as a first step, to survey



the different methods that have been applied up to now and also provide in-
sights regarding potential new methods. This survey emphasizes the conceptual
differences between two classes of verification methods: 1) methods that rely on
the abstract concept of software to split the verification between the hardware
part and the software part, and 2) methods that try to handle both at the same
time by unifying the two concepts.

Our contributions are threefolds: a theoretical study of the problem of formal
verification applied to the specific case of hardware/software co-designs, a survey
of different methodologies that have been used up to now to verify such designs,
and a tool that translates a subset of MSP430 assembly language into a ProVerif
specification that ProVerif is able to handle.

In the second section we present the properties an ideal methodology for
verification of hardware/software co-designs should have, then, in sections 3
and 4, we survey existing techniques. In section 5, we present our conceptual
approach to the problem based on ProVerif, and finally, we discuss future work
before concluding.

2 Expected Properties

In order to guide our reflexion and evaluate methods and tools, we list here the
properties that one would expect from a formal environment when assessing the
security of a hardware/software co-design.

2.1 Security-Aware Expressivity

Software has been steadily increasing in term of quantity and complexity in com-
plete systems and is still undergoing considerable growth. Implementing critical
functions in software may induce bugs or security flaws by increasing the attack
surface and thus motivates the need to find solutions that guarantee proper-
ties, such as control flow integrity or code integrity, on any software. To target
such global security properties new solutions often rely on specific hardware.
The global security of the system thus depends on the security of the solution
implemented as a tight mix of hardware and software. An efficient methodology
dealing with this kind of designs should enable to express properties and give
back results in a security-oriented meaningful way.

Natural Expression of Security Properties. First, verifiers would like to
express what they want to prove as directly as possible. Translating the expected
property into a combination of properties manageable by the solution (typically
formulae in Conjonctive Normal Form), whose meanings are hard to grasp, is
a source of errors. The verifier would thus be more interested by solutions that
can naturally handle properties such as secrecy properties, taint propagation
properties, etc..



Attacker Model. On the other side, expressing the capabilities of an attacker
should be equally straight forward. It may be by using the ”"Dolev-Yao” model, or
by tainting inputs that the attacker is able to control, for instance. The attacker
model is normally coherent with properties the method is able to handle since
the latter should be checked against the former, but a tool could also provide an
automatic translation of abstract attacker models into low-level logic that the
verification engine can handle.

Reconstruction of Traces. When the analysis tool determines that the re-
quired property may be violated, the designer must correct the erroneous part.
The verifier should thus be able to rely on the feedback of the analysis frame-
work to target the part of the design that would need to be re-designed. Since
precisely and automatically determining the erroneous part of the design is cur-
rently impossible, a compromise often found is to provide the user with a trace
summarizing the steps that lead to a state in which the property is violated. On
the other side, returning the unsatisfiable core of a CNF formula would be of
little interest for the designer.

2.2 Soundness of the Proof

Many hardware/software co-designs provide core features that are critical either
for the proper functionning of the system (such as peripheral management),
or for its security (e.g: access control, cryptographic primitives). These modules
require strong safety and security guarantees that only formal verification is able
to provide. Software analysis often has to deal with very large programs, which
rules out complete verification. Here, we are concerned with smaller programs
that hopefully enable us to mathematically prove that they are correct with
respect to the features they were supposed to provide. Approximations are thus
considered only as far as they don’t affect the soundness of the proof.

In this sense, we are not directly interested in test-based co-verification of
hardware/software co-designs as provided by commercial tools such as ZeBu 3,
Seamless 4, or SoC Designer Plus °.

2.3 Easy Adaptation to Hardware Modifications

When designing systems mixing hardware and software, one would need to see
the effect of hardware modifications. Most verifications of software targeting em-
bedded systems rely on a manual expression of the hardware model ([12,23]).
While finding a generic method that would deal with any hardware description
may seem too optimistic, we believe that analysis of systems on chip would ben-
efit from some modularity in terms of hardware models. We are thus interested
in the extent to which each method can cope with hardware modification.

