
Publicly Verifiable Conjunctive Keyword Search in
Outsourced Databases

Monir Azraoui, Kaoutar Elkhiyaoui, Melek Önen, Refik Molva
EURECOM, Sophia Antipolis, France

{azraoui, elkhiyao, onen, molva}@eurecom.fr

Abstract—Recent technological developments in cloud com-
puting and the ensuing commercial appeal have encouraged
companies and individuals to outsource their storage and compu-
tations to powerful cloud servers. However, the challenge when
outsourcing data and computation is to ensure that the cloud
servers comply with their advertised policies. In this paper, we
focus in particular on the scenario where a data owner wishes
to (i) outsource its public database to a cloud server; (ii) enable
anyone to submit multi-keyword search queries to the outsourced
database; and (iii) ensure that anyone can verify the correctness of
the server’s responses. To meet these requirements, we propose
a solution that builds upon the well-established techniques of
Cuckoo hashing, polynomial-based accumulators and Merkle
trees. The key idea is to (i) build an efficient index for the
keywords in the database using Cuckoo hashing; (ii) authenticate
the resulting index using polynomial-based accumulators and
Merkle tree; (iii) and finally, use the root of the Merkle tree
to verify the correctness of the server’s responses. Thus, the
proposed solution yields efficient search and verification and
incurs a constant storage at the data owner. Furthermore, we
show that it is sound under the strong bilinear Diffie-Hellman
assumption and the security of Merkle trees.

I. INTRODUCTION

Cloud computing offers an opportunity for individuals and
companies to offload to powerful servers the burden of man-
aging large amounts of data and performing computationally
demanding operations. In principle, cloud servers promise
to ensure data availability and computation integrity at the
exchange of a reasonable fee, and so far they are assumed to
always comply with their advertised policies. However, such
an assumption may be deemed unfounded: For instance, by
moving their computing tasks into the cloud, cloud customers
inherently lend the control to this (potentially malicious) third
party, which (if left unchecked) may return an incorrect result
for an outsourced computation, so as to free-up some of its
computational resources. This lack of control on the part of
cloud customers in this particular scenario, has given rise to
an important body of work on verifiable computation, which
aims at providing cloud customers with cryptographic tools to
verify the compliance of cloud servers (i.e. to check whether
the cloud server returns the correct result for an outsourced
computation). A major requirement of verifiable computation is
the efficiency of the verification at the cloud customer. Namely,
verification should need less computational resources than the
outsourced function, in order not to cancel out the advantages
of cloud computing.

Owing to its prevalence in cloud computing, data mining is
at the heart of verifiable computation: Cloud servers are the

best candidates to undertake big-data mining, in that they have
means to store big-data and own the necessary computational
resources to run various data processing primitives and analyze
huge data sets. In this paper, we focus on one of the most
frequently used primitives in data mining, that is keyword
search, and design a solution that assures the correctness of
the search result. More specifically, we consider a scenario
wherein a data owner wishes to outsource a public database to
a cloud server and wants to empower third-party users (i) to
issue conjunctive keyword search queries to the database and
(ii) to verify the correctness of the results returned by the cloud
efficiently. In other words, the data owner wants to ensure the
properties of public delegatability and public verifiability as
defined by Parno et al. [1]. Roughly speaking, public dele-
gatability enables any user to perform verifiable conjunctive
keyword search without having access to the data owner’s
secret information; whereas public verifiability guarantees that
any third-party verifier (not necessarily the user originating the
search query) can check the server’s responses.

The core idea of our solution is to use polynomial-based
accumulators to represent keywords in the outsourced database.
Thanks to their algebraic properties, polynomial-based accu-
mulators give way to two cryptographic mechanisms, that
are verifiable test of membership (cf. [2]) and verifiable set
intersection (cf. [3]). These two mechanisms together can
be tailored to allow any third-party user to search a public
database for multiple keywords and any third-party verifier to
check the integrity of the result. Nonetheless, a straightfor-
ward application of polynomial-based accumulators to keyword
search is too computationally demanding for the server, espe-
cially in the case of large databases. To this effect, we suggest
to build an efficient index of the keywords in the database
by means of Cuckoo hashing, and to authenticate the resulting
index by a combination of polynomial-based accumulators and
Merkle trees. Thus, we (i) allow the verifier to assess the
correctness of the server’s response in a logarithmic time, and
(ii) enable the server to search the outsourced database effi-
ciently. Furthermore, since our solution relies on polynomial-
based accumulators and Merkle trees to assure the integrity of
the search results, we show that it is provably secure under the
strong bilinear Diffie-Hellman assumption and the security of
Merkle trees.

The rest of this paper is organized as follows: Section II
defines the problem statement, whereas Section III formalizes
publicly verifiable conjunctive keyword search and the corre-

sponding adversary model. Section IV and Section V describe
the building blocks and the proposed solution. Section VII
evaluates our solution in terms of computational and storage
cost. Section VIII reviews existing work on verifiable keyword
search, and finally, Section IX wraps up the paper.

II. PROBLEM STATEMENT

To further illustrate the importance of public delegatability
and public verifiability in cloud computing, we take the case
where a pharmaceutical company would like (i) to outsource
a set F of sanitized records of its clinical trials (of already
marketed products) to a cloud server, and (ii) to delegate the
conjunctive search operations on these records to its employ-
ees, or to external third parties such as the European Medicines
Agency. Following the framework of publicly verifiable com-
putation [1], the pharmaceutical company in this scenario
will run a one-time computationally demanding pre-processing
operation to produce a public key PKF and a lookup key LKF .
Together, these keys will make possible the implementation of
publicly verifiable conjunctive keyword search. Namely, given
public key PKF , any user (be it an employee or a representative
of the European Medicines Agency) will be able to search the
outsourced records and verify the returned results. The server
on the other hand is provided with lookup key LKF and thus,
will be able to generate correct proofs for any well-formed
search query. Furthermore, from public key PKF , any user
desiring to search the outsourced records will be able to derive
a public verification key VKQ, that lets any other third party
(for instance, a judge in the case of a legal dispute between the
pharmaceutical company and a patient) fetch the search result
and assess its correctness quickly.

It is clear from the above example that our approach to
handle verifiable conjunctive keyword search falls into the
amortized model as defined by Gennaro et al. [4]. That is,
the data owner engages in a one-time expensive pre-processing
operation which will be amortized over an unlimited number
of fast verifications. This model has been exploited to devise
solutions for publicly verifiable computation, be it a generic
computation as in [1] or a specific computation cf. [3], [5].
Arguably, one might customize one of these already proposed
schemes to come up with a solution for verifiable conjunctive
keyword search. Nevertheless, a solution based on the scheme
in [1] will incur a large bandwidth overhead, whereas a
solution that leverages the verifiable functions in [5] will not
support public delegatability. Therefore, we choose to draw
upon some of the techniques used in [3] (namely verifiable
set intersections) to design a dedicated protocol that meets the
requirements of public delegatability and public verifiability
without sacrificing efficiency.

