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ABSTRACT

We derive a new adaptive filtering algorithm called the In-
strumental Variable Affine Projection (IVAP) algorithm and
give its fast version (FIVAP algorithm). The IVAP algo-
rithm departs from the AP algorithm and uses an IV. The IV
process is generated in a way such that the new algorithm
combines between the AP and the Fast Newton Transver-
sal Filter (FNTF) algorithms. Simulations show that the
IVAP algorithm is more robust to noise than the AP algo-
rithm. With the IV, the sample covariance matrix loses its
Hermitian property and its displacement structure is differ-
ent from the one of the AP algorithm. Consequently, the
derivation of a fast version is done by deriving the IV Slid-
ing Window Covariance Fast Transversal Filter (IV SWC
FTF) algorithm. Using this and other ingredients, we de-
rive the FIVAP algorithm whose computational complexity
is nearly the same as the one of the FAP algorithm.

1. INTRODUCTION

The Fast Affine Projection algorithm outperforms the clas-
sical adaptive algorithms because of its convergence speed
which approaches that of the Recursive Least Squares (RLS)
algorithmand its computational complexity which is slightly
greater than the one of the Least Mean Squares (LMS) al-
gorithm. The AP algorithm is characterized by an updating-
projection scheme of the adaptive filter on anL dimensional
data-related subspace. This projection on a subspace whose
dimension is in general very small compared to the filter
length, gives the AP algorithm a tracking ability which is
superior to the RLS and LMS algorithms. Nevertheless,
when a projection is performed, noise amplification always
arises and this phenomenon degrades the performances of
the algorithm. In fact, in the AP algorithm, a covariance
matrix of sizeL is estimated from the data over a rectan-
gular sliding window of size equal to the filter length. In
order to apply the projection scheme, this covariance matrix
has to be inverted and noise amplification originates from
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this operation in the case where the covariance matrix is ill-
conditioned. This fact is typical in applications where the
input signal to the adaptive filter is highly correlated which
is the case for speech signals. Several solutions have been
given in order to alleviate this problem for Acoustic Echo
Cancellation (AEC) applications. In [1], a regularization is
achieved by adding�I to the covariance matrix whereas in
[2], an exponential window is used in lieu of the rectangular
window. All of these methods lead to approximations of the
exact AP recursions.
In this paper, we introduce an Instrumental Variable (IV)
and derive an algorithm that is situated between the FAP
algorithm and the Fast Newton Transversal Filter (FNTF)
algorithm. The IV is used in the estimation of a new covari-
ance matrix that replaces the covariance matrix of the AP
algorithm. The new covariance matrix appears to be better
conditioned. This renders the new algorithm more robust
against noise amplification. Nevertheless, the Hermitian
structure of the covariance matrix is lost and a new alge-
braic structure appears. Henceforth, the derivation of a fast
algorithm necessitates the derivation of an IV Sliding Win-
dow Covariance RLS (IV SWC RLS) algorithm and there-
fore its fast version which is the IV SWC Fast Transversal
Filter (IV SWC FTF) algorithm.

2. THE INSTRUMENTAL VARIABLE AFFINE
PROJECTION ALGORITHM

The AP algorithm constitutes a generalization to the Nor-
malized LMS (NLMS) algorithm. For an adaptive filter of
lengthN denoted byWN;k at timek and for an input sig-
nalx(k) and the corresponding regression vectorXN (k) =�
xH(k); � � � ; xH(k�N+1)

�H
(H represents the Hermitian

transpose operator), the AP algorithm is given by the fol-
lowing set of equations

�
p
L(k) = dL(k) +XN;L;kW

H
N;k�1 (1)

WN;k = WN;k�1 � ��
pH

L(k)R
�1
L;kXN;L;k ; (2)

with dL(k) = [d(k); � � � ; d(k�L+1)]H the vector of theL
most recent samples of the desired signald(k), �pL(k) =



x(k) f(k) y(k)

AM(z;k) AM (z�1; k)

Figure 1: Synthesis of the IV.

