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Abstract—Opportunistic networking has been proposed to
support a number of novel applications, like content sharing
or mobile data offloading, that follow a content-centric com-
munication model, i.e., many users are interested in the same
content. Users’ traffic demand patterns can crucially affect the
performance of such applications, but our knowledge about
the characteristics of content demand is limited. Nevertheless,
opportunistic networking is known to exhibit strong locality and
social characteristics. For this reason, in this paper we argue that
some initial insights about opportunistic traffic patterns could be
inferred from geo-social network data. In particular, we study
the check-in patterns of users in datasets of two real Location-
Based Social Networks, towards understanding potential traffic
characteristics and implications for opportunistic networking.

I. INTRODUCTION

The recent growth in the number of mobile devices with
rich communication and storage resources enables new ways
of mobile networking. Mobile devices (e.g., smartphones,
laptops) can directly exchange data using short-range com-
munication technologies (e.g., Bluetooth, WiFi Direct) when
they are in proximity. Many novel applications, based on such
opportunistic communications, have been recently proposed,
e.g., content sharing [1], [2], [3], collaborative sensing and
computing [4], offloading of cellular networks [5], [6], [7],
etc.

A common trend among these applications is that they
follow a content-centric communication model, where many
users are interested in the same content, or in contents be-
longing to the same category. Example cases are the scenario
where a user creates a content and distributes it locally to
(and through) neighboring devices (floating content) [1], [3],
or the scenario where a cellular network offloads mobile traffic
by distributing popular content to a few relay users which
opportunistically forward it to any other interested user (mobile
data offloading) [5], [6], [7].

A crucial factor for the performance, or even the feasibility,
of opportunistic content-centric applications is the number of
users that are involved in the data dissemination process and
their traffic demand [1], [6], [7]. When the density of users
willing to participate in the opportunistic network is low, a
content might not be able to disseminate [1], [7]. Moreover,
when a content is not popular, i.e., only a few users are inter-
ested in it, its delivery through opportunistic communications
might be inefficient or unnecessary [6], [7]. As a result, the
knowledge of the (i) user density, (ii) content popularity and
(iii) data demand patterns (or a correct estimation of them)
under different settings is of high importance.

However, up to now, there is a lack of data about such
traffic patterns, since large-scale opportunistic networks have
not been deployed and the only experience we have is of
small, experimental settings (e.g., see [8]), which are not
representative examples of real traffic. Hence, previous studies
have mainly inferred traffic patterns based on statistics from
other communication paradigms, like the Web [9], peer-to-
peer or cellular networks [10], [11]. For instance, a common
assumption is that content popularities follow a Zipf-law
distribution, similarly to the webpage requests [9].

Despite the resemblance between the mechanisms of novel
(opportunistic) and traditional (P2P, Web, etc.) content-centric
applications, the respective networking paradigms differ in a
number of dimensions, which might lead to different traffic
patterns as well. In particular, the inherent locality of oppor-
tunistic networks (data dissemination in long distances usually
comes with large delays) [1], [3] and their content-centric
applications (e.g., offloading mobile data from overloaded base
stations) [5], [6], [7], is a determinant/key factor for the traffic
to be exchanged between users.

To this end, in this paper, we infer traffic statistics for op-
portunistic applications from Location-Based Social Networks
(LBSNs). Check-in data from LBSNs might be useful sources
of information because they connect the location of a user
and her context (hence, what type of content the potential
opportunistic node might be interested in). Therefore, we look
at user check-ins in two large LBSN datasets, and their relative
popularity as an indirect measure of potential demand for
content, and we consider two main categories:
(a) Individual venue popularity as a fine-grain indication of
popularity related to local content.
(b) Venue category popularity as an indication of popularity
of types of contents.

Although, a check-in does not necessarily imply a content
request, correlation between the presence of users in certain
locations and their traffic demand (volume and type) has
been supported by a number of studies [11], [12], [13]. For
instance, [11] shows that the location affects the applications
accessed by users, [12] demonstrates variations in the traffic
depending upon the geo-location of users, while [13] builds
a mobile cloud caching system based on the observation that
for many mobile applications the specific data that is accessed
depends on the current location of the user. The intuition from
these studies, coupled with the insights on the opportunistic
communication mechanisms, suggest that the qualitative char-
acteristics or relative statistics of traffic demand is probable to
bear a resemblance to the corresponding characteristics of user



check-ins. Thus, by analyzing LBSN check-ins, our goal in this
paper is to obtain understanding and try to answer interesting
questions related to content-centric traffic, like
− Which distributions better describe the content popularity?
− What are some typical values of their parameters?
− How traffic intensity might differ in various locations?
− How does it change over time in a certain location?