III. PUBLICLY VERIFIABLE CONJUNCTIVE KEYWORD
SEARCH

As discussed previously, publicly verifiable conjunctive key-
word search enables a data owner O to outsource a set of files
F to a server S , while ensuring:

• Public delegatability: Any user U (not necessarily data
owner O) can issue conjunctive search queries to server S for
outsourced files F . Namely, if we denote CKS the function
which on inputs of files F and a collection of words W returns
the subset of files FW ⊂ F containing all words in W , then
public delegatability allows user U to outsource the processing
of this function to server S .
• Public verifiability: Any verifier V (including data owner

O and user U) can assess the correctness of the results returned
by server S , that is, verify whether the search result output by
S for a collection of words W corresponds to CKS(F ,W).

In more formal terms, we define publicly verifiable conjunc-
tive keyword search by the following algorithms:
• Setup(1κ,F) → (PKF , LKF): Data owner O executes

this randomized algorithm whenever it wishes to outsource a
set of files F = {f1, f2, ...}. On input of a security parameter
1κ and files F , algorithm Setup outputs the pair of public key
PKF and lookup key (i.e. search key1) LKF .
• QueryGen(W ,PKF) → (EQ,VKQ): Given a collection

of words W = {ω1, ω2, ...} and public key PKF , user U
calls algorithm QueryGen which outputs an encoded conjunc-
tive keyword search query EQ and the corresponding public
verification key VKQ.
• Search(LKF ,EQ) → ER: Provided with search key LKF

and the encoded search query EQ, server S executes this
algorithm to generate an encoding ER of the search result
FW = CKS(F ,W).
• Verify(ER,VKQ) → out: Verifier V invokes this de-

terministic algorithm to check the integrity of the server’s
response ER. Notably, algorithm Verify first converts ER into
a search result FW , then uses verification key VKQ to decide
whether FW is equal to CKS(F ,W). Accordingly, algorithm
Verify outputs out = FW if it believes that FW = CKS(F ,W),
and in this case we say that verifier V accepts the server’s
response. Otherwise, algorithm Verify outputs out =⊥, and
we say that verifier V rejects the server’s result.

In addition to public delegatability and public verifiability,
a conjunctive keyword search should also fulfill the basic
security properties of correctness and soundness. Briefly,
correctness means that a response generated by an honest
server will be always accepted by the verifier; soundness
implies that a verifier accepts a response of a (potentially
malicious) server if and only if that response is the outcome
of a correct execution of the Search algorithm.

Correctness. A verifiable conjunctive keyword search
scheme is said to be correct, if whenever server S operates
algorithm Search correctly on the input of some encoded search
query EQ, it always obtains an encoding ER that will be
accepted by verifier V .

Definition 1. A verifiable conjunctive keyword search is cor-
rect, iff for any set of files F and collection of words W :

1In the remainder of this paper, we use the terms lookup key and search
key interchangeably.

Algorithm 1 The soundness experiment of publicly verifiable conjunctive
keyword search

for i := 1 to t do
A → Fi
(PKFi , LKFi)← OSetup(1

κ,Fi)
end for
A → (W ∗,PK∗F)
QueryGen(W ∗,PK∗F)→ (E∗Q,VK∗Q)
A → E∗R
Verify(E∗R,VK∗Q)→ out∗

If Setup(1κ,F) → (PKF , LKF), QueryGen(W ,PKF) →
(EQ,VKQ) and Search(LKF ,EQ)→ ER, then:

Pr(Verify(ER,VKQ)→ CKS(F ,W)) = 1

Soundness. We say that a scheme for publicly verifiable
conjunctive keyword search is sound, if for any set of files F
and for any collection of words W , server S cannot convince a
verifier V to accept an incorrect search result. In other words,
a scheme for verifiable conjunctive keyword search is sound if
and only if, the only way server S can make algorithm Verify
accept an encoding ER as the response of a search query EQ
for a set of files F , is by correctly executing the algorithm
Search (i.e. ER ← Search(LKF ,EQ)).

To formalize the soundness of verifiable conjunctive key-
word search, we define an experiment in Algorithm 1 which
depicts the capabilities of an adversary A (i.e. malicious server
S). On account of public delegatability and public verifiability,
adversary A does not only run algorithm Search but is also
allowed to run algorithms QueryGen and Verify. This leaves
out algorithm Setup whose output is accessed by adversary A
through calls to the oracle OSetup.

More precisely, adversary A enters the soundness experiment
by adaptively invoking oracle OSetup with t sets of files Fi. This
allows adversary A to obtain for each set of files Fi a pair of
public key PKFi and search key LKFi . Later, adversary A picks
a collection of words W ∗ and a public key PK∗F from the set
of public keys {PKFi}1≤i≤t it received earlier. Adversary A is
then challenged on the pair (W ∗,PK∗F) as follows: (i) It first
executes algorithm QueryGen with public key PK∗F and the
collection W ∗ and accordingly gets an encoded search query
E∗Q and the matching verification key VK∗Q; (ii) afterwards, it
generates a response E∗R for encoded search query E∗Q, and
concludes the experiment by calling algorithm Verify with the
pair (E∗R,VK∗Q).

Let out∗ denote the output of algorithm Verify on input
(E∗R,VK∗Q). Adversary A succeeds in the soundness experi-
ment if: (i) out∗ 6=⊥ and (ii) out∗ 6= CKS(F ∗,W ∗), where
F ∗ is the set of files associated with public key PK∗F .

Definition 2. Let AdvA denote the advantage of adversary A in
succeeding in the soundness game, i.e., AdvA = Pr(out∗ 6=⊥
∧ out∗ 6= CKS(F ∗,W ∗)).

A publicly verifiable conjunctive keyword search is sound, iff
for any adversary A , AdvA ≤ ε and ε is a negligible function
in the security parameter κ.

⇒
𝑩

𝝎

⇒ 𝝎

Generate
Proof

𝝎
 found

𝝎
not found

Cuckoo
lookup

on index

Word
Accumulator

𝝎 ?

Generate
Proof

File
Accumulator

∅

𝝎

File IDs

User

𝑩

TF

TW

Fig. 1: Overview of our protocol for verifiable keyword search

IV. BUILDING BLOCKS

Our solution relies on polynomial-based accumulators
(i.e. bilinear pairing accumulators) defined in [6] and [2] to
represent the keywords present in files F = {f1, f2, ..., fn}.
By definition, a polynomial-based accumulator maps a set to
a unique polynomial such that each root of the polynomial
corresponds to an element in the set. Hence, polynomial-based
accumulators allow efficient verifiable test of membership
which can be tailored for verifiable keyword search.