3 http://www.synopsys.com/Tools/Verification /hardware-
verification/emulation/Pages/zebu-server-asic-emulator.aspx

4 http://www.mentor.com/products/fv/seamless/

® http://www.carbondesignsystems.com /soc-designer-plus



3 Successive Verification of Hardware and Software

Traditional approach to hardware/software validation is to express a formal
model of the hardware and use it during the verification of the software. The
hardware may also be proved equivalent to the model, thus ensuring the overall
security of the system.

For designs where hardware and software are tightly coupled, it may however
be difficult to find an abstraction that would both enable the hardware to be
verified, and require a manageable modification of a generic software analysis
framework to integrate the specificities of the hardware. We discuss here how
these two worlds could interface.

3.1 Expression of the Hardware Model

We target here designs where hardware and software must be checked together
to ensure system-level properties. There are mainly two classes of such designs:
either the hardware was customized in order to change the way the software
was executed, or the hardware to verify doesn’t affect the core processor but is
a peripheral (such as MMU or a sensor), and the software part is handling the
communication with this peripheral. In the first case, the software analysis tool
would need to be modified to take into account the specificities of the hardware.
In the second case, a common formal model could be found, and the hardware
and the software could be checked separately against this model.

To prove that the hardware model — either when it is integrated into the
software analysis framework, or when it is common to the software model — is a
correct abstraction of the hardware, traditional verification of hardware designs
could be applied. This verification is mostly done either by equivalence checking
or by model checking. Many industrial and academic tools exist for this purpose:
Vis, NuSMV, Incisive, Formality, etc..

3.2 Verification of Low-Level Software

Since we are here interested in both software and architectural vulnerabilities,
we would like to take the compiler out of the trusted computing base. This is
particularly true for security critical features - such as MMU management or
cryptographic primitives - that are typically directly implemented as assembly
code. Therefore, we are mainly interested in software verification tools that can
take assembly code as input.

Using assembly code prevents us from working with higher-level concepts
such as arrays, objects, functions, or types to guide the analysis. Losing such
concepts means that we can’t benefit from the semantic of coherent objects that
the designer manually provided. For instance, it’s simpler for the analysis to
replace calls to a function by the formal expression that links the output of the
function to its inputs and to prove that the function is indeed equivalent to this
formal expression, than to analyse the function each time it is called in each
context. However, we believe working with assembly code is more representative



of the attack scenarios we want to prevent (shellcodes, ROP, etc.) and of the
software we want to verify.

In order to verify software at the assembly level, we ideally need a formal
semantic of the instruction set. Such semantics are rare in practice, but progress
has been done lately in this direction ([16, 12]). Once this formal model has been
found, traditional software analysis methods may be applied: model checking
([8,22]) and bounded model checking ([4]), symbolic execution ([18,10]), etc..

3.3 Dealing with Hardware Customization

Since a designer may want to see the impact of a hardware modification as part
of the design process, the amount of work needed to include this modification in
the software verification framework and to prove the model to be a refinement
of the modified hardware shouldn’t be prohibitive.

One possibility would be to apply the CounterExample Guided Abstraction
Refinement methodology ([9]): the tool would automatically compute a complex
formal model of the hardware and use an abstraction of this model to analyze
the software. If the targeted property were violated, a counterexample would be
created and checked against the original hardware model. If it were spurious,
the abstraction would be refined and the analysis would resume.

4 Unified Verification of the Whole Design

As disjoint verification of hardware and software naturally suffers from the con-
siderable manual effort needed for finding a good abstraction that could both
be proved to be a refinement of the hardware and be used as a base for verify-
ing the software, some research work has been done to verify hardware/software
co-designs as a whole ([20,17]).

Similarly to successive verification of hardware and software, the methodol-
ogy here also differs depending on how tightly the two are coupled.

