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Abstract

While Searchable Encryption (SE) has been widely studied, adapting it to the
multi-user setting whereby many users can upload secret files or documents and
delegate search operations to multiple other users still remains an interesting prob-
lem. In this paper we show that the adversarial models used in existing multi-user
searchable encryption solutions are not realistic as they implicitly require that the
cloud service provider cannot collude with some users. We then propose a stronger
adversarial model, and propose a construction which is both practical and provably
secure in this new model. The new solution combines the use of bilinear pairings
with private information retrieval and introduces a new, non trusted entity called
“proxy” to transform each user’s search query into one instance per targeted file or
document.
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1 Introduction

Cloud computing nowadays appears to be the most prominent approach for
outsourcing storage and computation. Despite well known advantages in terms
of cost reduction and efficiency, cloud computing also raises various security and
privacy issues. Apart from classical exposures due to third party intruders one of
the new requirements akin to outsourcing is the privacy of outsourced data in the
face of a potentially malicious or careless Cloud Service Provider (CSP).

While data encryption seems to be the right countermeasure to prevent privacy
violations, classical encryption mechanisms fall short of meeting the privacy re-
quirements in the cloud setting. Typical cloud storage systems also provide basic
operations on stored data such as statistical data analysis, logging and searching
and these operations would not be feasible if the data were encrypted using classi-
cal encryption algorithms.

Among various solutions aiming at designing operations that would be compat-
ible with data encryption, Searchable Encryption (SE) schemes allow a potentially
curious party to perform searches on encrypted data without having to decrypt it.
SE seems a suitable approach to solve the data privacy problem in the cloud setting.

A further challenge is raised by SE in the multi-user setting, whereby each
user may have access to a set of encrypted data segments stored by a number of
different users. Multi-user searchable encryption schemes allow a user to search
through several data segments based on some search rights granted by the owners
of those segments. Privacy requirements in this setting are manifold, not only the
confidentiality of the data segments but also the privacy of the queries should be
assured against intruders and potentially malicious CSP. Recently, few research
efforts [8, 5, 15, 12] came up with multi-user keyword search schemes meeting
these privacy requirements, either through some key sharing among users or based
on a Trusted Third Party (TTP).

In this paper, we first investigate the new privacy challenges for keyword search
raised by the multi-user setting beyond the basic privacy concerns about data,
queries and responses by focusing on the relationship among multiple queries and
responses. We realize that while as analyzed in [7], the protection of the access
pattern privacy (privacy of the responses) is optional for single-user searchable
encryption mechanisms, this requirement becomes mandatory in the multi-user
setting. Unfortunately all existing Multi-User Searchable Encryption (MUSE)
schemes [8, 5, 15, 12] suffer from the lack of such protection. We further come
up with a new adversary model for MUSE that takes into account new security
exposures introduced by the possible collusion of some users with the CSP.

After showing that all existing MUSE schemes fail at meeting the privacy re-
quirements in our new adversarial model, we suggest a new solution for MUSE for
which it is not the case, i.e., all users who have not been explicitly authorized to
search a document can collude with the adversary without threatening the privacy
of that document. Our solution for MUSE inherently ensures access pattern privacy
through the use of Private Information Retrieval (PIR). While the PIR protocol to-
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gether with the multi-user setting may add a significant complexity overhead, this
overhead is outsourced from the users to a third party our scheme introduces, the
proxy, that is in charge of multiplexing a user query into several PIR queries. More-
over the overhead of PIR is further lowered by querying binary matrices represent-
ing the keyword indices instead of querying the bulky keyword lists themselves.
As opposed to most existing solutions based on a TTP [8, 5, 15, 3], the proxy in
our scheme does not need to be trusted. With the sole assumptions that the CSP
and the proxy are honest-but-curious and that they do not collude with one another,
we prove that our solution meets the privacy requirements defined for MUSE.

Section 2 states the problem addressed by MUSE. Section 3 describes our so-
lution for MUSE and Section 4 defines the security properties for MUSE. Section
5 proves that our solution achieves the security properties we defined and Section
6 studies the algorithmic complexity of our solution. Section 7 reviews the state of
the art and, finally, Section 8 concludes the paper.