The rest of this paper is organized as follows. After
describing the datasets (Section II), we extract statistics from
which we infer traffic patterns that relate to content popularity
(Section III), and time varying characteristics of data demand
(Section IV). In each section, we first provide the methodology
for the data processing, and we conclude it by providing
directions for how our results could be used for the evaluation
and design of opportunistic networking applications.

II. DATASETS

Location-Based Social Networks (LBSNs) have recently
become very popular among mobile phone users and busi-
nesses, as they offer a new way of social networking and new
advertising possibilities. In a LBSN, users, using a mobile or
web application, post their presence at a venue (“check-in”),
where a venue can be a place (e.g., airport), a business (e.g.,
restaurant), etc., registered in the venue database. Furthermore,
it is common for users to associate their LBSN account to
their accounts in other online social networks (OSNs), like
Facebook or Twitter, in order to notify / share their check-in
activity with their social connections (friends, followers, etc.).

In this study, we analyze large datasets from two LBSNs,
namely the Foursquare and the Gowalla networks. The two
datasets were collected and published by Yanhua Li et al. [14]
and Theus Hossmann et al. [15], respectively. In the remainder,
we briefly describe the main characteristics of the datasets and
the information we use in our analysis. We refer the interested
reader to the initial publications [14], [15] for a complete
presentation and a detailed description of the datasets.

Foursquare dataset [14]
Foursquare1 is a web and mobile application that allows
registered users to post their location at a venue (“check-in”)
and connect with friends. The dataset we analyze (Yanhua Li et
al. [14]), contains information about 2.4 million venues, from
14 geographic regions all over the world, during a period of
two months (May-June) in 2012. Data are organized as a list of
venues including the following information: (i) location of the
venues, (ii) category they belong to (e.g., bar, gym, theater),
and (iii) number of Foursquare users that have visited them
(#users), number of check-ins (#checkins) and the number of
“tips” users left during the data collection period.

Gowalla dataset [15]
Gowalla was2 a location-based social network, where users
were able to check-in to close-by venues (e.g., restaurants,
office buildings, shops, etc.) through their mobile phones. We
analyze a dataset (Hossmann et al. [15]) of 350, 000 users that
checked-in 27 million times in 2.5 million different venues all
around the world in the period Jan. 2009 - July 2011. Data
are organized as a list of “check-ins”. A “check-in” logs the

1https://foursquare.com/
2Gowalla was launched in 2007 and closed in 2012.

(i) location of the venue, (ii) the context of the venue (i.e., the
category it belongs), and (iii) the time of the check-in.

For ease of reference, in Table I, we present the (subset of
the) data attributes used in our analysis for both datasets.

TABLE I: Data attributes in Foursquare and Gowalla datasets.

Foursquare Venue ID Location Category #users #checkins

(list of venues) (City)

Gowalla Venue ID Location Category Time Check-in ID

(list of checkins) (City)

III. CONTENT POPULARITY

In this section, we focus on content popularity patterns
that might appear in an opportunistic networking application
(Section III-A). We present a number of popularity-related
statistics, and how they vary along different system dimen-
sions, like the type of content-centric applications (location-
based or context-based) and the network size (Sections III-B
and III-C). Then, we summarize our findings and discuss some
important implications (Section III-D).

A. Inferring Content Popularity from Check-ins

To infer content popularity statistics, we analyze the corre-
sponding statistics of (a) check-ins in different venues and (b)
check-ins related to different categories/contexts. As discussed
earlier, the correlation between check-ins and content requests
might be significant in opportunistic applications. Thus, we
also expect similarities between the relative statistics (e.g., dis-
tribution type, coefficient of variation) of these two quantities3.

Location-based statistics: In a number of opportunistic
applications users request contents related to the area they
reside [1], [2], [3], [13], resembling thus communication in
LBSNs. For instance, contents might be a piece of data
corresponding to a map, road traffic or local event notification,
etc. With respect to our datasets, a user check-in at a venue,
indicates some interest of the user in the certain venue/location.
Hence, users checking in the same venues are probable to be
also interested in a content related to this location [2], [3], [13].
This does not of course mean that these nodes only care about
content related to this location. It simply suggests that the
larger the number of check-ins the higher the potential traffic
demand for local content. To this end, we use the popularity of
a venue as an indicator for the popularity of a content related
to the venue location.