4.1 Loosely Coupled Hardware and Software

For hardware/software co-designs where the processor is not modified and the
verification effort should focus on some parts of the design that communicate
with software through the use of a simple interface (memory mapped port, sig-
nals, etc.), the problem of hardware/software is no more vertical but horizontal,
and it becomes possible to verify both at the same time, but still keep them
distinct.

For instance, in [20], the authors propose a methodology for formally veri-
fying a mixed hardware-software design implemented in SystemC. SystemC is
a system-level language of which a subset may be synthetized. Thanks to their
work, the SystemC specification can also be compiled to produce a formal model
of the design (in the form of Labeled Kripke Structures). Parts of the design are
recognized as hardware and the other parts are assumed to be software code.



4.2 Tightly Coupled Hardware and Software

Hardware based protections against software vulnerabilities often affect how the
processor interprets machine code, by detecting policy violation as in [15], or by
adding new instructions as in [3] for instance. In such designs, the processor itself
is part of the verification target, and thus, simultaneous verification of disjoint
hardware and software can’t be done as in the previous section.

Including Software as Part of the Hardware Representation. In such
case, we are trying to verify a customized processor implemented in hardware
for a particular piece of software. However, we want to verify both as a whole,
that is to say we don’t want to create a formal model of the processor — probably
because it would involve too much manual work. We can’t prove the software
with respect to a generic processor model since our processor is customized
and we have no abstract model for our specific hardware. The abstract concept
of software is thus unusable and program instructions must be considered for
analysis in their true, concrete format: binary data. Concretely, this means filling
the memory in the hardware representation with the program in binary format
and verify this hardware as a whole.

Proving Properties on the Whole Design. Once software has been in-
tegrated into the hardware representation of the design, traditional hardware
verification tools (such as model checker) could be used to prove the required
property. However, some parts of the design are controlled by the attacker, typi-
cally some part of the memory corresponding to the procedure arguments could
take any value. The value of these bits will affect how the program executes. For
the analysis, this means that a huge number of states will have to be explored.
Even for symbolic model checking it would be hard to automatically find good
abstractions since the abstract states that would lead to a model being both
provable and reasonably small would most likely relate software-level objects
together. For instance let’s say we are trying to verify a piece of software where
a good abstraction — one that would make the property provable on the abstract
model — would be “the length of string s is smaller than the value of variable
v”. The objects s and v, however, have no more sense on hardware level, and
automatically reconstructing them, by predicate abstraction for instance, would
be difficult. Indeed, there is no hardware concept of what a string is, or what
smaller means. For this reason such a verification scheme would probably be
limited to very small programs.

5 Using ProVerif for Simple Symbolic Execution

For our case study, SMART, as we wanted to study the problem of formal veri-
fication of hardware/software co-designs from a generic point of view, we looked
for a method which had some properties of the ideal method we described ear-
lier and which could be adapted easily to other designs. That is to say we were
searching a method that could:



— model a generic processor and instruction set,

— allow simple modeling of hardware customization,

— model an attacker and prove security-oriented properties,

— automatically produce a meaningful result, be it a clear answer if the prop-
erty is proved to be true, or a trace if the property can be violated.

In the context of SMART, we could either model the whole device and the
whole attestation protocol and try to prove that a compromised device can’t
forge a correct HMAC, or we could only model the routine RC and verify that
K is not leaked. We will focus here on the secrecy of K, but modelling the whole
protocol should not add too much work.

5.1 Motivations for Using ProVerif

ProVerif [6] is a tool for analyzing protocols. It focuses on security protocols but
its generic language (pi calculus) and simple reasoning with Horn clauses makes
it a good candidate for a wide variety of applications [2].

Our requirements led us to search for a tool that would work with basic and
generic logic and would target security properties. As ProVerif answered these
needs, we chose it despite its original different field of application. As a result,
this paper also presents a way to model the execution of a software and to prove
properties on it using protocol analysis tools such as ProVerif.

An Interesting Attacker Model. The security of the SMART primitive re-
lies on the secrecy of a key, and such a property can be natively represented
in ProVerif. The tool also enables to query more complex properties such as
authentication or observational equivalence.