2 Multi-User Searchable Encryption (MUSE)

A MUSE mechanism extends existing keyword search solutions into a multi-
writer multi-reader [6] architecture involving a large number of users, each of
which having two roles:

• as a writer, the user uploads documents to the server and delegates keyword
search rights to other users.

• as a reader, the user performs keyword search operations on the documents
for which she received delegated rights.

As any SE solution, MUSE raises two privacy requirements:

• index privacy: unauthorized parties should not discover information about
the content of uploaded documents.

• query privacy: no one should get information about the targeted word and the
result of a search operation apart from the reader who sent the corresponding
query.

In addition to the CSP, any user that has not been explicitly given search rights
on an index should be considered as potentially colluding with the CSP in order
to violate index or query privacy. This assumption leads to a model in which the
adversary is composed of a coalition of the CSP and some non-delegated users.
This new adversary model extends the one used in other existing MUSE schemes
[12, 5, 15, 7], which although secure in their own adversary model do not achieve
index and query privacy any more if non-delegated users collude with the CSP.

Figure 1 illustrates one example of the impact of a collusion between a CSP
and a user on privacy by taking advantage of the lack of access pattern privacy.
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Figure 1: In (a), discovery of similarities through the access pattern. In (b), use of
the similarities to extend index privacy violation.

Assuming that R1 is authorized to query both indices I1 and I2, by observing the
access pattern ofR1’s queries, the CSP can discover similarities between Ia and Ib.
In a second phase, the CSP corrupts reader R2 who is authorized to query Ib only.
By exploiting the similarities between Ia and Ib and discovering the content of Ib
throughR2, the CSP can easily discover the content of Ia. The index privacy is thus
violated for Ia since the CSP partially learns the content of Ia althoughR1, the only
reader having delegated search rights for Ia, was not corrupted. Furthermore, once
the CSP obtains information about the content of an index, observing the access
pattern of the queries targeting this index enables the CSP to violate the privacy
of these queries. This attack allows to violate both query and index privacy in all
existing MUSE schemes since they all let the CSP discover the access pattern of the
queries. The new adversary model we introduce not only prevents such an attack
but also prevents any attack that would require the corruption of a non-delegated
user.

3 Our Solution

3.1 Idea

Our solution introduces a third party called the proxy that performs an algo-
rithm called QueryTransform to transform a single reader query into one query per
targeted document 1. For each of these queries, the proxy sends to the CSP a spe-
cific PIR request. Thanks to the PIR protocol the CSP does not have access neither
to the content of the query nor to its result, which makes our scheme achieving

1Note that the set of targeted document can reveal the authorized set of documents for this partic-
ular user. However, such an additional information does not have a serious impact on index or query
privacy as access pattern leakage has.
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query privacy (including access pattern privacy) against the CSP. While the use of
PIR provides privacy against the CSP, a new privacy exposure raises with respect
to the proxy. Indeed through the execution of QueryTransform, the proxy is able
to discover the relationship between a query and the different ciphertexts in the
targeted indices which are the encryption of the same keyword. However with the
assumption that the proxy does not collude with the CSP, the proxy cannot realize
whether these ciphertexts are present in their respective indices or not; thus, our
scheme achieves index privacy against the proxy. Moreover thanks to some ran-
domization of the queries and the encryption of the responses by the CSP with the
reader’s key, the proposed solution also ensures query privacy against the proxy.
Consequently, while our solution does introduce a third party (the proxy), this
third party does not need to be trusted and is considered as an adversary. Both
the CSP and the proxy are then considered as potentially malicious in our scheme,
and are only assumed honest-but-curious and non colluding with each other.

Another advantage of introducing the proxy into this new MUSE solution is
scalability: Indeed, thanks to the QueryTransform algorithm executed by the
proxy a user does not need to generate several PIR queries (one per index) for the
same keyword.

3.2 Preliminaries

Bilinear Pairings Let G1, G2 and GT be three groups of prime order q and g1,
g2 generators of G1 and G2 respectively. e : G1 ×G2 → GT is a bilinear map if e
is:

• efficiently computable

• non-degenerate: if x1 generates G1 and x2 generates G2, then e(x1, x2)
generates GT

• bilinear: e(ga1 , g
b
2) = e(g1, g2)

ab ∀(a, b) ∈ Z2

We assume that the widely used eXternal Diffie-Hellman (XDH) assumption
[4] holds.