Our datasets contain information about how many nodes
have checked-in at a venue and how many times, which,
equivalently, denote the popularity of a venue. Therefore, as
a first step towards calculating the popularity statistics, we
find for each venue the number of total users (#users) that
checked in it and the total number of check-ins (#checkins)4.
In the Foursquare dataset this information is already available,
whereas for the Gowalla dataset, we calculate it by aggregating
the individual check-ins in each venue.

3In contrast, the quantitative characteristics or absolute statistical values,
like mean value or variance, might differ among these two metrics (check-ins
and content requests), due to their different nature.

4The two metrics (number of users and check-ins) are used as two different
indicators of venue popularity [14].



Context-based statistics: In content-centric applications,
contents corresponding to a certain context/category are dis-
seminated to interested users through opportunistic commu-
nication. Some examples could be news or trending videos
belonging to a certain category, delivered through publish-
subscribe or mobile data offloading mechanisms, etc. [5], [6],
[7]. Content popularity plays a crucial role for the performance
of such context-based dissemination mechanisms [6], and an
a-priori knowledge (or estimation) of the popularity patterns
could lead to a better system design [6], [7].

Since each venue in our datasets belongs to a category, we
can infer statistics for the content popularity by the number
of users that have checked in (or the number of check-ins)
at a venue belonging to different categories. To this end, we
group the venues per category and then sum the number of
users/check-ins of all the venues that belong to each category.
This, gives the category popularity and we use it as an
indication for the content popularity.

B. Location-Based Statistics

In this section, we first consider the aggregate statistics
of venue/content popularity over the whole datasets, and then
perform a per city analysis, where we calculate the statistics
separately for venues located at different cities. This analysis
allows us to reveal possible similarities and differences ap-
pearing in networks with large or small sizes (aggregate and
per-city statistics, respectively).

Aggregate Statistics. For each venue in the datasets, we
calculate the total number of users that have checked in
(#users) and the total number of check-ins (#checkins). Then
we calculate the experimental Complementary Cumulative
Distribution Function (eCCDF) of #users and #checkins over
all venues, where the CCDF of a random variable x is

F x(t) = P{x > t} (1)

For instance, if the random variable x is the number of users
per venue (#users), and only one third of the venues have more
than u users checked in them, then we denote F #users(u) =

1
3 .

In Fig. 1 we present the eCCDF of the #checkins5 per
venue in the (a) Foursquare and (b) Gowalla datasets. The
first observation is that the venue popularity follows a power-
law distribution (i.e., a straight line in a log-log plot), with
a slightly faster decrease of the tail (i.e., right part of
the plot, corresponding to high popularity values) in the
Foursquare dataset.

This observation, leads us to fit experimental data (i.e.,
the eCCDFs) with a well-known power-law distribution, the
generalized Pareto distribution6, whose CCDF is given by

F x(t) = P{x > t} =
(

1 + 1
α
· t−θ

σ

)−α
(2)

where the exponent α is the shape parameter, and σ and θ are
the scale and threshold parameters, respectively.

Since we are interested more in the qualitative character-
istics of the popularity distributions, in the remainder, we give

5Using the #users as the popularity metric, gives similar results.
6We tried to fit the data with other types of distributions (Gamma, Weibull,

etc.) as well. However, the fitting curves deviated more from the eCCDF curve.
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Fig. 1: Popularity distribution (#checkins) of venues in the (a)
Foursquare and (b) Gowalla datasets.
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Fig. 2: Distribution (presented in boxplots) of the shape parameter α
of the generalized Pareto distributions fitted to the venue popularity
in different cities.

emphasis to the shape parameter α of the fitting distributions,
rather than the scale and threshold parameters, which are
related more to their quantitative characteristics. Low values
of α (e.g., around or less than 1) denote a skewed popularity
distribution, whereas large values denote a distribution with
its mass being more concentrated. Hence, from Fig. 1, we
can see that the popularity distribution in the Gowalla dataset
(α ≈ 1.9) is less skewed than in the Foursquare case (α ≈ 1.4).

Per City Statistics. We now consider the venues located
in each city separately, and perform the same analysis, to
investigate if the previous conclusions hold also in smaller
(city-scale) networks. To avoid statistical errors due to small
samples, we preprocessed the Foursquare dataset and consid-
ered only the 113 cities with more than 1000 venues. In the
Gowalla dataset, we analysed the data of the 31 cities with the
highest number of users.