A naive approach to accommodate polynomial-based accu-
mulators to verifiable keyword search would be to represent
the words in each file fj ∈ F with a single accumulator. To
check whether a word ω is in file fj , user U first sends a search
query to server S , upon which the latter generates a proof of
membership if word ω is present in fj ; and a proof of non-
membership otherwise. This solution however is not efficient:
(i) Given the mathematical properties of polynomial-based
accumulators, the resulting complexity of keyword search in
a file fj is linear in the number of keywords in that file;
(ii) additionally, to identify which files fj contain a word, the
user must search all files in F one by one.

To avoid these pitfalls, we combine polynomial-based ac-
cumulators with Merkle trees [7] to build an authenticated
index of the keywords in files in F such that the keyword
search at the server runs in logarithmic time. More specifically,
data owner O first organizes the keywords in all files in F
into an index I (i.e. hash table) where each entry corresponds
to a bucket B storing at most d keywords. To construct an
efficient index I, data owner O employs the Cuckoo hashing
algorithm introduced in [8] which guarantees a constant lookup
time and minimal storage requirements. Later, data owner O
authenticates index I as follows: (i) For each bucket B, it com-
putes an accumulator of the keywords assigned to B; (ii) and it
builds a binary Merkle tree TW that authenticates the resulting
accumulators. Files in F are then outsourced together with
Merkle tree TW to server S . Hence, when server S receives a
search query for a word ω, it finds the buckets corresponding
to ω in index I, retrieves the corresponding accumulator,
generates a proof of membership (or non-membership), and
authenticates the retrieved accumulator using the Merkle tree
TW. Therefore, anyone holding the root of TW can verify the
server’s response.

The solution sketched above still does not identify which
files exactly contain a word ω nor supports verifiable conjunc-

Fig. 2: Verifiable Test of Membership

• (PS(h),ΩS,h)← GenerateWitness(h, S)
Computes the proof of (non-) membership of h with respect to set S.

1) Compute the value PS(h) =
∏
hi∈S

(h− hi);
2) Determine polynomial QS,h such that PS(X) = (X − h) ·QS,h(X) +

PS(h);
3) Compute the witness ΩS,h = gQS,h(α);
4) Return (PS(h),ΩS,h);

• {h ∈ S, h /∈ S,Reject} ← VerifyMembership(h,Acc(S), PS(h),ΩS,h)
Verifies the proof and outputs the result of the test of membership.

1) Verify e(ΩS,h, gα · g−h)e(gPS(h), g)
?
= e(Acc(S), g).

If it fails then return Reject;
2) If PS(h) = 0 then return h ∈ S else return h /∈ S;

tive keyword search. Thus, data owner O constructs another
Merkle tree TF whereby each leaf is mapped to a single key-
word and associated with the polynomial-based accumulator
of the subset of files containing that keyword. Data owner O
then uploads files F and Merkle trees TW and TF to server
S . Given the root of TF, user U will be able to identify which
subset of files contain a word ω. In addition, since polynomial-
based accumulators allow efficient verifiable set intersection,
user U will also be able to perform verifiable conjunctive
keyword search. Figure 1 depicts the steps of the protocol.

A. Symmetric Bilinear Pairings

Let G and GT be two cyclic groups of prime order p. A
bilinear pairing is a map e : G × G → GT that satisfies the
following properties: (Bilinear) ∀ α, β ∈ Fp and ∀ g ∈ G,
e(gα, gβ) = e(g, g)αβ ; (Non-degenerate) If g generates G then
e(g, g) 6= 1; (Computable) There is an efficient algorithm to
compute e(g, g), for any g ∈ G.

B. Polynomial-based Accumulators

Let S = {h1, ..., hn} be a set of elements in Fp, encoded
by its characteristic polynomial PS(X) =

∏
hi∈S (X − hi),

and g a random generator of a bilinear group G of prime
order p. Given the public tuple (g, gα, gα

2

, ..., gα
D

), where α
is randomly chosen in F∗p and D ≥ n, Nguyen [6] defines the
public accumulator of the elements in S:

Acc(S) = gPS(α) ∈ G

1) Verifiable Test of Membership: Damgård et al. [2] ob-
serve that (i) h is in S iff PS(h) = 0, and (ii) ∀ h ∈ Fp,
there exists a unique polynomial QS,h such that PS(X) =
(X−h) ·QS,h(X)+PS(h). In particular, ∀ h, the accumulator
can be written as Acc(S) = gPS(α) = g(α−h)·QS,h(α)+PS(h).
The value ΩS,h = gQS,h(α) defines the witness of h with
respect to Acc(S). Following these observations, the authors in
[2] define a verifiable test of membership depicted in Figure 2.
This test is secure under the D-Strong Diffie-Hellman (D-
SDH) assumption.

Definition 3 (D-Strong Diffie-Hellman Assumption). Let G be
a cyclic group of prime order p generated by g. We say that the
D-SDH holds in G if, given the tuple (g, gα, gα

2

, ..., gα
D

) ∈
GD+1, for some randomly chosen α ∈ F∗p, no PPT algorithm
A can find a pair (x, g

1
α+x) ∈ F∗p × G with a non-negligible

advantage.

Fig. 3: Verifiable Set Intersection

• (I,ΠI)← ProveIntersection(S1, ..., Sk)
Generates the proof for the intersection of the k sets S1, ..., Sk .

1) Compute I = S1 ∩ ... ∩ Sk and its characteristic polynomial P ;
2) Compute the polynomials Ui =

Pi
P and the values ∆i = gUi(α);

3) Compute the polynomials Vi such that
∑
i UiVi = 1;

4) Compute the values Γi = gVi(α);
5) Define ΠI = {(∆1,Γ1), ..., (∆k,Γk)};
6) Return (I,ΠI).

• {Accept,Reject} ← VerifyIntersection(I,ΠI ,Acc(I), {Acc(Si)}1≤i≤k)
Verifies the proofs for I , the intersection of the sets S1, ..., Sk .

1) Parse ΠI = {{∆i,Γi}1≤i≤k};
2) Verify the following equalities:

− e(Acc(I),∆i)
?
= e(Acc(Si), g) # Check I ⊆ Si for 1 ≤ i ≤ k

−
∏
i e(∆i,Γi)

?
= e(g, g) # Check

⋂
i(Si \ I) = ∅

If any of the checks fails then return Reject else return Accept;

2) Verifiable Set Intersection: We consider k sets Si and
their respective characteristic polynomials Pi. If we denote
I =

⋂
i Si and P the characteristic polynomial of I then

P = gcd(P1, P2, .., Pk). It follows that the k polynomials
Ui = Pi

P identify the sets Si \ I . Since
⋂
i(Si \ I) = ∅,

gcd(U1, U2, ..., Uk) = 1. Therefore, according to Bézout’s
identity, there exist polynomials Vi such that

∑
i UiVi = 1.