Definition 1 (External Diffie Hellman assumption). Given three groups G1, G2

and GT and a bilinear map e : G1 × G2 → GT , the Decisional Diffie-Hellman
(DDH) problem is hard in G1, i.e., given (g1, g

α
1 , g

β
1 , g

δ
1) ∈ G4

1, it is computation-
ally hard to tell if δ = αβ.

Private Information Retrieval (PIR) A PIR protocol allows a user to retrieve
data from a database without revealing any information about the retrieved data.

PIR consists of five algorithms:

• PIR.Setup()→ PIRParams
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Figure 2: Overview of our solution.

• PIR.KeyGen() → (PirKey): this algorithm outputs the keying material
for PIR.

• PIR.Query(PirKey, size, target) → Query: given PIR parameters, the
size of the targeted database and a target position, this algorithm outputs a
PIR query targeting the given position in a database of the given size.

• PIR.Process(Query,DataBase) → R: this algorithm applies the query
Query on the database DataBase and outputs a response R.

• PIR.Retrieve(R,P irKey) → Cell: given a PIR response R and the PIR
key used in corresponding query, this algorithm outputs the value of the re-
trieved database cell.

Single-database computational PIR has already been widely studied [10, 2, 11,
1], and the results presented in [1] show that solutions with practical performances
already exist. Our solution uses the technique of recursive PIR which allows to
reduce communication complexity as explained in [1]: The database is viewed as
a matrix each row of which is considered as a sub-database. To query the whole
database a single query is sent and this query is further applied on each row, result-
ing in the generation of many PIR responses.

3.3 Protocol Description

Figure 2 illustrates the structure and the various flows of our solution. We
define two phases in the protocol, the upload phase and the search phase: Dur-
ing the upload phase, a writer A uploads a secure index to the CSP by encrypt-
ing each keyword with the Index algorithm. A then delegates search rights to

7



reader B using the Delegate algorithm which computes an authorization token
using B’s public key and A’s private key. The authorization token is sent to the
proxy. During the search phase, B can further search all the indices for which she
has been given search rights, by creating a single query through the execution of
QueryCreate. Whenever the proxy receives the B’s query it uses the authoriza-
tion tokens attributed to B to transform this query into one PIR query per autho-
rized index through the execution ofQueryTransform. Upon reception of a PIR
query, the CSP through the execution of Respond builds a binary matrix using the
corresponding encrypted index, applies the query to the matrix and encrypts the
resulting PIR answers. The responses are then pre-processed by the proxy through
the execution of ResponseF ilter. Finally B obtains the result of her search query
by executing ResponseProcess.

Revocation in our solution only consists in the deletion of the appropriate au-
thorizations by the proxy upon a writer’s request.

The set of users is denoted by ui1≤i≤N . For the sake of clarity, each user ui is
assumed to own only one index Ii.

• Setup(κ)→ params: given the security parameter κ, this algorithm outputs
the parameters param consisting in:

– a description of the bilinear map that will be used: the three groups
G1, G2, GT of prime order q, the two generators g1 and g2 and the
map itself e.

– a cryptographically secure hash function h : {0, 1}∗ → G1

– the size n of the matrices for PIR, and a hash function H : GT →
J0, n− 1K to transform encrypted keywords into positions in the matri-
ces. Without loss of generality, n is assumed to be a perfect square.

– the PIR parameters PIRParams from the execution of PIR.Setup

– a symmetric cipher Enc and the corresponding decipher algorithm
Dec.

All these parameters are considered implicit for each further algorithm.

• KeyGen(κ) → (γ, ρ, P,K): given the security parameter κ, a user ui gen-
erates the following keys:

– a secret writer key γi
$←− Z∗q

– a private reader key ρi
$←− Z∗q

– a public reader key Pi = g
1
ρ

2

– a transmission key Ki used for Enc/Dec. This key is shared with the
CSP.
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• Index(w, γi)→ w̃: Writer ui executes this algorithm to encrypt keyword w
with his key γi. The algorithm outputs w̃ = e(h(w)γi , g2).

• Delegate(γi, Pj) → ∆i,j : Provided with the public key Pj of reader uj ,
writer ui executes this algorithm using its secret key γi to generate ∆i,j =
P γij the authorization token that authorizes uj to search the index Ii. The
output ∆i,j is sent to the proxy which adds it to the set Dj . Note that this
token can only be created by the legitimate data owner and cannot be forged
by any other party including the CSP and the proxy.