These properties are checked against an attacker whose capabilities follow
the “Dolev-Yao” model [13]. These kind of capabilities are also interesting in
our particular design, where the remote verifier and the routine RC can be seen
as participating in a protocol and the user controlled software on the device has
full access to the abstract channel they are using.

A Simple Reasoning. ProVerif takes as input a description of a protocol in
pi calculus language. This description is internally translated into Horn clauses
that ProVerif uses for reasoning. Horn clauses are logical formulae of the form:

/\Pi or /\Pi —q (1)

where p;, q are positive literals. The first formula corresponds to the case where
there is no premise. This simple formulation makes it possible to model how each
assembly instruction impacts the state of the system depending on the environ-
ment, and thus, allows for easy modeling of the effect of hardware modification
on software execution.



Traces Reconstruction. Another feature of interest in ProVerif is its ability
to reconstruct a trace when the queried property is violated. This trace is given
as a succession of actions performed by the attacker that eventually lead to a
violation of the property. The process of reconstructing this trace may fail (as
explained in [1]) due to the approximations done when translating processes in
pi calculus into Horn clauses. However, up to now, we managed to model our
design to avoid this case.

Even though we haven’t implemented it yet, we could automate the process
of translating such a trace into a succession of software-related events that would
make more sense in our context.

5.2 ProVerif Solving Algorithm

Our ambition was to prove properties on a relatively small piece of software
running on a custom hardware. Since formally proving the property on a model
of the software would mean exploring the entire state space, and sticking to a
realistic model would limit the possibilities for abstraction, we assumed that our
methodology would not scale well. Even though, we believe it may prove useful
for small, central, security critical software, as it is the case for SMART.

We briefly present here how ProVerif is able to reason on specified protocols
in order to explain how this is done for our model and compare the performance
with more traditional techniques.

Horn Clauses and Predicates. Protocols that need to be verified by ProVerif
are described as multiple processes that communicate between each other through
private or public channels. The attacker can see anything that goes through
public channels, intercept messages, create new ones, and send them on public
channels.

The fact that the attacker knows about the message m is modeled as the
predicate attacker(m). The fact that a message m can be sent on channel ch
is modeled as the predicate mess(ch,m). As stated earlier, ProVerif works with
Horn clauses so, for instance, the abilities of the attacker regarding channels are:

mess(ch,m) A attacker(ch) — attacker(m)
and attacker(ch) A attacker(m) — mess(ch,m).

(2)

Processes are also translated into Horn clauses. For instance a basic process and
its translation are presented in Table 1. Note that both express the fact that
if the attacker has knowledge of a he can acquire knowledge of f(a). As it will
be explained in the next section, this simple mechanism enables us to model an
instruction-accurate version of a processor.

Clauses Unification. Once the protocol has been translated into Horn clauses,
these clauses are combined to derive the total knowledge of the attacker. If the
required property is violated during the process, a trace is computed based on
the clauses that have been unified to lead to the violation.



Table 1. A ProVerif process and the corresponding Horn clauses.

ProVerif Process Set of Horn Clauses

process
in (ch, a: bitstring);
out (ch, f(a))

mess(ch,a) — mess(ch, f(a))
or attacker(a) — attacker(f(a))
if ch is public.

For our modeling, the way the clauses are unified will determine how the state
space of the program is explored. Thus more information about the resolution
process of ProVerif — as explained in [5] — is going to be exposed.

The idea behind clauses unification is to progressively expand the knowledge
of the attacker. Let’s say we have two clauses:

attacker(m) — attacker(f(m)) (3)
and attacker(f(m)) — attacker(g(m)).

Unifying these two clauses is interesting since it will result in: attacker(m) —
attacker(g(m)), which means that if the attacker has knowledge of any message
m, then g(m) can also be known. By default, ProVerif considers that unifying
two clauses is interesting when all the premises of the first clause are of the form
attacker(x) where x is a variable and when the premise of the second clause that
can be unified with the conclusion of the first (attacker(f(m)) in our previous
example) is not of the form attacker(z). It means that it favors unifications that
reduce the number of premises that are not of the form attacker(z).