Based on these observations, Canetti et al. [3] define a protocol
for verifiable set intersection described in Figure 3. The inter-
section verification is secure if the D-Strong Bilinear Diffie-
Hellman (D-SBDH) assumption holds.

Definition 4 (Strong Bilinear Diffie-Hellman Assumption). Let
G,GT be cyclic groups of prime order p, g a generator of G,
and e a bilinear pairing. We say that the D-SBDH holds if,
given (g, gα, gα

2

, ..., gα
D

) ∈ GD+1, for some randomly chosen
α ∈ F∗p, no PPT algorithm A can find a pair (x, e(g, g)

1
α+x) ∈

F∗p ×GT with a non-negligible advantage.

C. Cuckoo Hashing

Cuckoo hashing belongs to the multiple choice hashing
techniques. In the seminal work [9], an object can be stored in
one of the two possible buckets of an index. If both buckets are
full, an object is “kicked out” from one of these two buckets,
the current item is placed in the freed bucket and the removed
item is moved to the other bucket of its two choices. This move
may require another element to be kicked out from its location.
This insertion procedure is repeated until all objects find a free
spot, or the number of insertion attempts reaches a predefined
threshold to declare an insertion failure. In this paper, we
leverage a variant proposed by Dietzfelbinger and Weidling
[8]: Their solution inserts N elements using two independent
and fully random hash functions H1,H2 : {0, 1}∗ → [1,m]
into an index I with m buckets Bi, such that: m = 1+ε

d N ,
for ε > 0, and each bucket Bi stores at most d elements.
As depicted in Figure 4, a lookup operation for a particular
element x requires the evaluation of the two hash functions
H1(x) and H2(x), whereas the insertion of a new element
requires a random walk in the index.

D. Binary Merkle Trees

Merkle trees allow any third party to verify whether an
element h is in set S = {h1, ..., hn}. In the following, we

Fig. 4: Cuckoo Hashing

• CuckooInsert(I,H1,H2, x)
Inserts x in index I using hash functions H1,H2 : {0, 1}∗ → [1,m].

1) Compute i1 = H1(x) and i2 = H2(x);
2) If bucket Bi1 is not full then

Insert x in Bi1 ;
Return;

End
3) If bucket Bi2 is not full then

Insert x in Bi2 ;
Return;

End
4) If buckets Bi1 and Bi2 both full then

Randomly choose y from the 2d elements in Bi1 ∪ Bi2 ;
Remove y;
CuckooInsert(I,H1,H2, x);
CuckooInsert(I,H1,H2, y);
Return;

End

• {true, false} ← CuckooLookup(I,H1,H2, x)
Searches for x in index I.

1) Compute i1 = H1(x) and i2 = H2(x);
2) Return (x ∈ Bi1) ∨ (x ∈ Bi2);

introduce the algorithms that build a binary Merkle tree for a
set S and authenticate the elements in that set.
• T ← BuildMT(S,H) builds a binary Merkle tree T as

follows. Each leaf Li of the tree maps an element hi in set S
and each internal node stores the hash of the concatenation of
the children of that node. We denote σ the root of T.
• path ← GenerateMTProof(T, h) outputs the authentica-

tion path, denoted path, for leaf L corresponding to element
h, that is, the set of the siblings of the nodes on the path from
L to root σ.
• {Accept,Reject} ← VerifyMTProof(h, path, σ) verifies

that the root value computed from h and path equals the
expected value σ.

V. PROTOCOL DESCRIPTION

In our verifiable conjunctive keyword search protocol, data
owner O outsources the storage of a set of files F =
{f1, f2, ..., fn} to a server S . Once the data is uploaded, any
third-party user U can search for some keywords in the set of
files F and verify the correctness of the search results returned
by S . The proposed protocol comprises two phases: Upload
and Verifiable Conjunctive Keyword Search.

A. Upload

In this phase, data owner O invokes algorithm Setup, which
on input of security parameter κ and set of files F , outputs a
public key PKF and a search key LKF . As shown in Figure 5,
Setup operates in four steps.

1) It first generates the public parameters of the protocol.
2) It builds index I for the set W = {ω1, ω2, ..., ωN} using

Cuckoo hashing. Without loss of generality, we assume
that W is composed of the list of distinct words in F
sorted in a lexicographic order.

3) Setup authenticates index I with Merkle tree TW where
each leaf is mapped to a bucket in I. We denote σW the
root of TW.

4) Setup builds Merkle tree TF, with root σF , to identify
which files exactly contain the keywords.

Fig. 5: Upload

• (PKF , LKF)← Setup(1κ, F)
F = {f1, ..., fn}: set of files
W = {ω1, .., ωN}: list of distinct words in F sorted in lexicographic order.
1) Parameter generation

Pick D, g,G,GT , e,H : {0, 1}∗ → Fp as function of security parameter
κ;
Pick random α ∈ F∗p and compute public values {g, gα, ..., gα

D
};

2) Construction of the Index
Creates an index I with m buckets of size d where d < D
Identify W from F ;
Pick random hash functions H1,H2 : {0, 1}∗ → [1,m];
For ωi ∈ W do

Compute hi = H(ωi);
Run CuckooInsert(I,H1,H2, hi);

End
3) Authentication of Index

For Bi ∈ I do
Compute PBi (α) =

∏
hj∈Bi

(α− hj);

Compute AWi = Acc(Bi) = g
PBi

(α);
Compute HWi = H(AWi||i), where i is the position of Bi in I;

End
TW = BuildMT({HWi}1≤i≤m, H);

4) Encoding of files
Identifies which files contain the keywords
For fj ∈ F do

Generate fidj;
End
For ωi ∈ W do

Identify Fωi , the subset of files that contain ωi;
Compute Pi(α) =

∏
fidj∈Fωi

(α− fidj);

Compute AFi = Acc(Fωi) = gPi(α);
Compute HFi = H(AFi||ωi);

End
TF = BuildMT({HFi}1≤i≤N , H).

5) Return PKF = (g,G, e,H, {gα
i
}0≤i≤D,H1,H2, σW , σF);

Return LKF = (I,TW,TF, F ,W, {Fωi}1≤i≤N).

When server S receives LKF , it creates a hash table HT
where each entry is mapped to a keyword ωi and stores the
pair (i, pointer) such that: i is the position of keyword ωi in
set W and in tree TF; whereas pointer points to a linked list
storing the identifiers of files Fωi that contain keyword ωi. As
such, hash table HT enables server S to find the position of
ωi in TF and to identify the files containing ωi easily.

In the remainder of this paper, we assume that server S does
not store LKF as (I,TW,TF,F ,W, {Fωi}1≤i≤N), but rather
as LKF = (I,TW,TF,F ,HT).