[�L(kjk�1) � � � �L(k�L+1jk�1)]
H is thea priori error fil-

tering vector,�L(kji) = d(k)+WN;iXN (k) . 0 < � < 1 is
the step-size (relaxation factor),XN;L;k is theL�N Hankel
data matrixXN;L;k = [XN (k) � � � XN (k�L+1)]H and
RL;k = XN;L;kX

H
N;L;k is the sample covariance matrix es-

timated on the basis of a rectangular window of lengthN .
The AP algorithm performs at each iteration, a projection
of the deviation filter onto the orthogonal subspace to the
column space ofXH

N;L;k.
Considery(k) to be an IV signal and the corresponding

IV regression vectorYN (k) =
�
yH (k) � � �yH (k�N+1)

�H
,

the update equation of the new algorithm is

WN;k = WN;k�1 � ��
pH

L(k)
eR�1L;kYN;L;k ; (3)

with YN;L;k = [YN (k) � � � YN (k�L+1)]H and eRL;k =

YN;L;kX
H
N;L;k. Define the deviation filter to befWN;k =

WN;k +W o
N with W o

N denoting the optimal filter and con-
sider the noiseless case wheredL(k) = XN;L;kW

oH

N . From
(3), it follows thatfWN;k=fWN;k�1(I�XH

N;L;k
eR�1L;kYN;L;k),

(� = 1) which reveals the projection scheme of the devia-
tion filter onto the orthogonal subspace to the space col-
umn ofXH

N;L;k in the direction defined by the row space of
YN;L;k.
The IV signal must lead to decorrelation of the input sig-
nal. One possible IV is the Kalman gain that is computed
in the RLS algorithms. Unfortunately, the Kalman gain
does not have the shift invariance property that allows the
derivation of fast recursive computations in LS adaptive fil-
tering. Hence, consider the LDU decomposition of the in-
verse covariance matrix and suppose the prediction filter is
of orderM (AR(M ) assumption) withM < N as is the
case for the FNTF algorithm. It appears that the IV signal
can be generated according to Fig. (1) whereAM (z; k) =PM

n=0An;kz
�n andA0;i = 1. Note that in the stationary

case:Syx(z) = AM (z)AM (z�1)Sxx(z) = Sff (z), hence
the cross-covariance matrixRyx is equal toRff which is
diagonal ifAM (z) is the optimal prediction filter associated
with x(k). The prediction filter can be time-updated using
a trellis structure or an FTF algorithm.AM (z�1; k) being
non-causal, it suffices to replace it byz�MAM (z�1; k) and
to delay the input and desired signals byM samples to get
a realizable structure.

3. THE FAST ALGORITHM

The derivation of the fast algorithm is done in 3 steps. The
first step uses the same technique as in [1]. It consists in re-
moving the redundancy in the updating equation (3) due to
the successive regression vectors of the data matrixYN;L;k.
The second step updates the generators of the inverse co-
variance matrix. This will be done by deriving the IV SWC
FTF algorithm. Finally, the third step, uses the displace-
ment structure of the inverse covariance matrix in order to
compute recursively

�
pH

L(k)
eR�1L;k = lHL (k) =

h
l0(k) � � � l(L�1)(k)

i
: (4)

3.1. Fast Computation of the Output Filtering Error

In the first step, the key ingredient is the use of a pseudo-
filter cWN;k such as

WN;k = cWN;k � �MH
L�1(k)YN;L�1;k ; (5)

where

ML(k) =

2
64

l0
H

(k)
...

l0
H

(k�L+1) + � � �+ l(L�1)
H

(k)

3
75 ; (6)

is computed recursively as follows

ML(k) =

�
0

(ML(k�1))0:L�2

�
+ lL(k) : (7)

The pseudo-filter is updatedaccording to

cWN;k = cWN;k�1 � �Y H
N (k�L+1)ML�1H

L (k) ; (8)

and the output error filter is computed in the following way

�
p
N (k) = b� pN (k)� �MH

L�1(k�1)sL�1(k) ; (9)

whereb� pN (k) is the output error of the pseudo-filter and

sL�1(k) = YN;L�1;k�1XN (k) = sL�1(k�1) +

Y �L�1(k�1)x(k)� Y �L�1(k�N�1)x(k�N ); (10)

� denoting the complex conjugate operator. The set of equa-
tions (5)-(10) constitutes the first step of the fast algorithm
we are deriving. In the following, we derive an algorithm
that efficiently computes the solution to (4). In order to do
this, we have to analyze the displacement structure ofeR�1

L;k
.

This will be done in an RLS context by first, deriving a re-
cursive version that is the IV SWC RLS algorithm and after-
wards, a fast recursive version which is called the IV SWC
FTF algorithm.



3.2. The IV SWC RLS Algorithm

When using an IV in the SWC RLS context, one has to ver-
ify the orthogonalityconditions

Pk

i=k�N+1 YL(i)�
H (ijk) =

0L�1 which lead to the normal equations

WL;N;k
eRL;N;k = �PH

L;N;k ; (11)

whereeRL;N;k = eRTL;k andPL;N;k =
Pk

i=k�N+1 YL(i)d
H
i .