By unifying clauses like that, ProVerif eventually reaches a fixed point where
no new clause can be generated. If the required property is the secrecy of a
variable z, and eventually no clause of the form attacker(z) has been derived,
this is a proof that the attacker can’t learn the value of x.

5.3 SMART Model

In the SMART design, the critical software part that we want to analyze is
the routine RC that computes a HMAC with the key K, and the attacker is
a malicious software running on a corrupted device. It can access the whole
memory and all the registers and may call RC as it likes. As the design relies on
the secrecy of IC, we will only model the routine RC, let the attacker define the
state of the device before calling RC, and check that K can’t be leaked.

We show first how we automated the translation of MSP430 assembly code
into a ProVerif model, and then, how hardware customization was integrated into
the model. Finally, we demonstrate the solving process performed by ProVerif
and relate it to a more classical software analysis method.

The Software Part. We model our software in an instruction-accurate way: we
express the impact of each instruction on the state of the system. This semantic



enables us to consider attack scenarios and software designs that are realistic,
especially on low level code: jumping in the middle of the routine, dynamic
control flow graph with indirect jumps, etc.. Also note that since SMART was
implemented for the MSP430 architecture, we modeled a subset of the MSP430
assembly language, composed only of basic instructions. For a more general
approach, it would be better to use an intermediate representation such as REIL
[14] or BAP intermediate language [7] and use the already existing front-ends to
compile either assembly code or binary code to this intermediate representation.

Instruction at virtual address 7 is modeled as a process translated into a Horn
clause of the form: state(i, R, MEM) — state(PC',R', MEM'"), where PC’ is
a program counter, R and R’ are states of the registers, and M EM and M EM’
states of the memory. PC’, R', and M EM' are expressed as functions of R and
MEDM and model the effect of the instruction at address ¢ on the state of the
memory and registers — for instance PC’ = M EM|[R[3]].

The state(PC, R, M EM) predicate here would mean that a state of the sys-
tem where the program counter is PC|, the registers’ values are R, and the
memory is in state M EM is accessible. This predicate is obviously not defined in
ProVerif and we must model it. We could do this by using a private channel: each
message (PC, R, MEM) sent on the private channel privch would mean that
the state (PC, R, MEM) is accessible. The effect of an instruction at address i
would thus be: mess(privch, (i, R, MEM)) — mess(privch, (PC',R', MEM")).
However, private channels behave differently with respect to trace reconstruc-
tion. For instance, when trying to reconstruct a trace, ProVerif will only allow
sending messages on a private channel if a process is ready to read the message
on this channel. Therfore we chose to use an equivalent approach with pub-
lic channels: mess(ch, f(i, R, MEM)) — mess(ch, f(PC',R', MEM")). Where
f and its inverse un_f are private functions (with no explicit definitions) that
guarantee that the fact attacker(f(PC, R, M EM)) — which means that the state
(PC,R,MEM) is reachable — doesn’t lead to attacker(R) or attacker(MEM),
and reciprocally that the attacker can’t create f(PC, R, MEM) with any PC,
R and M EM. Eventually the corresponding process in pi calculus is:

process
in (ch, state: bitstring);
let (PC: int, R: registers, MEM: memory) = un_f(state) in

if PC=i then

out (ch, f(PC’, R’, MEM’))

This process only models one instruction. To model the entire program, we
created one process per instruction and replicated it — using ProVerif operator
! — so that the instruction could be invoked many times (in case of loops for
instance). We wrote an open-source python script® that automates the process
of translating MSP430 assembly code into a set of such processes.

5 available at https://gitlab.eurecom.fr/Aishuu/smashup



The Hardware Part. The effect of hardware modification would here be in-
cluded manually. However, it would be possible to limit the scope of possible
hardware customizations (for instance by letting the designer define a policy for
controlling the accesses to the memory). In such case, we could automate the
translation of hardware specificities into a ProVerif model. Restricting access to
part of the memory could easily be done by modifying the memory management
functions. Enabling interrupts could also be modeled by including an interrupt
vector in the state and by allowing the execution of an instruction only when no
interrupt is pending.

