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ABSTRACT
Phone adaptive training (PAT) aims to derive a new acous-
tic feature space in which the influence of phone variation is
minimised while that of speaker variation is maximised. Orig-
inally proposed in the context of speaker diarization, our most
recent work showed the utility of PAT in short-duration, au-
tomatic speaker verification where phone variation typically
degrades performance. New to this contribution is the as-
sessment of PAT utilising automatically generated acoustic
class transcriptions whose number is controlled by regression
tree analysis. Experimental results using a standard database
show that PAT delivers significant improvements in the per-
formance of a state-of-the-art iVector speaker verification sys-
tem.

Index Terms— Speaker modelling, short-duration, phone
adaptive training, automatic speaker verification

1. INTRODUCTION

Many automatic speech processing applications involve the
learning or training of models using variable quantities of
speech data. When data is plentiful, unwanted or nuisance
variation can be normalised or marginalised and thus it does
not necessarily impact on performance. Examples include
text-independent speaker verification where the use of long-
duration training and testing data effectively neutralises the
effect of differing phone content.

In contrast, when training data is scarce, then performance
can degrade significantly in the face of nuisance variation
which is not otherwise marginalised. Speaker diarization [1,
2] and short-duration text-independent speaker verification [3,
4, 5] are two such examples in which either speaker models
can be trained on low quantities of data or well-trained models
can be compared to short test segments. In both cases there is
a bias towards the specific phone content [6, 7].

A number of approaches to attenuate phone bias in
speaker modelling have been proposed. Stolcke et al. [8, 9]
and Ferras et al. [10] both investigated approaches to increase
speaker discrimination in SVM-based speaker verification

systems through the learning of phone-neutral speaker mod-
els. Both approaches derive speaker-dependent transforms
using constrained maximum likelihood linear regression
(cMLLR) [11, 12] and phone transcripts derived through
automatic speech recognition (ASR) [8]. The two approaches
concentrate on concatenating the parameters of estimated
cMLLR transforms into high dimensional feature vectors
which are then used to train speaker discriminant SVM-based
ASV systems.

Our own approach to attenuate phone bias operates en-
tirely at the feature level. Based on speaker adaptive training
(SAT) [13], phone adaptive training (PAT) [14] estimates a set
of phone-specific transforms which are used to project acous-
tic features into a new feature space in which phone discrim-
ination is minimised while speaker discrimination is max-
imised. Our recent work [15] shows that PAT is successful
in marginalising phone variation in an automatic speaker ver-
ification (ASV) framework, always under strictly controlled
conditions, including the use of manually derived phone tran-
scripts. This paper reports our continued work to develop PAT
into a fully unsupervised system. New contributions include
an approach to automatic acoustic class transcription using
regression tree analysis. We assess the performance of PAT
as a function of model complexity and for varying quantities
of training data. Additional new experiments show that PAT
performs well even when the number of acoustic classes is
reduced well below the number of phones.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the principles and implementation of phone
adaptive training. Section 3 describes the experimental setup
used to obtain results presented in Section 4. Our conclusions
and ideas for future work are presented in Section 5.

2. PHONE ADAPTIVE TRAINING

This section describes the principles and specific implemen-
tation of PAT used for all experimental work presented in this
paper. The motivation behind PAT stems from the idea be-
hind speaker adaptive training (SAT) [13], a technique com-



monly used in speaker-independent automatic speech recog-
nition (ASR). SAT aims to decouple speaker and phone vari-
ation and to preserve only the latter in order that ASR may
be performed reliably using speaker-independent models. In
contrast, PAT aims to suppress phone variability and to max-
imise speaker-discrimination for more reliable speaker mod-
elling.

We suppose a dataset of utterances collected from S dif-
ferent speakers. Each utterance is composed of P different
phones such that the global set of acoustic features is rep-
resented by Os,p = (os,p,1, . . . ,os,p,Ns,p

) for all speakers
s ∈ S and phones p ∈ P . For each phone p, PAT estimates it-
eratively a constrained maximum likelihood linear regression
(cMLLR) transformation W̃ p = (Ãp, b̃p) which captures the
phone variation across speakers with Ãp being a n×n regres-
sion matrix (n being the dimension of the feature space), and
b̃p an n-dimensional bias vector. Simultaneously, PAT learns
a set of phone-normalised speaker models Λ̃ = (λ̃1, . . . , λ̃S).
The algorithm is thus defined by:

(
Λ̃, W̃

)
= argmax

Λ,W

S∏
s=1

P∏
p=1

L (Os,p|W pλs) (1)

where W̃ = (W̃ 1, . . . , W̃ p) represents the set of phone
transforms. The main advantage of using CMLLR transforms
is that phone-normalized features Õs,p can then be obtained
according to:

õs,p,t = Ã
−1

p os,p,t + Ã
−1

p b̃p (2)

where t = 1, . . . , Ns,p is the feature index. Since there is no
closed-form solution, Equation 1 is optimised iteratively [14].