Note that in the present case, the indicesL andN respec-
tively represent the dimension of the problem and the length
of the rectangular window over which the LS solution is
computed. We have the following recursions for the sample
covariance matrix

eRL;N;k = eRL;N�1;k�1 +XL(k)Y
H
L (k) (12)

= eRL;N�1;k +XL(k�N+1)Y H
L (k�N+1) ; (13)

and for the cross-correlation vector

PL;N;k = PL;N�1;k�1 + YL(k)d
H(k) (14)

= PL;N�1;k + YL(k�N+1)dH(k�N+1) : (15)

The derivation of the recursive version of (11) is done con-
sidering two RLS problems: first one being a time and order
update recursion(k�1; N�1) ! (k;N ) and the second
one is an order down-date recursion(k;N ) ! (k;N�1).
The first step is a simple Weighted RLS (exponential win-
dow; WRLS) algorithm where the forgetting factor� is set
to 1. Using (12), (13) and the Matrix Inversion Lemma
(MIL), it is easy to show that the time and order update
part of the recursive algorithm is given by the first set of
equations (20). Note that because the Hermitian property
of the sample covariance matrix disappeared with the use of
the IV, we have to compute 2 Kalman gainseCL;N�1;k andeGL;N�1;k that correspond respectively to the input signal
x(k) and to the IV signaly(k). The IV WRLS and its fast
version called IV FTF algorithm have been derived in [3].
For the down-date part, let us consider the normal equations
WL;N�1;k

eRL;N�1;k = �PH
L;N�1;k, using (13) and (15),

one finds easily

WL;N�1;k = WL;N;k + �L;N�1(k)FL;N;k ; (16)

with FL;N;k = �Y H
L (k�N+1) eR�1L;N;k and

�L;N�1(k) = d(k�N+1) +WL;N�1;kXL(k�N+1) :
(17)

ReplacingWL;N�1;k in (17) by the right hand side of (16)
gives the following relation

�sL;N (k)
4
= d(k�N+1) +WL;N;kXL(k�N+1)

= �L;N�1(k)�
�1
L;N (k) ; (18)

where��1L;N (k) = 1� FL;N;kXN (k�N+1). Applying the
MIL to (13),we obtain

eR�1L;N�1;k = eR�1L;N;k �DH
L;N;k�

�1
L;N (k)FL;N;k : (19)

withDH
L;N;k = � eR�1L;N;kXN (k�N+1). Finally, by associ-

ating the time-order update and order down-date equations,
the IV SWC RLS algorithm is given by

eCL;N�1;k = �XH
L (k) eR�HL;N�1;k�1eGL;N�1;k = �Y H
L (k) eR�1L;N�1;k�1

�1L (k) = 1� eGL;N�1;kXL(k)

�
p
L;N�1(k) = d(k) +WL;N�1;k�1XL(k)

�L;N (k) = �
p
L;N�1N (k)

WL;N;k = WL;N�1;k�1 + �L;N (k) eGL;N�1;keR�1L;N;k = eR�1L;N�1;k�1 � eCH
L;N�1;kN (k) eGL;N�1;k

DL;N;k = �XH
N (k�N+1) eR�HL;N;k (20)

PL;N;k = �Y H
N (k�N+1) eR�1L;N;k

�L;N (k) = 1� PL;N;kXN (k�N+1)

�L;N (k) = d(k�N+1) +WL;N;kXL(k�N+1)

�sL;N�1(k) = �L;N (k)��1L;N (k)

WL;N�1;k = WL;N;k + �sL;N�1(k)PL;N;keR�1L;N�1;k = eR�1L;N;k �DH
L;N;k�

�1
L;N (k)PL;N;k :

From, the IV SWC RLS algorithm described above, we
can now derive the corresponding fast version called the IV
SWC FTF algorithm.