B. Verifiable Conjunctive Keyword Search
In this phase, we use the algorithms of verifiable test

of membership and verifiable set intersection presented in
Section IV to enable verifiable conjunctive keyword search.
We assume in what follows that a user U wants to identify
the set of files FW ⊂ F that contain all words in W =
{ω1, ω2, ..., ωk}. To that effect, user U first runs algorithm
QueryGen (cf. Figure 6) which returns the query EQ = W
and the public verification key VKQ = (PKF ,W). User U
then sends query EQ to server S .

On receipt of query EQ server S invokes algorithm Search
(cf. Figure 6) which searches the index I for every individual
keyword ωi ∈ W . If all the keywords ωi ∈ W are found in
the index, then Search identifies the subset of files Fωi that
contains ωi and outputs the intersection of all these subsets
FW = Fω1 ∩ ... ∩ Fωk . Moreover, to prove the correctness of
the response (i.e. to prove that FW was computed correctly),

Fig. 6: Verifiable Conjunctive Keyword Search

• {EQ,VKQ} ← QueryGen(W ,PKF)
1) Assign EQ = W and VKQ = (PKF ,W);
2) Return {EQ,VKQ};

• ER ← Search(EQ, LKF)
1) Parse EQ = W and LKF = (I,TW,TF, F ,HT);
2) For ωi ∈ W do

Compute hi = H(ωi);
If CuckooLookup(I,H1,H2, hi) = false then

Keyword ωi is not in F
Compute i1 = H1(hi) and i2 = H2(hi);
Compute Π1 = GenerateWitness(hi, Bi1);
Compute Π2 = GenerateWitness(hi, Bi2);
Compute AWi1 = Acc(Bi1) and HWi1 = H(AWi1 ||i1);
Compute AWi2

= Acc(Bi2) and HWi2
= H(AWi2

||i2);
Compute path1 = GenerateMTProof(TW,HWi1

);
Compute path2 = GenerateMTProof(TW,HWi2

);
Return ER = (∅, ω,AWi1 ,AWi2 ,Π1,Π2, path1, path2);

End
End

3) # All the keywords have been found
For ωi ∈ W do

Determine Fωi using HT; # the set of files that contain wi
Compute AFi = Acc(Fωi) and HFi = H(AFi||ωi);
Determine position l of wi in TF using HT;
HFi is in the lth leaf of TF
Compute pathi = GenerateMTProof(TF,HFi);

End
FW = Fω1

∩ ...∩ Fωk is the set of files that contain all the words in W
Compute (FW ,ΠW) = ProveIntersection(Fω1

, ..., Fωk);
Return ER = (FW ,ΠW , {AFi}1≤i≤k, {pathi}1≤i≤k);

• out← Verify(ER,VKQ)
1) Parse VKQ = (PKF ,W);
2) If W found in F then

Parse ER = (FW ,ΠW , {AFi}1≤i≤k, {pathi}1≤i≤k);
For ωi ∈ W do

If VerifyMTProof(H(AFi||ωi), pathi, σF) = Reject
Then return out =⊥;

End
Compute Acc(FW);
If VerifyIntersection(FW ,ΠW ,Acc(FW), {AFi}1≤i≤k) = Accept;
Then return out = FW else return out =⊥;

End
3) If at least one keyword ωi is not found in F then

Parse ER = (∅, ωi,AWi1 ,AWi2 ,Π1,Π2, path1, path2);
Compute hi = H(ωi), i1 = H1(hi) and i2 = H2(hi);
If VerifyMTProof(H(AWi1 ||i1), path1, σW) = Reject
Then return out =⊥;
If VerifyMTProof(H(AWi2

||i2), path2, σW) = Reject
Then return out =⊥;
If VerifyMembership(hi,AWi1

,Π1) = Reject
Then return out =⊥;
If VerifyMembership(hi,AWi2

,Π2) = Reject
Then return out =⊥;
Return out = ∅;

End

Search (i) authenticates the accumulators of each set Fωi using
Merkle tree TF; (ii) and generates a proof of intersection for
FW using the verification algorithm described in Figure 3.

If at least one keyword ωi is not found, then Search returns
ωi and an empty set, and proves the correctness of its response
by (i) authenticating the accumulators of buckets Bi1 and
Bi2 associated with ωi in index I using Merkle tree TW;
(ii) and generating a proof of non-membership of keyword ωi
for buckets Bi1 and Bi2 (cf. Figure 2).

On reception of the search result, verifier V checks the
correctness of the server’s response by calling algorithm Verify
as shown in Figure 6. More precisely, if server S advertises that
it has found all the keywords W in index I, then algorithm
Verify checks that the returned intersection FW is correct using
the verification algorithm of Merkle tree and verifiable set
intersection. Otherwise, V verifies that the returned keyword

is actually not in F using again the verification algorithm of
Merkle tree and verifiable test of membership.

VI. SECURITY ANALYSIS

Our protocol satisfies the two security properties of correct-
ness and soundness.

Theorem 1 (Correctness). Our scheme is a correct verifiable
conjunctive keyword search solution.

Proof: Suppose that a user U sends to server S the query
EQ = W = {ω1, ..., ωk}. S correctly runs algorithm Search
and returns the search response ER. According to Figure 6,
the content of ER varies depending on whether:

a) All words in W are found in F :
Then ER = (FW ,ΠW , {AFi}1≤i≤k, {pathi}1≤i≤k) where:
• FW = Fω1

∩ ... ∩ Fωk such that Fωi is the subset of files
that contain keyword ωi;
• ΠW = {(∆1,Γ1), ..., (∆k,Γk)} is the proof of intersection;
• for all 1 ≤ i ≤ k, AFi = Acc(Fωi); if we denote Pi the
characteristic polynomial of Fωi , then AFi = gPi(α);
• for all 1 ≤ i ≤ k, pathi is the authentication path of
H(AFi||ωi) in TF.

Firstly, if we assume that the Merkle tree authentication is
correct, then verifier V accepts the accumulators AFi computed
by server S . Secondly, since S computes the proof ΠW using
algorithm ProveIntersection (cf. Figure 3), for all 1 ≤ i ≤ k,
we have the following:
• ∆i = gUi(α), where Ui = Pi

P and P = gcd(P1, P2, ..., Pk)
is the characteristic polynomial of FW ;
• Γi = gVi(α), such that

∑
i UiVi = 1.

It follows that for all 1 ≤ i ≤ k:

e(Acc(FW),∆i) = e(gP (α), gUi(α)) = e(g, g)P (α)·Ui(α)

= e(g, g)Pi(α) = e(AFi, g)

This means that the first equality in algorithm
VerifyIntersection (cf. Figure 3) holds. Furthermore, the
second equality is also verified, indeed:∏
ωi∈W

e(∆i,Γi) =
∏
ωi∈W

e(gUi(α), gVi(α)) =
∏
ωi∈W

e(g, g)Ui(α)·Vi(α)

= e(g, g)
∑
ωi∈W Ui(α)·Vi(α) = e(g, g)

These computations thus prove the correctness of our solution
in the case where the targeted keywords are all found.

b) There exists ωi ∈W not found in F :
Here, ER = (∅, ωi,AWi1 ,AWi2 ,Π1,Π2, path1, path2) where:
• AWi1 = Acc(Bi1) and AWi2 = Acc(Bi2) are the accumula-
tors of buckets Bi1 and Bi2 respectively, where i1 and i2 are
the positions assigned to keyword ωi in index I;
• Π1 and Π2 are the proofs that ωi is not a member of bucket
Bi1 nor of bucket Bi2 respectively;
• path1 and path2 are the authentication paths of these two
buckets in tree TW.