Parallel with Symbolic Execution. The algorithmic efficiency of ProVerif
resides in its ability to derive the complete knowledge of the attacker with as
few clauses’ unifications as possible. The policy used to choose which clauses to
unify will guide the exploration of the program in our context. We’ll show how
this works on a basic example:

0 mov.w #0x0000, r4d
10:

1 add r3, rd

2 sub #1, r3

3 jnz 10

4

As will be explained later, ProVerif has originally no representation for numbers.
We will here ignore this fact and use them as intuition dictates. We will also only
consider the first five registers and no memory to shorten the clauses, use R2
as the zero flag (instead of just one bit), and ignore overflows. For the sake
of simplicity we will use state(PC, R) as a shortcut for mess(ch, f(PC, R)) as
was done before. Under these assumptions, the Horn clauses generated for the
instructions would be:

state(0, (R1, R2, R3, R4)) — state(1, (R1, R2, R3,0))
state(1 7(Rl R2,R3,R4)) — state(2, (R1, R2, R3, R3 + R4))
state(2, (R1, R2,1, R4)) — state(3, (R1,1,0, R4)) )
R3 # 1 A state(2, (R1, R2, R3, R4)) — state(3, (R1,0, R3 — 1, R4))
state(3, (R1,0, R3, R4)) — state(1, (R1,0, R3, R4))
R2 # 0 A state(3, (R1, R2, R3, R4)) — state(4, (R1, R2, R3, R4)).

If we allow execution of the routine only from the beginning this would add a
clause:

attacker(R1) A attacker(R2) A attacker(R3)

5

Aattacker(R4) — state(0, (R1, R2, R3, R4)). ®)
As mentioned earlier, ProVerif will only unify two clauses if the premises of the
first one are all of the form attacker(z). In our context, this means it will start
the unification with the clause describing how the attacker could call the routine



(the last clause given above). Its conclusion is of the form state(0, ...) so it could
only be unified with a clause with a state(0, ...) premise (the first one). Unifying
these two clauses will result in:

attacker(R1) A attacker(R2) A attacker(R3) — state(1, (R1, R2, R3,0)). (6)

Once again, this clause is the only one that could be used for unification so it
will be unified with the clause corresponding to instruction 1:

attacker(R1) A attacker(R2) A attacker(R3) — state(2, (R1, R2, R3, R3)). (7)

Here, this clause could be unified with either of the two clauses corresponding
to instruction 2 so exploration will fork and follow each of the two branches
depending on the value of R3:

attacker(R1) — state(3,(R1,1,0,1)). (8)
attacker(R1) A attacker(R3) A R3 # 0 — state(3, (R1,0, R3 — 1, R3)).

We could make a parallel between this behavior and symbolic execution:
in symbolic execution input variables that the attacker can control are marked
as symbolic and a symbolic execution engine executes the program, forwarding
and constraining symbolic values along the different possible paths. When the
execution must split according to the value of a symbolic variable, the constraints
on the symbolic value for each path are remembered and two separate instances
of the execution engine continue the analysis.

Our method shares some similarities: variables controlled by the attacker
are used without giving them concrete values until a conditional instruction —
that has been translated into two clauses — is met. The unification process then
follows two different paths where premises have been added that constrain the
value of the variable.

5.4 'What Is Lacking

We present here the drawbacks of this method. Some are inherent to the method,
some would require more or less work to correct them.