In practice, due to data limitations, it can be preferable
to learn transforms W̃ p for groups of phones, often referred
to as phone classes or acoustic classes, instead of individual
phones. Based on linguistic analysis, suitable classes can be
learned with a binary regression tree. The root node of the
tree is initialised with a single acoustic class containing the
full set of phones illustrated in Table 1. Each node is progres-
sively split into smaller sub-classes for which separate trans-
forms W̃ p are determined. The split is made according to that
which maximises the data likelihood in Equation 1. The pool-
ing of data according to acoustic classes, instead of phones,
allows the reliable estimation of a smaller set of transforms
with less data. PAT thus results in phone-normalised acous-
tic features from which more discriminant, phone-normalised
speaker models can be learned. In the following we seek to
assess PAT performance through a series of experiments per-
formed on the TIMIT database [16].

Table 1: The 39 phones used for generating acoustic class
transcriptions and for PAT.

39 ENGLISH-LANGUAGE PHONES
hh, ih, z, eh, f, l, aa, b, ae, k, dh, dx, er,

iy, m, n, g, r, ey, w, v, ah, y, uw, d, s, t, ng, p,
sh, uh, ch, ay, ow, aw, th, jh, oy, sil

3. EXPERIMENTAL SETUP

In line with our previous work [15], that reported in this paper
was performed on the TIMIT database and in the context of
automatic speaker verification (ASV).

3.1. Database

The TIMIT database [16] is composed of high-quality, read
speech collected from a total of 630 speakers (192 female,
438 male). Each speaker contributes 10 short, phonetically-
rich English language sentences whose average duration is
3 seconds. In the same way as reported in [17], we reduced
the 61 phonetic labels in the TIMIT transcriptions to the 39
phones illustrated in Table 1. All data from a subset of 462
speakers (136 female, 326 male) is set aside for the learning of
a UBM and acoustic class models used for acoustic class tran-
scription (4620 speech recordings in total). That from the re-
maining 168 speakers (56 female, 112 male) is used for ASV
experiments. One sentence per speaker is randomly selected
and set aside for testing. In order to assess PAT performance
in the case of varying quantities of training data, between 1
and 7 of the remaining sentences are randomly selected and
used to learn speaker models.

3.2. Feature extraction and acoustic class transcription

Non-speech segments are removed from all TIMIT sentences
according to the ground-truth transcriptions. Remaining
speech segments are then parametrised with 12 mel-scaled
frequency cepstral coefficients (MFCCs) augmented by nor-
malised energy, delta and acceleration coefficients, thereby
obtaining a feature vector with a total of 39 coefficients.

Using the pool of acoustic features extracted from the
UBM and acoustic class training dataset, and by varying
the likelihood threshold, the 38 phones in Table 1 (without
silence) are reduced to between 5 and 38 acoustic classes
through automatic regression tree analysis. For each number
of acoustic classes, the phone labels in the phonetic tran-
scriptions are replaced by their corresponding acoustic class
labels.

The acoustic class models are 3-state hidden Markov
models (HMMs) where each state is characterised by a Gaus-
sian mixture model (GMM). Each acoustic class model is
first initialized with a single Gaussian component whose
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Fig. 1: An illustration of ASV performance for GMM-UBM and iVector-PLDA ASV systems with 21 and 25 acoustic classes
respectively and for training data of 1 TIMIT sentence. Plots show the best obtained EER for baseline systems (clear bars) and
the same systems with 5 iterations of PAT (shaded bars).

mean and variance are set to that of the global class data.
Subsequently, six iterations of embedded training are per-
formed. The number of Gaussian components is doubled
and embedded training is performed again on the new, larger
model. This procedure is repeated until the number of Gaus-
sian components reaches 128. The dataset used for ASV
experiments is transcribed automatically using the given set
of acoustic classes and corresponding models. Both train-
ing and decoding phases were implemented with the Hidden
Markov Model Toolkit (HTK) [18].

3.3. Phone adaptive training and speaker verification

We investigated PAT performance using two different ASV
systems: a traditional GMM-UBM system and a state-of the
art iVector-PLDA system. Speaker models with between 4
and 1024 Gaussian components are derived from the UBM
using conventional maximum a posteriori (MAP) adaptation.
The features used to train the UBM are treated with PAT
which is applied using the TIMIT ground-truth transcrip-
tions. All remaining data used for ASV experiments (model
training and testing) is instead treated with PAT applied using
automatically generated acoustic class transcriptions. In both
cases Equation 1 is applied with 5 iterations. As for acous-
tic class segmentation, PAT was also implemented with the
Hidden Markov Model Toolkit (HTK) [18].

Baseline ASV experiments were performed using the
initial set of features Os,p (or derived iVectors) while PAT
performance was assessed using different numbers of acous-
tic classes and corresponding normalised features. For the
iVector-PLDA system we estimated the total variability ma-
trix using the same data used to estimate the UBM. Due to
data limitations and since we do not aim to optimise ASV,
but only to observe the difference in ASV performance with
PAT, the PLDA model is learned with the same development
iVectors.