We calculated the eCCDF of the data (but only for the
venues located in a given city). The tails of the data experi-
mental distributions follow a power-law as well; however, they
decrease a little faster than the generalized Pareto distributions
we fitted to them. Due to the large number of cities, we cannot
present the detailed plots for all of them. Instead, we present
in boxplots the values of the shape parameter α of the fitting
Pareto distributions, in Fig 2.

For both datasets, the left boxplots correspond to the case
where popularity is inferred from the number of users (#users)
and the right boxplots to case where it is inferred from the
number of check-ins (#checkins). In the Foursquare dataset
(Fig 2(a)) the values of α lie in the range α ∈ [1, 3.5], whereas
in the Gowalla dataset (Fig 2(b)) they span a smaller range (due
to the lower number of cities considered) from values less than
1 up to 2.
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Fig. 3: Popularity distribution of contexts (i.e., set of venues belonging
to a certain category) in the (a) Foursquare and (b) Gowalla datasets.

C. Context-Based Statistics

We now analyse the data towards calculating context-based
statistics. To consider different network sizes, we first group
all the venues in the dataset according to the category they
belong, and then, we proceed similarly for the venues located
in each city separately.

Aggregate Statistics. In Fig. 3 we present the eCCDF of the
total number of users7 per category (i.e., those who checked
in venues with the same category attribute value) in the (a)
Foursquare and (b) Gowalla datasets, along with two fitting
distributions: a generalized Pareto distribution (see Eq. (2)),
and a gamma distribution, whose CCDF is given by

F x(t) = P{x > t} = 1− 1
Γ(α) · γ(α, β · t) (3)

where α and β, are the shape and rate parameters, and Γ(·)
and γ(·) are the gamma function and the lower incomplete
gamma function, respectively. A gamma distribution can also
be expressed via its mean value µ and coefficient of variance
CV = σ

µ
(σ is the variance), which relate to α and β as:

µ = α
β

and CV = 1√
α

(4)

Since we are interested in the variability (skewness) of content
popularity, we focus only on the shape parameter α, or,
equivalently, on the coefficient of variation8 CV .

What can be observed in Fig. 3, is that the tails of the
data distributions (eCCDF) decrease faster than these of the
corresponding power-law distributions. In this case a gamma
distribution, which has an exponential decrease of the tail,
could better capture the tail of the eCCDF. Nevertheless, in the
case of Foursquare dataset, a generalized Pareto distribution
could be also used as an approximation for the main body of
the real data distribution. Moreover, comparing the results for
the context-based popularity (Fig. 3) with the corresponding
location-based statistics (Section III-B), it is evident that,
in general, the former are less skewed (mainly, due to the
aggregation/grouping of venues in categories).

Per City Statistics. As previously, we analysed the statistics in
each city separately by grouping venues belonging to the same
category. For all cities in both datasets, we observed that the
tails of the data distributions (eCCDF) decrease exponentially,
and, therefore a gamma distribution could better capture the

7Using the #checkins as the popularity metric, gives similar results.
8The CV serves also as an indication for the heterogeneity of a popularity

distribution.
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Fig. 4: Distribution (presented in boxplots) of the coefficient of vari-
ation CV of the gamma distributions fitted to the context popularity
in different cities.

context-based popularity patterns. In Fig. 4 we present the
distribution of the values (in boxplots) for the coefficients
of variation (CV ) in each scenario. It is evident that the
heterogeneity (indicated by the value of CV ) of the context
popularity varies, but, in general, it is large (i.e., larger than
1) for the majority of the scenarios.

D. Conclusions and Implications

Our findings show that popularity patterns may vary when
considering different types of applications and network sizes.
In Table II, we summarize the observations, show what kind of
fitting distributions better approximate the content popularity
in each scenario, and present the ranges of values of the shape
parameters (α and CV for the Pareto and gamma distribu-
tions, respectively) we observed in the data. These statistics
could be used as realistic example cases in simulation/analytic
studies for, e.g., performance prediction of content-centric
schemes [6], design of caching policies [5], or network di-
mensioning [7]. Depending on the scenario considered, e.g.,
location-related content, context-based content, large networks,
small networks, large areas, small areas, etc., one might need
to select different statistics, as Table II suggests.