‘Working with Concrete Types. For the method to be efficient, the number
of instructions generating multiple Horn clauses, and the number of clauses gen-
erated for each of such instruction should remain small. However ProVerif has
no semantic for concrete types (such as bit vectors or even numbers) and it is up
to the user to model them. But this modeling is not obvious in ProVerif. Indeed,
the definition of functions such as the addition of two bit vectors can be done
either

— by constructors, that construct new values so it wouldn’t be possible to
express for instance that 1 +0 =1



— or by destructors, that don’t allow recursive definition, so we would need to
explicitly give the result for each possible addition. In this case, if we have
an instruction add r2, r3 where r2 and r3 are controlled by the attacker
and can take either of n and m values respectively, this instruction will
be translated into n.m Horn clauses which will considerably increase the
complexity of the analysis.

An efficient representation of numbers should enable a translation of one instruc-
tion into only one clause (except for conditional instructions). We could imagine
modifying ProVerif to add a new type of function which would have no semantic
for ProVerif. When trying to unify clauses, instead of simply looking for clauses
with a conclusion and a premise that a substitution could make equal, it would
call a SMT solver (as it is done by symbolic execution engines). If the solver
could find a constraint over the symbolic variables that enables unification, it
would add the constraint to the premises of the newly generated clause.

We haven’t implemented this modification, and so haven’t been able to com-
plete our analysis of the SMART architecture. However we believe it would be
possible and could benefit other applications, for instance, protocols that com-
pute arithmetic expressions.

Working with Machine Code. Our goal was to be able to model complex
attack scenarios that would take advantage of the concrete representation of
data and code. While having an instruction-accurate model is a first step, we
are still not working on a low enough level to model attacks such as Return
Oriented Programming, which would require a representation that preserves the
dual semantic of bit vectors and instructions.

State Explosion. Exploring the entire state space of the program without
performing substantial abstraction naturally entails serious complexity concerns.
For this reason we first target small and critical designs, for which formal security
proof is needed.

6 Conclusion

In this paper we presented our vision of the required properties of a formal verifi-
cation method targeting hardware/software co-designs. The field of our analysis
clearly differs from traditional software analysis. On the one hand, constraints
about the scaling of the analysis are relaxed since we focus on small, critical part
of the software, on the other hand, low-level security concerns and hardware cus-
tomizations require an accurate formal representation and limit the possibilities
for abstractions. After surveying different methods applied to hardware/software
co-designs, we presented a different approach based on ProVerif that answer part
of our requirements.

We summarize in Table 2 the adequacy of academic and industrial tools to
the ideal method described in the beginning of the paper. It is interesting to



note that some tools can take as input abstract models and thus can analyze
both hardware and software. However, they require to manually translate the
hardware or software into an abstract model before analyzing it. Also note that
ZeBu, Seamless, and SoC Designer Plus were included even if they are emulators
and not formal verification tools.

Table 2. Comparison of verification tools.

Tool Security-oriented Type of prop. Soundness HW/SW modelling
NuSMV no CTL,LTL sound abstract model
UPPAAL no TCTL sound abstract model
BLAST yes safety sound software
Vis no CTL sound hardware
KLEE, FIE yes safety sound software
S2E yes safety sound software
ZeBu, Seamless, no — unsound HW/SW

SoC Designer Plus

As perspectives for future work, we wish to explore other solutions such as
integrating software as part of the hardware representation and maybe adding
to ProVerif the ability to work with concrete types by creating an interface that
one could use to plug a SMT solver such as Z3 in. We’ll also consider automating
the process of integrating hardware customization into the ProVerif model.

This work was partly funded by the French Government (National Research
Agency, ANR) through the “Investments for the Future” Program reference
#ANR-11-LABX-0031-01. Finally, we would like to express our gratitude to
Bruno Blanchet for his precious help and patient contribution to our understand-
ing of ProVerif, and to our anonymous reviewers for their insightful comments.

References

1. X. Allamigeon and B. Blanchet. Reconstruction of Attacks against Cryptographic
Protocols. In Computer Security Foundations, 2005. CSFW-18 2005. 18th IEEE
Workshop, 2005.

2. L. Apvrille and Y. Roudier. SysML-Sec: A SysML Environment for the Design
and Development of Secure Embedded Systems. In APCOSEC 2013, 2013.