• QueryCreate(w, ρj) → Qj : This algorithm is run by an authorized reader
to generate a query for keyword w using its private reader key ρj . The algo-

rithm draws a randomization factor ξ $←− Z∗q and outputs Qj = h(w)ξρj .

• QueryTransform(Qj , Dj) →< Q′i,j >: Whenever the proxy receives a
reader’s query Q, it calls this algorithm together with the set Dj .

For each authorization token ∆i,j in D, the algorithm creates a PIR query
Q′j as follow:

– compute Q̃i,j ← e(Qj ,∆i,j)

– compute x′||y′ ← H(Q̃i,j)

– some PIR keying material is generated: PirKey ← PIR.KeyGen()

– a
√
n-size PIR query is created that targets position y′:

Q′i,j ← PIR.Query(PirKey,
√
n, y′)

The algorithm outputs < Q′i,j > which are forwarded to the CSP together
with the corresponding identifiers i of the indices. The proxy additionally
stores each generated PIRKey and x′ in a table in order to use them upon
reception of the corresponding response.

• Respond(Q′, I, ξ) → R: Whenever the CSP receives an individual PIR
query Q′, it executes this algorithm using the corresponding index I and the
randomization factor ξ corresponding to this query.

The algorithm initializes a
√
n ×
√
n matrix M with “0”. Then for each

encrypted word w̃ ∈ I , the cell Mx,y is set to “1” where x||y ← H(w̃ξ)
(recall that w̃ ∈ GT ). The response is the tuple of the outputs from the
application of the PIR query Q′ on each row of the binary matrix M : R̃ ←
(PIR.Process(Q′,Mx) | Mx a row of M). Each component of R̃ is then
encrypted with algorithm Enc using the transmission key K of the querying
reader to obtain R which the algorithm outputs. This layer of encryption
prevents the proxy from reading the result of the query.

• ResponseFilter(R, x′, P irKey)→ (R′, P irKey): Whenever the proxy re-
ceives a response R it calls this algorithm together with the x′ and PirKey
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associated to the corresponding query. The purpose of this algorithm is to
reduce the communication cost for the reader. Indeed the algorithm extracts
the x′-th component ofR and outputs it together with the value for PirKey.
This results in a filtered response which is much smaller than the original
response.

• ResponseProcess(R′, P irKey,K)→ b ∈ {0, 1}: On receiving the filtered
response R′ with the corresponding PirKey, the reader executes this algo-
rithm using her transmission key K. The algorithm further outputs the value
of PIR.Retrieve(DecK(R′), P irKey) which corresponds to the content
of the retrieved matrix cell. An output of 1 means that the searched keyword
is present in the index, and a 0 means that it is absent.

3.4 Correctness

We now show that a query correctly retrieves a particular cell which content
corresponds to whether the queried keyword has been uploaded or not.

Let γ be the encryption key of a given index. If keyword w has been uploaded
to that index, then the cell Mx,y of the corresponding matrix is equal to 1 with
x||y = H(e(h(w), gγ2 )). Conversely if a given cell Mx,y is equal to 1 then with
high probability the corresponding keyword w where x||y = H(e(h(w), gγ2 )) has
been uploaded. A false positive implies a collision in either H or h. Thus the
content of Mx,y corresponds to the upload of w.

Secondly, a query for keyword w in that index will retrieve cell Mx′,y′ with:

x′||y′ = H(e(h(w)ρ, g
γ
ρ

2 )) = H(e(h(w), gγ2 )) = x||y . (1)

Thus a response to a query will decrypt to the content of the proper cell and our
scheme is correct.

4 Security Model

Our security definitions are game-based definitions, where the games are rep-
resented by algorithms. Since the CSP and the proxy are considered as two non-
colluding adversaries, security will be defined for each of them independently. The
consequence of the non-collusion assumption is that each adversary will see the
other one as an oracle. For each adversary type we define one game for index
privacy and one game for query privacy. For each definition, the corresponding
game consists of seven phases: a setup phase, a learning phase, a challenge phase,
a restriction phase, second learning and restriction phases identical to the previous
ones, and finally a response phase. The adversary is denoted by A.
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4.1 Security with the CSP as Adversary

We now formally define Index Privacy and Query Privacy considering the CSP
as the adversary. In the following two definitions the setup and the learning phases
are the same and are described in Alg. 1. The challenge and restriction phases
for index privacy are further described in Alg. 2 and the ones for query privacy
are described in Alg. 3. Finally during the response phase, A outputs a bit b∗

representing its guess for the challenge bit b.