4. EXPERIMENTAL RESULTS

Figure 1 illustrates the performance of GMM-UBM (left)
and iVector-PLDA (right) systems, with and without PAT,
for model sizes between 4 and 1024 components and using
21 and 25 acoustic classes respectively. Results indicate
the equal error rate (EER) when speaker models are trained
with only a single TIMIT sentence. In all cases, baseline
performance is illustrated with clear bars whereas that with
5 iterations of PAT is illustrated with shaded bars. Noting
the difference in scale between plots for each system, we
see that the iVector-PLDA system largely outperforms the
GMM-UBM system (EERs in the order of 1 to 3.5% cf. 3.5
to 9.5%). The performance envelope for the GMM-UBM
systems are convex with minima at 128 components for the
baseline and 64 components with PAT. The iVector-PLDA
profiles are somewhat noisy, mostly likely due to the lack of
sufficient data to train the total variability matrix. Optimal
performance with PAT is again achieved for a model with 64
components.

Figure 2 illustrates PAT performance for the GMM-UBM
system (clear bars) and the iVector-PLDA systems (shaded
bars) with different numbers of acoustic classes. The com-
plexity of both systems is fixed to 64 components. While
the profile envelopes are somewhat non-convex, most likely
again due to lack of training data, the application of PAT re-
sults in better performance than the respective baselines (solid
and dashed horizontal lines). These observations indicate that
PAT is beneficial even without reliable phone transcriptions.
With 15 and 25 acoustic classes respectively the relative im-
provement in performance is 18% for the GMM-UBM system
and 33% for the iVector-PLDA system.

Detection error trade-off (DET) profiles for the iVector-
PLDA system using 25 acoustic classes is illustrated in Fig-
ure 3. The profiles illustrate performance for speaker models
of size 64 trained using only a single TIMIT sentence, with
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Fig. 2: An illustration of ASV performance for GMM-UBM
and iVector-PLDA systems with 5 iterations of PAT for dif-
ferent numbers of acoustic classes, all for training data of 1
TIMIT sentence and for 64 UBM components. The baseline
performance for GMM-UBM and iVector-PLDA systems are
represented respectively by the solid and dashed horizontal
lines.
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Fig. 3: Detection error trade-off (DET) plots for iVector-
PLDA systems with and without 5 iterations of PAT using 25
acoustic classes and for speaker models trained with a single
TIMIT sentence.

and without PAT. The baseline EER of 1.8% is shown to fall
to 1.2% with the application of PAT, i.e. the same relative im-
provement of 33%.

Table 2 illustrates a summary of performance for the
iVector-PLDA systems for optimal model sizes and for dif-
ferent quantities of training data, namely 1 to 7 TIMIT sen-

Number of sentences
for speaker model training

Baseline
(EER %)

Baseline + PAT
(EER %)

1 1.8 1.2
3 1.2 0.7
5 0.6 0.5
7 0.7 0.5

Table 2: EERs for the iVector-PLDA system with and without
5 iterations of PAT with 25 acoustic classes. Performance
is illustrated for varying quantities of training data and for
optimal model sizes.

tences. Baseline results are illustrated in the second column
whereas those for PAT with 25 acoustic classes are illustrated
in the third column. We see that, as the quantity of training
data increases, then the difference between baseline and PAT
performance decreases. This is to be expected since larger
quantities of training data will inherently reduce the phone
bias and have the same normalising effect as PAT. PAT thus
delivers the most significant improvements in ASV perfor-
mance in the case of short-duration training where the phone
bias is otherwise the most pronounced.

5. CONCLUSIONS AND FUTURE WORK

Based on the application of constrained maximum likelihood
linear regression (cMLLR), phone adaptive training (PAT)
aims to reduce the influence of phone variation at the feature
level, while simultaneously emphasising speaker discrimina-
tion. This paper reports our most recent work to assess an
automatic approach to acoustic class transcription using re-
gression tree analysis. Results using two different approaches
to automatic speaker verification, one at the state of the art,
show that PAT improves on baseline performance for all
experiments with different numbers of acoustic classes and
model complexities. Of particular note, the number of acous-
tic classes can be reduced significantly meaning that PAT is
effective even without reliable phone transcriptions. This may
ease the application of PAT to more realistic, noisy data where
phone transcription can be troublesome. Finally, and as could
have been expected, the improvement in performance tends
to reduce as the amount of training data increases, meaning
that PAT is most beneficial when training data is scarce.

Our future work will take two directions. First, given
the effective performance of PAT with relatively few acoustic
classes and the ability to obtain the same performance with
less complex models, we will investigate the utility of PAT
in low-resource, embedded mobile applications. Second, we
intend to return to the original focus of this work in marginal-
ising phone bias in order to improve performance in speaker
diarization.
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