3. O. Arias, L. Davi, M. Hanreich, Y. Jin, P. Koeberl, D. Paul, A.-R. Sadeghi, and
D. Sullivan. HAFIX: Hardware-Assisted Flow Integrity Extension. In 52nd Design
Automation Conference (DAC), 2015.

4. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. In Tools and Algorithms for the Construction and Analysis of Systems.
1999.

5. B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In Computer Security Foundations Workshop, 2001. Proceedings. 14th IEEE, 2001.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

B. Blanchet, B. Smyth, and V. Cheval. Automatic Cryptographic Protocol Verifier,
User Manual and Tutorial, 2015.

D. Brumley, I. Jager, T. Avgerinos, and E. Schwartz. BAP: A Binary Analysis
Platform. In Proceedings of the 23rd International Conference on Computer Aided
Verification, 2011.

E. Clarke and E. Emerson. Design and Synthesis of Synchronization Skeletons
Using Branching-Time Temporal Logic. In Logic of Programs, Workshop, 1982.
E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided
Abstraction Refinement. In Computer Aided Verification. 2000.

L.A. Clarke. A System to Generate Test Data and Symbolically Execute Programs.
Software Engineering, IEEE Transactions on, 1976.

J.-L. Danger, S. Guilley, T. Porteboeuf, F. Praden, and M. Timbert. HCODE:
Hardware-Enhanced Real-Time CFI. In Proceedings of the 4th Program Protection
and Reverse Engineering Workshop, 2014.

D. Davidson, B. Moench, T. Ristenpart, and S. Jha. FIE on Firmware: Finding
Vulnerabilities in Embedded Systems Using Symbolic Execution. In Proceedings
of the 22nd USENIX Security Symposium (USENIX Security 13), 2013.

D. Dolev and Andrew C. Yao. On the Security of Public Key Protocols. Informa-
tion Theory, IEEE Transactions on, 1983.

Thomas Dullien and Sebastian Porst. REIL : A Platform-Independent Intermediate
Representation of Disassembled Code for Static Code Analysis. 2009.

K. El Defrawy, A. Francillon, D. Perito, and G. Tsudik. SMART: Secure and
Minimal Architecture for (Establishing a Dynamic) Root of Trust. In Proceedings
of the Network and Distributed System Security Symposium (NDSS), San Diego,
2012.

A. Fox and M. Myreen. A Trustworthy Monadic Formalization of the ARMv7
Instruction Set Architecture. In Interactive Theorem Proving. 2010.

S. Hong, T. Oguntebi, J. Casper, N. Bronson, C. Kozyrakis, and K. Olukotun. A
Case of System-level Hardware/Software Co-design and Co-verification of a Com-
modity Multi-processor System with Custom Hardware. In Proceedings of the
Eighth IEEE/ACM/IFIP International Conference on Hardware/Software Code-
sign and System Synthesis, 2012.

J. King. Symbolic Execution and Program Testing. Commun. ACM, 1976.

P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan. TrustLite: A Security
Architecture for Tiny Embedded Devices. In Proceedings of the Ninth European
Conference on Computer Systems, 2014.

D. Kroening and N. Sharygina. Formal Verification of SystemC by Automatic
Hardware/Software Partitioning. In Proceedings of the 2Nd ACM/IEEE Interna-
tional Conference on Formal Methods and Models for Co-Design, 2005.

J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege, C. Huygens,
B. Preneel, I Verbauwhede, and F. Piessens. Sancus: Low-cost Trustworthy Ex-
tensible Networked Devices with a Zero-software Trusted Computing Base. In
Presented as part of the 22nd USENIX Security Symposium (USENIX Security
13), 2013.

J.-P. Queille and J. Sifakis. Specification and Verification of Concurrent Systems
in CESAR. In Proceedings of the 5th Colloquium on International Symposium on
Programming, 1982.

P. Subramanyan and D. Arora. Formal Verification of Taint-Propagation Security
Properties in a Commercial SoC Design. In Design, Automation and Test in Europe
Conference and Ezhibition (DATE), 2014.