Definition 2 (Index Privacy Against the CSP). We say that a MUSE scheme achieves
index privacy against the CSP when the following holds for the index privacy game
(Alg. 1 and Alg. 2): |Pr[b = b∗]− 1

2 | ≤ ε, with ε a negligible function in the secu-
rity parameter κ.

Definition 3 (Query Privacy Against the CSP). We say that a MUSE scheme achieves
query privacy against the CSP when the following holds for the query privacy game
(Alg. 1 and Alg. 3): |Pr[b = b∗]− 1

2 | ≤ ε, with ε a negligible function in the secu-
rity parameter κ.

4.2 Security with the Proxy as Adversary

Due to space limitations we do not provide the detailed description of index
and query privacy games whereby the proxy is considered as the adversary. In a
nutshell, the main differences with the previous games are the following:

• during the learning phase the proxy can query for the Respond algorithm
executed by the CSP, but does not query for the QueryTransform and
ResponseF ilter algorithms. Moreover the proxy receives the output of the
Delegate algorithm, but does not get the transmission key and the random-
ization factors of the users.

• during the challenge phase, the proxy does not receive the output of the
Index algorithm for index privacy, and receives the output ofQueryCreate
for query privacy.

5 Security Analysis

Inspired by the methodology in [14], in order to prove each security property
we define a sequence of games (gamei)i=0..n, the first game being the original
security definition. For each game gamei a “success event” Si is defined as the
event when the adversary Ai correctly guesses the challenge bit b used as part of
the challenge. For every two consecutive games gamei and gamei+1, it is shown
that |Pr[Si] − Pr[Si+1]| is negligible. Then it is shown that the probability of
success Pr[Sn] of the last game is the target probability, namely 0.5. Hence the
probability of success of the first game is negligibly close to the target probability,
which ends the proof.
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/* Setup phase */
A ← Setup();
for i = 1 to N do

(γi, ρi, Pi,Ki)← KeyGen(κ) ;
A ← (i, Pi,Ki) ;

end
/* First learning phase */
for j = 1 to a polynomial number l1 do
A → query ;
switch query do

case Index for word w and user ui
A ← Index(w, ui);

case Corrupt user ui
A ← (ρi, γi,Ki)

case Delegation of user ui by user uj
/* A does not receive any value, but the

delegation will modify the set Di used
in QueryTransform */

end
case Queries for word w from user ui

/* Di comes from the Delegations queried by
A */

A ← QueryTransform(QueryCreate(w, ρi), Di);
/* A also receives the randomization

factor ξ */
A ← ξ;

case Queries for user query Q from corrupted user ui
A ← QueryTransform(Q,Di);

case Filtered response for response R from corrupted user ui
A ← ResponseF ilter(R)

endsw
end

Algorithm 1: Setup and learning phases of both index privacy and query
privacy games, whereby A is the CSP
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/* Challenge phase */
A → (uchall, w

∗
0, w

∗
1);

b
$←− {0, 1};

A ← Index(w∗b , uchall);
/* Restriction phase */
if uchall is corrupted OR Index for w∗0 or w∗1 for user uchall has been
previously queried OR a corrupted user has been delegated by uchall then

HALT;
end

Algorithm 2: Challenge and restriction phases of the index privacy game
whereby A is the CSP

/* Challenge phase */
A → (uchall, w

∗
0, w

∗
1);

b
$←− {0, 1};

A ← QueryTransform(QueryCreate(w∗b , ρchall), Dchall);
/* Restriction phase */
if uchall is corrupted then

HALT;
end

Algorithm 3: Challenge and restriction phases of the query privacy game
whereby A is the CSP
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Due to space limitations we provide a detailed proof for index privacy against
the CSP only.