TABLE II: Content Popularity Statistics in Various Scenarios

Content Type Network Size Pareto α Gamma CV

Location Large X [1.2 , 1.8] × -

Context Large X [1.1 , 1.2] X [2 , 2.8]

Location City X [0.75 , 3.5] × -

Context City × - X [1.75 , 5]

To further demonstrate how our findings can be used, we
consider the following example: the expected delivery delay
of a content E[T ], under a single-hop content dissemination
scheme and under the optimal content placement policy (see [6,
Result 5]), is given by [6]

E[T ] = c ·
(Ep[

√
x])

2

Ep[x]
(5)

where c is a constant depending on nodes’ mobility and storing
capacity, and Ep[·] denotes an expectation taken over the
content popularity distribution (x denotes the random variable).

We now consider two cases: (C1) a location-based and (C2)
a context-based application. As suggested by Table II, content
popularity is captured better by a Pareto distribution9 (with

9The generalized Pareto distribution for σ = θ

α
, is equivalent to the Pareto

distribution.



1234
0

0.5

1

α

E
[T

]

(a) case (C1)

1 2 3 4 5
0

0.5

1

CV

E
[T

]

(b) case (C2)

Fig. 5: Expected delivery delay E[T ] (normalized) vs. increasing
heterogeneity of content popularity, i.e., (a) decreasing α for case
(C1) and (b) increasing CV for case (C2).

parameters {α, θ}) for case (C1), and a gamma distribution
(with parameters {µ,CV }) for (C2). Then, the expected deliv-
ery delay for the cases (C1) and (C2), is given by (see Eq. (5))

E[T (C1)] = c · α·(α−1)
(α−0.5)2 and E[T (C2)] = c ·

(

Γ( 1

CV 2
+0.5)

1

CV
·Γ( 1

CV 2 )

)2

From the above expressions, one can see how E[T ] changes for
increasing heterogeneity of content popularity (note: hetero-
geneity increases when (C1) the shape parameter α decreases,
or (C2) the CV increases). To demonstrate this more clearly,
in Fig. 5 we plot such changes. Two main observations are: (i)
in both cases E[T ] decreases as heterogeneity increases; (ii)
the effect of heterogeneity in the two cases (that correspond
to location- and context- based application types) is different,
in the first case the curve of E[T ] is concave, while in the
second case the curve is convex.

IV. TIME VARIATIONS OF TRAFFIC DEMAND

In this section we study the variations over time (over long
and short term time scales) of the content traffic (inferred
from check-ins), focusing on characteristics that relate to
opportunistic networking. We analyse the data only for the
Gowalla network, since the Foursquare dataset does not contain
time information for individual check-ins.

We denote the set of the check-ins at venue i as Ci. Then,
we define the traffic demand related to venue i at time t as

ni(t) =
∑

c∈Ci
1{c∈[t,t+τ)} (6)

where τ is a positive constant (i.e., the time granularity) and
1c∈[t,t+τ) is 1 if the check-in c took place during the time
interval [t, t+ τ); otherwise it is 0. The above definition says
that a check-in during [t, t + τ) implies an increment in the
traffic demand related to the given venue.

To be able to derive useful conclusions for a wide range of
settings, including both short-term and long-term variations
of traffic demand, a fine time granularity is needed when
calculating the values ni(t)

10. To achieve this, we should select
a small value of τ . For opportunistic networking applications
(e.g., content sharing [2], mobile data offloading [5]), time
granularity choices could be from a few minutes to a few hours.
However, due to the sparseness (in time) of the check-ins in
our dataset, we need to preprocess the data in order to extract
useful information and fit the popularity functions ni(t):
(1) We consider the 40 most popular venues (in #checkins).

10The fine time granularity is used to detect short-term changes, and changes
for larger time-scales can then be captured by using a moving average filter.

(2) We select a fine time granularity τ , equal to 1 minute.
(3) For each venue, and for each minute of an 24 hour interval
(i.e., a whole day; in total 60 · 24 minutes), we aggregate the
observations over all days, i.e., (for t = 0, 1, ..., 60 · 24)

n̂i(t) =
∑

day ni(day + t) =
∑

day

∑

c∈Ci
1{c∈[day+t,day+t+τ)}

A. Long-term variability

We first, investigate how traffic demand changes throughout
a day. Fig. 6 shows the (relative) traffic demand time variations
in 4 different venues11. To smooth the data (n̂i(t)) we used a
moving average filter with span T = 60 minutes. Specifically,
the presented curves correspond to the values

n
′

i(t) =
1
T

∑T−1
k=0 n̂i(t− k) (7)

where T = min{t, 60} and t = 0, 1, ..., 60 · 24.