3.3. The IV SWC FTF Algorithm

In what follows, we will only give the equations of the pre-
diction part of IV SWC FTF algorithm. Details about the
complete algorithm can be found in [4]. The IV SWC FTF
algorithmuses two prediction problems, one associated with
the input signalx(k) with y(k) being an IV (AL;N;k and
BL;N;k are the corresponding forward and backward predic-
tion filters) and the other associated to the signaly(k) with
x(k) as the IV (AL;N;k andBL;N;k being the forward and
backward prediction filters). The prediction part IV SWC
FTF algorithm is given by

2
4 eCLp;N;k eGLp;N;k

AL;N;k AL;N;k
�1Lp (k) �

�1
L;N (k)

3
5 = FU

2
664
eCL;Nm;km eGL;Nm;km

AL;Nm;km AL;Nm;km
�1L (km) ��1L;Nm(km)

XLp (k) YLp(k)

3
775

2
4 eCL;Nm;k eGL;Nm;k

BL;N;k BL;N;k

�1L (k) �L;N (k)

3
5 = FD

2
664

eCLp;N;k eGLp;N;k

BL;Nm;km BL;Nm;km

�1Lp (k) �L;Nm(km)

XLp(k) YLp(k)

3
775



2
4DLp;Np;k PLp;Np;k
AL;Nm;k AL;Nm;k
�Lp (k) ��1L;Nm(k)

3
5 = FU

2
664
DL;N;km PL;N;km
AL;N;k AL;N;k
�L(km) ��1L;N (k)

XLp (kN ) YLp(kN )

3
775

2
4 DL;N;k PL;N;k
BL;Nm;k BL;Nm;k

�L(k) �L;Nm (k)

3
5 = FD

2
664
DLp ;Np;k PLp;Np;k
BL;N;k BL;N;k

�Lp (k) �L;N (k)
XLp (kN ) YLp (kN )

3
775
(21)

whereLp = L+1; Np = N+1; Lm = L�1; Nm = N�1,
km = k�1; kN = k�N+1, �L;N(k) and�L;N (k) are re-
spectively the forward and backward prediction error ener-
giesFU andFD are transformations defined in [4]. The
computational complexity of the prediction part IV SWC
FTF algorithm is20L operations per sample.

3.4. The Complete Algorithm

The last step consists in using the displacement structure of
the inverse covariance matrix

eR�1L;k =

� eR�1Lm;k 0

0 0

�
+ BT

Lm;N;k
��1Lm;N;k(k)B

�

Lm;N;k

=

�
0 0

0 eR�1Lm;km
�
+ ATLm;N;k�

�1
Lm;N

(k)A
�

Lm;N;k
:(22)

Hence, using the fact that�pL(k) =
h
�
pH

Lm
(k) �

iH
=h

�p
�

(k) (1��) (�pL(km))
H

1:Lm

iH
; it is easy to show

lHL(k) =
�
0 (1��) HLm(km)

�
+ (23)

��1Lm;N (k)ALm;N;k�
p�

L (k)A
�

Lm;N;k
;�

 Lm(k)
0

�H
= lHL (k)� ��1Lm;N (k)BLm;N;k�

p�

L (k)B
�

Lm;N;k
:

The solution to (4) is computed efficiently with (23) and re-
quires the updating of the forward and backward prediction
quantities via the prediction part of the IV SWC FTF algo-
rithm. The generation of the IV needs2M operations for
the filtering part and6M operations if one uses the predic-
tion part FTF algorithm for the updating of the prediction
filter. Note that ifL > M andM is the optimal prediction
filter order of the input signal, then one could use the pre-
diction filter computed in the IV SWC FTF algorithm. This
allows the generation of the IV inM operations per sam-
ple (just filtering the prediction error throughAM (z�1; k)).
Note, that in this case, a prediction part IV SWC FTF al-
gorithm of orderM suffices. Combining these results with
(5)-(10), we get the IV FAP algorithm. WhenL < M ,
the computational complexity of the IV FAP algorithm is
2N +28L+8M operations per sample for the relaxed ver-
sion (� 6= 1) and2N+22L+8M operations per sample for
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Figure 2: Comparison of the FIVAP and FAP algorithms.

the non-relaxed form (� = 1). WhenL �M , the complex-
ities are respectively2N +8L+21M and2N +2L+21M
operations per sample.

4. SIMULATION

In Fig. 2, we give the learning curves (averaged over 128
samples) of the FIVAP and FAP algorithms for an input
which is a highly correlated signal,N = 256, L = 24,
M = 4 and � = :999 (we used a stabilized FTF with
E0 = 10). A sudden variation of the optimal filter arises
at k = 9900. White output noise has been added so that
SNR=20 dB. As one can see, the IVFAP algorithm is more
robust to noise amplification than the FAP algorithm.

5. CONCLUDING REMARKS

Due to its numerical error propagation dynamic, the IV SWC
FTF algorithm is unstable. One way to overcome this prob-
lem is to restart the algorithm whenever instability has been
detected. The stabilization of the new algorithm using a
feedback mechanism is the subject of our ongoing research.
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