If we consider the Merkle tree to be correct, then verifier
V accepts AWi1 and AWi2 . Moreover, if we denote PBi1 the
characteristic polynomial of Bi1 , then by definition PBi1 (X) =∏
hj∈Bi1

(X − hj) and AWi1 = Acc(Bi1) = g
PBi1

(α).

Recall now that the proof of non-membership Π1 of keyword
ωi to bucket Bi1 is computed as: {PBi1 (hi),ΩBi1 ,hi}, such
that hi = H(ωi), ΩBi1 ,hi = g

QBi1 ,hi
(α) and QBi1 ,hi(X) =

PBi1
(X)−PBi1 (hi)

X−hi . It follows that:

e(ΩBi1 , g
α · g−hi)e(gPBi1 (hi), g)

= e(g, g)
QBi1

,hi
(α)·(α−hi)e(g, g)

PBi1
(hi)

= e(g, g)
QBi1

,hi
(α)·(α−hi)+PBi1

(hi)

= e(g, g)
PBi1

(α)

= e(AWi1 , g).

This means that the first equality of algorithm
GenerateWitness (cf. Figure 2) holds. Finally, since ωi /∈ Bi1 ,
PBi1 (hi) 6= 0. This implies that verifier V accepts the proof
of non-membership for bucket Bi1 and concludes that ωi /∈ F .

Same computations can be performed for Bi2 , which proves
the correctness of our solution when a keyword ωi /∈ F .

Theorem 2 (Soundness). Our solution for verifiable conjunc-
tive keyword search is sound under the D-SDH and D-SBDH
assumptions, provided that the hash function H used to build
the Merkle trees is collision-resistant.

Proof Sketch: Space limitations allow us to outline only a
sketch of this proof. We leave out the details in the full paper2.

We observe that an adversary can break the soundness of
our scheme through two types of forgeries:

Type 1 forgery: On input of W = {ω1, ..., ωk} and search
key LKF , adversary A1 returns a search result that consists of a
proof of non-membership of some keyword ωi ∈W (meaning
that ωi is not in the set of files F), although ωi is in F ;

Type 2 forgery: On input of W = {ω1, ..., ωk} and search
key LKF , adversary A2 returns an incorrect F̂W and the
corresponding proof3. This means that adversary A2 claims that
all keywords in W have been found in F and that F̂W is the
subset of files that contain them, although F̂W 6= CKS(F ,W).

The proof consists in showing that if A1 and A2 run
Type 1 and Type 2 forgeries respectively, then there exist an
adversary B1 that breaks D-SDH and an adversary B2 that
breaks D-SBDH.

Reduction of Type 1 forgery to D-SDH problem:
We define the oracle OD-SDH which, when invoked, returns

the D-SDH tuple T (α) = (g, gα, gα
2

, ..., gα
D

) ∈ GD+1, for
some randomly selected α ∈ F∗p. Adversary B1, who wants to
break the D-SDH assumption, first calls OD-SDH which selects
a random α ∈ F∗p and returns T (α); and then, B1 simulates the
soundness game for adversary A1 (cf. Algorithm 1). Namely:
• A1 invokes OSetup with the sets of files Fi (for 1 ≤
i ≤ t), and in turn, B1 simulates OSetup and generates
(PKFi , LKFi). The key idea behind the proof is that PKFi
includes the tuple Ti(α) = (g, gαi , gαi

2

, ..., gαi
D

) where

2The full paper can be found here: http://www.eurecom.fr/publication/4540.
3The caret notation (·̂) distinguishes the elements of the response returned

by an adversary from the ones that would be returned by a honest server.

αi = α · δi + βi for some random δi, βi ∈ F∗p. Note that
this tuple can be easily computed by B1, without having
access to α, thanks to T (α) and the Binomial Theorem:
∀ k ≤ D, gαik = g(α·δi+βi)k =

∏k
j=0(gα

j

)(
k
j)(δi)

j ·βk−ji .
• Later, A1 selects a public key PK∗F from the keys he

has received earlier, and a collection of keywords W ∗

to search for in the set of files F ∗ associated with PK∗F .
• A1 runs QueryGen(W ∗,PK∗F) which yields E∗Q and VK∗Q.
• A1 then returns E∗R =

(∅, ω∗, ÂF
∗
1, ÂF

∗
2, Π̂

∗
1, Π̂

∗
2, p̂ath

∗
1, p̂ath

∗
2) and calls Verify

on input of E∗R and VK∗Q.
Since we assume H is a collision-resistant hash function,
the Merkle tree authentication proves that the accumulators
returned in E∗R are actually the ones computed by B1 when he
was simulating Setup. The rest of the proof follows a similar
reasoning proposed by Damgård and Triandopoulos [2].
Accordingly, if Verify accepts the proof of non-membership
for keyword ω∗, then B1 finds a pair (x, g

1
α+x) that breaks

the D-SDH assumption with x = β∗−h∗
δ∗ where h∗ = H(ω∗)

and α∗, β∗, δ∗ are values associated with set of files F ∗, such
that α∗ = α · δ∗ + β∗.

Reduction of Type 2 forgery to D-SBDH problem:
Let OD-SBDH be an oracle that returns for any random

α ∈ F∗p, the tuple T (α) = (g, gα, gα
2

, ..., gα
D

) ∈ GD+1. Ad-
versary B2, who wants to break the D-SBDH assumption, calls
OD-SBDH which selects a random α ∈ F∗p and returns T (α).
Afterwards, B2 simulates the soundness game for adversary
A2 (cf. Algorithm 1). Specifically:
• A2 invokes OSetup with the sets of files Fi (for 1 ≤
i ≤ t), and in turn, B2 simulates OSetup and generates
(PKFi , LKFi). Similar to Type 1 forgery, PKFi includes
the tuple Ti(α) = (g, gαi , gαi

2

, ..., gαi
D

) where αi =
α · δi + βi for some random δi, βi ∈ F∗p.