5.1 Index Privacy with the CSP as the Adversary

Theorem 1. Our construction achieves index privacy against the CSP.

game0

Let game0 be the game of Definition 2 (Alg. 1 and Alg. 2). The success event
S0 is “b = b∗”.

game1

The only difference between game0 and game1 is that in game1, the adver-
sary A1 can no longer send queries requesting the corruption of a user. Conse-
quently A1 can neither send queries related to corrupted users, namely queries for
QueryTransform and ResponseF ilter.

Lmma 1. If Pr[S1] is negligibly close to 0.5, then Pr[S1] and Pr[S0] are negligibly
close.

Proof. This Lemma is proved by introducing an adversary A1 executing the al-
gorithm depicted in Alg. 4.
A1 plays game1 using adversary A0 playing game0. To that effect, A1 sim-

ulates an instance of game0 with respect to A0 and responds at game1 using the
response of A0. Since, as opposed to A0, A1 cannot corrupt any user, A1 has to
fabricate responses to A0’s corruption queries as part of the simulated instance of
game0. To do so, A1 simulates corrupted users by locally generating keys which
are sent to A0 as a response to the corruption query. These same generated keys
must be used in all responses related to this corrupted user in order for A1 to sim-
ulate a consistent instance of game0. However A0 may have sent queries related
to this user before the corruption query. A way for A1 to ensure the required con-
sistency is to choose a set of users that will be simulated from the beginning. IfA0

sends a request to corrupt a user thatA1 chose not to simulate,A1 cannot simulate
a proper instance of game0 any more. Simulation also fails if a user that was simu-
lated by A1 is chosen by A0 to be the challenge user or a delegate of the challenge
user. We define the event C as when none of the previous cases occur, i.e., C is
“A0 does not corrupt any non-simulated user andA0 does not chose any simulated
user as either the challenge user or a delegate of the challenge user”. We also define
the event C ′ as “all users but the challenge user and her delegates are simulated”.
Since C ′ implies C we have Pr[C] ≥ Pr[C ′], and actually Pr[C] is expected to
be much greater than Pr[C ′]. Whenever the event C occurs, A0 received a valid
instance of game0 with the challenge value from the instance of game1, and thus
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A1 receives data from game1 setup phase;
/* A1 simulates some users to A0 */

Sim
$←− P([1..N ]);

for i ∈ Sim do
(γ′i, ρ

′
i, P
′
i ,K

′
i)← KeyGen(κ)

end
for i from 1 to N do

if i ∈ Sim then
A0 ← (i, P ′i ,K

′
i);

else
A0 ← (i, Pi,Ki)

end
end
/* Learning phase 1 */
for a polynomial number l1 of times do
A0 → query;
if A1 knows all the input values for the corresponding algorithm then
A1 runs the algorithm locally and sends back the answer;

else
if query was for corruption then

/* exit with random guess */

b∗
$←− 0, 1;

A1 → b∗;
HALT;

else
A1 forwards the call to game1 and forwards the answer to A0;

end
end

end
/* Challenge phase */
A1 forwards everything from A0 to game1 and back.
/* Learning phase 2 */
Same as learning phase 1;
/* Response phase */
A1 forwards the bit b∗ outputted by A0;

Algorithm 4: Algorithm run by A1 the transition adversary from game0 to
game1. Restrictions phases are omitted.

the probability for A1 to succeed at game1 is the probability of A0 to succeed at
game0:

Pr[S1|C] = Pr[S0] . (2)
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If the simulation of game0 fails,A1 can still give a random answer to game1 which
implies:

Pr[S1|¬C] = 0.5 . (3)

Finally we define the event C ′i as “user ui is either simulated or challenge-or-
delegate, but not both”. We have Pr[C ′i] = 0.5 and Pr[C ′] =

∏
i=1..N Pr[C

′
i]

thus Pr[C ′] = 2−N and it follows that Pr[C] ≥ 2−N . It seems reasonable to
assume that the number N of users grows at most polylogarithmically with the
security parameter κ, which implies that Pr[C] is non-negligible:

∃p polynomial in κ,
1

Pr[C]
≤ p . (4)

Then the following holds:

Pr[S1] = Pr[S1|C].P r[C] + Pr[S1|¬C].P r[¬C]

Pr[S1] = Pr[S0].P r[C] + 0.5(1− Pr[C])

Pr[S1] = Pr[C]. (Pr[S0]− 0.5) + 0.5

Pr[S0] = 0.5 +
1

Pr[C]
(Pr[S1]− 0.5)

Pr[S0]− Pr[S1] = (0.5− Pr[S1])
(

1− 1

Pr[C]

)
.