Some main observations (with respect to opportunistic
content-centric communications) from the plots we present
here and the whole dataset (40 venues), are the following:

• In all venues, popularity becomes zero only for one
period T0 per day. The values of T0 vary from a few hours, as
in the SFO San Francisco International (Fig. 6(a)), to almost
half a day, e.g., Austin Convention Center (Fig 6(b)).

• For the rest of the day (i.e., t /∈ T0), the popularity
in many venues remains relatively stable, while other venues
experience 1 to 3 high popularity periods.

• The highest variability of popularity is observed in a few
venues, where the popularity doubles its value (to its maximum
value) or becomes zero (from its max value), in a period of
1 to 2 hours. E.g., in the Stockholm Centralstation (Fig 6(c))
and the Epcot (Fig 6(d)), between 13h00 and 15h00.

The above observations could be useful in a number of
content-centric applications. For example, in the information
sharing application of [1], a content “floats” if the density
of users remains above a threshold. Hence, for locations
corresponding to the first observation, we can infer that one
needs to re-inject the content only once per day (specifically
after the end of the period T0), since there is only one
period where user density decreases below a given threshold.
Moreover, the third observation indicates that in some locations
there would be a fast increase of traffic demand. This could
possibly overload (locally) the cellular network, and lead to
a need for an enhancing offloading mechanism, e.g., [5], [7],
whose design/dimensioning could benefit from the knowledge
of the traffic demand curves of Fig. 6, see, e.g., [7].

B. Short-term variability

In some applications, contents might have short lifetimes,
e.g., a few minutes. In these cases, the analysis of the previous
section for long-term variations (span T = 60, i.e., 1 hour)
might not be adequate to describe the desired characteristics.
To this end, in Fig. 7 we present results for short-time traffic
demand variability (fluctuations) in the different venues.

We consider different values of span T for the function

n
′

i(t) (see Eq. (7)) in order to capture different time-scales of

11We present plots for a representative subset of the 40 most popular venues.
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Fig. 6: Time variations of traffic demand throughout a day in 4 popular venues.
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) in different venues. (b) Mean values of the mean values of

the popularity fluctuations (∆n
′

i
) in different venues, i.e., E[∆n

′

i
].

variability. For each value of T , the short-term traffic demand
variability (or fluctuation) is calculated as

∆n
′

i(t) =
|n′

i(t+1)−n
′

i(t)|
n
′

i
(t)

, t = 0, 1, ..., 60 · 24 (8)

In Fig. 7(a) we present the mean values of the popularity
fluctuations in each venue for T = 5, 15, 30 minutes, i.e.,

∆n
′

i =
1

60·24 ·
∑60·24

t=0 ∆n
′

i(t) (9)

The boxplots in Fig. 7(a) correspond to the distribution of the

mean values∆n
′

i for i = 1, ..., 40 (i.e., over all the 40 venues).
In Fig. 7(b) we present similar results for different values of
spans (T ∈ [10, ..., 120] min.). Specifically, we plot the mean
values of the mean traffic demand fluctuations, i.e.,

E[∆n
′

i] =
1
40 ·

∑40
i=1 ∆n

′

i (10)

Some main observations for the short-term traffic demand are:
• As expected, for larger span T , the traffic demand

fluctuation decreases. This indicates that the parameters of a
content-centric system (e.g., mobile data offloading [5], [7])
would change less frequently when large delays (i.e., T ) are
tolerated, resulting to a less frequent need for re-tunning, etc.

• For moderate short-time variability (i.e., span T = 15
or 30 min.), the fluctuations are very small (less than 8%).
For very short-time variability (i.e., span T = 5 min.), the
fluctuations are higher than before, but still less than 20%.
These suggest a (relatively) smooth change in the performance
of content-centric mechanisms even under short lifetimes.

V. CONCLUSION

In this work, we analysed two large datasets of check-
ins in LBSNs. Motivated by the correlation between user

check-ins and content traffic demand in location-based and
context-based opportunistic applications, we inferred statistics
for content popularity patterns and time variations of content
traffic demand. The analysis and presentation of the results
were oriented on opportunistic networking, and we believe that
the conclusions and implications we provided will be useful
for evaluating existing solutions, as well as for future research.
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