• Then, A2 selects a public key PK∗F from the keys he
has received earlier, and a collection of keywords W ∗

to search for in the set of files F ∗ associated with PK∗F .
• A2 further invokes QueryGen(W ∗,PK∗F) which returns

E∗Q and VK∗Q.
• A2 then outputs E∗R =

(F̂W ∗ , Π̂W ∗ , {ÂF
∗
i }1≤i≤k, {p̂ath

∗
i }1≤i≤k). It further

runs Verify on input of E∗R and VK∗Q.
In this case since we also assume that H is a collision-resistant
hash function, the Merkle tree authentication proves that the
accumulators returned in E∗R are actually the ones computed by
B2 when he was simulating Setup. Given these accumulators,
the remainder of the proof adopts an approach similar to the
one proposed by Canetti et al. in [3]. Indeed, since F̂W ∗ 6=
CKS(F ∗,W ∗), either F̂W ∗ contains a file with identifier fid∗

that is not in CKS(F ∗,W ∗), or there is a file with identifier fid∗

that is in CKS(F ∗,W ∗) but not in F̂W ∗ . If Verify accepts the
proof of intersection, then B2 breaks D-SBDH by outputting
a pair (x, e(g, g)

1
α+x) where x = β∗−fid∗

δ∗ with α∗, β∗ and δ∗

are values associated with F ∗ such that α∗ = α · δ∗ + β∗.

VII. PERFORMANCE EVALUATION

In light of the performances of the several building blocks
(Cuckoo hashing, polynomial-based accumulators and Merkle
trees), we analyze in the following the computational costs
of our solution. A summary4 of this analysis is provided in
Table I, together with all notations.

1. Setup: As mentioned in Section II, the setup phase of
our protocol is a one-time pre-processing operation that is
amortized over an unlimited number of fast verifications. The
computational cost of this phase is dominated by:
• The public parameter generation which amounts to D expo-

nentiations in G;
• N calls to CuckooInsert where, as shown in [8], each inser-

tion is expected to terminate in (1/ε)O(log d) time (ε > 0);
• The computation of m accumulators AW which requires m

exponentiations in G and md multiplications in Fp;
• The computation of N accumulators AF which involves N

exponentiations in G and Nn multiplications in Fp;
• The generation of Merkle tree TW (resp. TF) which consists

of 2m hashes (resp. 2N).
2. QueryGen: This algorithm does not require any compu-

tation. It only constructs the query for the k keywords together
with the corresponding VKQ.

3. Search: Although this algorithm seems expensive, we
highlight the fact that it is executed by the cloud server. Search
runs k CuckooLookup which consist in 2k hashes and 2kd
comparisons to search for all the k queried keywords (in the
worst case). Following this operation, the complexity of this
phase depends on whether all the keywords have been found:
• out = FW : The complexity of Search is governed by:

– The computation of k file accumulators AF. Without the
knowledge of trapdoor α, and using FFT interpolation
as specified in [3], this operation performs kn log n
multiplications in Fp and k exponentiations in G;

– The generation of the authentication paths in tree TF for
these accumulators, which amounts to k logN hashes;

– The generation of the proof of intersection that takes
O((kn) log2(kn) log log(kn)) multiplications5 in Fp to
compute the gcd of the characteristic polynomials of the
sets involved in the query result.

• out = ∅: The computational costs of this phase consist in:
– The generation of the proof of membership for the

missing keyword by calling twice GenerateWitness. This
operation requires 2(d + d log d) multiplications in Fp
and 2d exponentiations in G;

– The computation of 2 bucket accumulators AW, which
amounts to 2d log d multiplications in Fp and 2d expo-
nentiations in G;

– The generation of 2 authentication paths for these 2
buckets by running GenerateMTProof on tree TW,
which performs 2 logm hashes.

4A more detailed table can be found in the full version of our paper here:
http://www.eurecom.fr/publication/4540.

5More details on this complexity computation can be found in [3] and [10].

TABLE I: Computational complexity of our protocol, in the worst case where all N
keywords are in all n files or where the not found keyword is the last in the query.

D: parameter of our system, n ≤ D: number of files, N : number of keywords
m: the number of buckets in the index, d: size of a bucket
k: number of keywords in a query.
EG: time to exponentiate elements in G; Mp: time to multiply elements in Fp;
H∗: time to hash elements in {0, 1}∗; CI: time to run CuckooInsert;
LC: light computation; PI : time to run ProveIntersection;
BPG: time to compute bilinear pairings in G; MT : time to to multiply in GT
Algorithms Approximate computational complexity

Setup (D +m+N) EG + (md+Nn) Mp + 2(m+N) H∗ +N CI
QueryGen k LC
Search

out = FW kn EG + (kn logn) Mp + (k logN) H∗ + 1 PI
out = ∅ 4d EG + (2d+ 4d log d) Mp + (2 logm) H∗

Verify
out = FW 3k BPG + k MT + (k logN) H∗
out = ∅ 6 BPG + (2 logm) H∗

4. Verify: We also analyze the complexity of this algorithm
according to whether all the keywords have been found:
• out = FW : Verify runs k instances of VerifyMTProof on

tree TF, which requires k logN hashes. Then, it executes
VerifyIntersection which computes 3k pairings and k mul-
tiplications in GT .
• out = ∅: Verify runs twice VerifyMTProof on tree

TW that computes 2 logm hashes and it invokes twice
VerifyMembership that evaluates 2× 3 pairings.

In summary, to verify the search results, a verifier V performs
very light computations compared to the computations under-
taken by the server when answering keyword search queries
and generating the corresponding proofs. Besides, the verifica-
tion cost depends on k only in the case where all the keywords
have been found and is independent otherwise. Furthermore,
we believe that for large values of k, the probability that the
search returns a set of files containing all the k keywords is
low. Hence, the verification cost will be constant and small (6
pairings and 2 logm hashes). On the other hand, for smaller
values of k, the verification cost remains efficient.

Impact of D on the performance. This performance
analysis assumes n ≤ D, where n is the number of files. The
value of D solely depends on security parameter 1κ, and as
such, defines an upper-bound to the size of sets for which
we can compute a polynomial-based accumulator. It follows
that in our protocol, the number of files that a data owner can
outsource at once is bounded by D. However, it is still possible
to accommodate files’ sets that exceed the bound D. The idea
is to divide the set of size n into n′ = d nD e smaller sets of size
D. By using the same public parameters, Setup accordingly
creates for each set of D files an index and the corresponding
Merkle trees. This increases the complexity of the Setup by
a factor of n′. Namely, the data owner is required to build n′

Cuckoo indexes and 2n′ Merkle trees. whereas the server has
to run n′ ProveIntersection.

VIII. RELATED WORK

Verifiable polynomial evaluation and keyword search.
In [5], [11], the authors tackle the problem of verifiable
delegation of polynomial evaluation. Their solutions allow a
verifier to check whether a server evaluates the polynomial on
the requested input correctly. As proposed in [11] and briefly

mentioned in [5], such a solution is suitable to the problem
of verifiable keyword search where the file is encoded by its
characteristic polynomial. Nevertheless, the application of [5]
and [11] to verifiable keyword search would not be efficient.
Besides to accommodate public delegatability and conjunctive
queries, as achieved by our scheme, the proposals [5], [11]
may require elaborate adjustments.