Then from (4) we have that if (0.5− Pr[S1]) is negligible then |Pr[S0]− Pr[S1]|
is negligible also. This conclude the proof of Lemma 1.

game2

In game2, calls to QueryCreate are replaced by the generation of random
bits.

Lmma 2. Pr[S2] is negligibly close to Pr[S1].

Proof. Distinguishing between game1 and game2 is equivalent to breaking the
security of the encryption scheme used in the PIR construction. This holds because
corruption is not allowed in game1, and hence the adversary cannot obtain the
required PIR parameters to open the PIR query. It follows that Lemma 2 is true.

game3

In game3, the call to Index in the challenge phase is replaced by picking a
random element in GT .

Lmma 3. Pr[S3] is negligibly close to Pr[S2].
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Proof. To prove this Lemma we build a distinguishing algorithm DDDH , de-
scribed in Alg. 5, which uses a game2 adversary A2 and which advantage at the
DDH game is :

εDDH = O(
1

Nl
)|Pr[S3]− Pr[S2]| . (5)

Given the DDH problem instance (g1, g
α
1 , g

β
1 , g

δ
1) ∈ G4

1, the intuition behind
algorithm DDDH is to “put” β in the challenge word, α in the challenge user key,
and δ in the value given toA2 during the challenge phase. DDDH makes some pre-
dictions on the queries of A2, namely on the user A2 will choose as the challenge
user and on the moment A2 will call the hash function h on the challenge word. If
these predictions prove false DDDH sends a random answer to the DDH problem.
Otherwise if the predictions prove true DDDH outputs 1 if A2 wins the game and
0 if not. If the correct answer to the DDH game was 1 thenA2 was playing game2
andDDDH outputs 1 with probability Pr[S2]. Similarly if the answer to DDH was
0 DDDH outputs 1 with probability Pr[S3] During the whole game DDDH simu-
lates the hash function h as a random oracle, using O which behaves the following
way: ifO has stored a value for keyword w, O[w] returns this value; else it returns
a random value and stores it for future queries.

The following variable change shows that if the predictions prove right, the
adversary received a proper game instance:

α↔ γchall, g
β
1 ↔ h(w∗b ) . (6)

The probability that the predictions were correct is clearly non-negligible: Pr[upredict =
uchall] = 1/N and the probability that predicted I is correct is O(1/l), N and l
being at most polynomial in the security parameter κ.

Finally from the XDH assumption, DDH is a hard problem in G1. Thus εDDH
is negligible in κ. Given that N and l are at most polynomial in κ and from (5), we
have that |Pr[S3]− Pr[S2]| is negligible which concludes the proof of Lemma 3.

Proof of Theorem 1. In game3 the adversary does not receive any value which
depends on the challenge bit, so Pr[S3] = 0.5. Then Lemma 3 implies that Pr[S2]
is negligibly close to 0.5, Lemma 2 implies that Pr[S1] is negligibly close to 0.5
and finally Lemma 1 implies that Pr[S0] is negligibly close to 0.5. This concludes
the proof of Theorem 1.

6 Performance Analysis

During the upload phase, the cost for a user of running the Index algorithm
over the entire index is naturally linear towards the number of keywords in the
index. The most costly operation within the Index algorithm is one pairing com-
putation; however since inside a same index the second argument of the pairing
remains the same between two executions of Index, pairing becomes much more
efficient than in the case with independent pairings [13].
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Furthermore, the Delegate algorithm only consists in one exponentiation.
As the search phase involves three parties, namely the reader, the proxy and the

CSP, we evaluate the computational cost for each of them.
The QueryCreate algorithm executed by the reader is not costly since it only

consists of one hashing and one exponentiation. This algorithm outputs a unique
query for a given keyword to be searched in several indices. Therefore, the cost of
this algorithm does not depend on the number of searched indices. On the other
hand, the reader will receive one response per targeted index and will have to ex-
ecute ResponseProcess over each received response. The cost for one response
consists in one decryption through Dec and one PIR.Retrieve operation. Note
that the retrieved value for each index is a single bit, and based on [1] the compu-
tational overhead can be considered as reasonable for a lightweight user.

The cost for the proxy of multiplexing the queries with QueryTransform
and filtering the responses with ResponseF ilter is linear towards the number of
indices the querying reader is authorized to search, and for each queried index the
proxy performs a pairing and one execution of PIR.Query. TheResponseF ilter
algorithm can be considered negligible as it only extracts the relevant part of the
response.

For a given keyword search query, the CSP builds one matrix per queried index,
and executes PIR.Process on each matrix. The building of one matrix requires
one exponentiation in GT per keyword. The operations performed by the CSP
being similar to the ones in [9], the workload of the CSP is considered affordable
for a cloud server.

To conclude our scheme achieves a very low cost at the reader side, which
usually is the main requirement for a cloud computing scenario, and a reasonable
cost at the CSP and the proxy. Figure 3 summarizes the cost of each algorithm
considering a scenario where one writer uploads several indices and one reader
send one query.

7 Related Work

Our review of the related work focuses on fully multi-user SE schemes. For a
detailed survey on SE in general, we refer the reader to [6].

While solutions in [7, 9] seem very efficient in the case where there is a single
writer authorizing multiple readers, they become unpractical for the multi writer-
multi reader case. Indeed each reader should at least store one key per writer and
send one query (even if the same) per writer.

Among the few existing MUSE solutions [8, 5, 15, 12, 3], all of them except
the one described in [12] require the existence of a TTP, which is an unpractical
assumption that our solution does not make. Finally, all the solutions share a com-
mon pitfall as they do not ensure access pattern privacy. As already discussed in
this paper, this leads to a serious privacy exposure in the case where users collude
with the CSP. Furthermore the execution of PIR.Process in our solution is less
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Algorithm Cost number of executions
Index h+ e+ expG1 i.k

Delegate expG2 i.d

QueryCreate h+multZq + expG1

QueryTransform a(e+H + PIR.KeyGen+ PIR.Query)

Respond k(expGT + h) +
√
n(PIR.Process+ Enc) a

ResponseFilter negligible (data forwarding) a

ResponseProcess Dec+ PIR.Retrieve a

Key:

• expX : cost of an exponentiation in X

• multX : cost of a multiplication in X

• k: number of keyword per index

• i: number of index owned by a writer

• d: number of reader with delegated search rights per index

• a: number of indices the reader is authorized to search

• name of a function: execution cost of this function

Figure 3: Computational cost of each algorithm.
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costly compared to the search operation at the CSP in all existing MUSE schemes,
since in these schemes the trapdoor must be tested with each encrypted keyword
in the index either until the test shows that the keyword is present, or until all the
keywords in the index have been tested.

8 Conclusion

We have presented a new multi-user searchable encryption scheme that is prov-
ably secure under the newly proposed adversarial model witch considers the case
where some users can collude with the CSP. All existing schemes become insecure
under this new model. The proposed solution is very efficient for the user as it
introduces a new party, the proxy, which bears most of the overhead. At the same
time this overhead remains reasonable for both the CSP and the proxy.

Future work on this scheme will include implementation and benchmark results
of the presented scheme with realistic datasets.
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DDDH ← (g1, g
α
1 , g

β
1 , g

δ
1);

A ← Setup();

predict
$←− [1..N ];

I
$←− [0, .., l];

for i from 1 to N do
(γi, ρi, Pi,Ki)← KeyGen(κ);
A ← (i, Pi,Ki)

end
for a polynomial number l of times do
A → query;
switch query do

case hash of word w through h
if this is the I-th call to O then
A ← gβ1

else
A ← g

O[w]
1

end
case Index for word w and user upredict
A ← e((gα1 )O[w], g2);

otherwise
normal handling of the query;

end
endsw

end
A → (uchall, w

∗
0, w

∗
1);

b
$←− {0, 1};

if chall 6= predict OR I = 0 and O has been called with input w∗b OR
I 6= 0 and w∗b does not correspond to the I-th call to O then

bDDH
$←− 0, 1;

DDDH → bDDH ;
HALT;

end
A ← e(gδ1, g2);
A → b∗;
if b∗ = b then
DDDH → 1;

else
DDDH → 0;

end
Algorithm 5: Listing for the distinguishing algorithm DDDH from game2
to game3.
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