Verifiable keyword search on encrypted data. Recent
work [12]–[15] adopt a different scenario from the one we
follow here: While our setting focuses on verifiable keyword
search on outsourced (sanitized) data and cares about public
delegatability and public verifiability, the solutions proposed
in [12]–[15] support verifiable keyword search on encrypted
data and satisfy the data and query privacy properties. In
particular, the work of Chai and Gong [12], extended in
[13], exploits a searchable symmetric encryption scheme to
develop a verifiable keyword search solution that preserves data
confidentiality while enabling the verification of search results
returned by the cloud. However, due to the use of a symmetric
searchable encryption, these proposals do not offer public
delegatability nor public verifiability. Besides, their adversary
model considers a semi-honest-but-curious cloud whereas in
this paper we consider malicious clouds. Cheng et al. [15]
propose a protocol for verifiable conjunctive keyword search
that leverages a combination of a searchable symmetric encryp-
tion scheme with an indistinguishability obfuscation circuit (iO
circuit) realizing the search operation. While public verifiability
is achieved via another public iO circuit representing the
verification function, public delegatability is not addressed in
this work. Nevertheless, it is worth considering generating
an iO circuit to realize the public delegatability. Still, the
generation and obfuscation of such circuits induce substantial
costs that the authors in [15] barely mention. Furthermore,
Zheng et al. [14] propose a solution called Verifiable Attribute-
Based Keyword Search (VABKS) which allows a data owner
to grant a user satisfying an access control policy the right to
query a keyword over the owner’s outsourced encrypted files
and to verify the search result returned by the server. This
solution does not support conjunctive keyword search. Besides,
public delegatability and public verifiability are not in the
scope of this work: only a fine-grained access control enables
authorized users to issue search queries and verify search
results. In summary, this review of existing work for verifiable
keyword search on encrypted data [12]–[15] identifies the gap
that should be addressed as a future work between verifiable
private search and publicly delegatable and verifiable search.
While our scheme does not support search on encrypted data
(as this problem is orthogonal to our scenario), it offers public
delegatability and verifiability, which most of the existing
work on verifiable keyword search on encrypted data do not
achieve. We can customize our protocol to allow search on
encrypted data at the price of sacrificing public delegatability
and verifiability. Nevertheless, methods such as attribute-based
encryption can be used to delegate search capabilities to a third-
party user.

IX. CONCLUSION

In this paper, we presented a protocol that enables a data
owner to outsource its database to a cloud server, in such a way
that any third-party user can perform search on the outsourced
database and verify the correctness of the server’s responses.
The proposed solution is efficient: The storage overhead at the
data owner and third-party users is kept to a minimum, whereas
the verification complexity is logarithmic in the size of the
database. Moreover, it is provably sound under well-understood
assumptions, namely, the security of Merkle trees and the
strong bilinear Diffie-Hellman assumption. As a future work,
we will implement our protocol to demonstrate its feasibility
with real data. We will also consider the problem of updates
in the set of files and keywords.

X. ACKNOWLEDGMENTS
This work was partially funded by the H2020 project

CLARUS (grant No. 644024).

REFERENCES

[1] B. Parno, M. Raykova, and V. Vaikuntanathan, “How to Delegate and
Verify in Public: Verifiable Computation from Attribute-Based Encryp-
tion,” in Proceedings of the 9th Theory of Cryptography Conference,
TCC 12, 2012, pp. 422–439.

[2] I. Damgård and N. Triandopoulos, “Supporting Non-Membership Proofs
with Bilinear-Map Accumulators,” IACR Cryptology ePrint Archive, vol.
2008, p. 538, 2008.

[3] R. Canetti, O. Paneth, D. Papadopoulos, and N. Triandopoulos, “Ver-
ifiable Set Operations over Outsourced Databases,” in Public-Key
Cryptography–PKC 2014. Springer, 2014, pp. 113–130.

[4] R. Gennaro, C. Gentry, and B. Parno, “Non-Interactive Verifiable Com-
putation: Outsourcing Computation To Untrusted Workers,” in Advances
in Cryptology–CRYPTO 2010. Springer, 2010, pp. 465–482.

[5] D. Fiore and R. Gennaro, “Publicly Verifiable Delegation of Large Poly-
nomials and Matrix Computations, with Applications,” in Proceedings of
the 2012 ACM Conference on Computer and Communications Security.
ACM, 2012, pp. 501–512.

[6] L. Nguyen, “Accumulators From Bilinear Pairings and Applications,” in
Topics in Cryptology–CT-RSA 2005. Springer, 2005, pp. 275–292.

[7] R. C. Merkle, “A Digital Signature Based on a Conventional Encryption
Function,” in Advances in Cryptology–CRYPTO’87. Springer, 1988, pp.
369–378.

[8] M. Dietzfelbinger and C. Weidling, “Balanced Allocation and Dictio-
naries with Tightly Packed Constant Size Bins,” Theoretical Computer
Science, vol. 380, no. 1, pp. 47–68, 2007.

[9] R. Pagh and F. F. Rodler, “Cuckoo Hashing,” Journal of Algorithms,
vol. 51, no. 2, pp. 122–144, 2004.

[10] C. Papamanthou, R. Tamassia, and N. Triandopoulos, “Optimal Veri-
fication of Operations on Dynamic Sets,” in Advances in Cryptology–
CRYPTO 2011. Springer, 2011, pp. 91–110.

[11] S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable Delegation of
Computation over Large Datasets,” in Advances in Cryptology – CRYPTO
2011. Springer, 2011, pp. 111–131.

[12] Q. Chai and G. Gong, “Verifiable Symmetric Searchable Encryption for
semi-Honest-but-Curious Cloud Servers,” in IEEE International Confer-
ence on Communications (ICC), 2012. IEEE, 2012, pp. 917–922.

[13] Z. A. Kissel and J. Wang, “Verifiable Phrase Search over Encrypted Data
Secure against a Semi-Honest-but-Curious Adversary,” in IEEE 33rd
International Conference on Distributed Computing Systems Workshops
(ICDCSW), 2013. IEEE, 2013, pp. 126–131.

[14] Q. Zheng, S. Xu, and G. Ateniese, “VABKS: Verifiable Attribute-Based
Keyword Search over Outsourced Encrypted Data,” in INFOCOM, 2014
Proceedings IEEE. IEEE, 2014, pp. 522–530.

[15] R. Cheng, J. Yan, C. Guan, F. Zhang, and K. Ren, “Verifiable Searchable
Symmetric Encryption from Indistinguishability Obfuscation,” in Pro-
ceedings of the 10th ACM Symposium on Information, Computer and
Communications Security, ser. ASIACCS ’15. New York, NY, USA:
ACM, 2015, pp. 621–626.

