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ABSTRACT

Blind channel identification methods based on the over-
sampled channel output is a problem of current theoreti-
cal and practical interest. In this contribution, it is first
demonstrated that the subspace methods developped in (1]
are not robust to errors in the determination of the model
order. An alternative solution is then proposed, based on
a linear prediction approach. The effect of overestimat-
ing the channel order is investigated by simulations: it is
demonstrated that the prediction error method is "robust”
to over-determination, in contrast to most of the schemes
suggested to date.

1. INTRODUCTION

Since the early work by Sato [2], most of the blind identifi-
cation/equalization techniques have been based on the use
(implicit or not) of higher-order statistics, which are known
to suffer from many drawbacks (in terms of finite-sample
variance, robustness to noise...). The recent proposal by
Gardner [3] and Tong, Xu and Kailath [4] of methods allow-
ing the blind identification of the channels using only sec-
ond order statistics appears as a major breakthrough in this
field. The basic idea motivating these approaches consists in
recognizing that appropriately oversampled communication
signals are cyclostationary, and that, under a mild addi-
tional hypothesis, the phase of linear time-invariant channel
can be retrieved from the periodically time-varying channel
output correlation function [3, 4]. Since these algorithms
rely on fractional sampling and second-order statistics, they
show several desirable properties, making it suitable in mo-
bile communication context (see, [4]): at the first place,
these algorithms require fewer symbols than most of the
schemes suggested to date, making these solutions attrac-
tive even in the presence of relatively rapid channel vari-
ation. Some improvements over these methods have been
presented in [1] (subspace method) and [5] (deterministic
maximum likelihood method). Our contribution in this pa-
per is twofold. (i) The potential drawbacks of the subspace
and related methods (proposed in [5, 1]), when the exact
order of the system is unknown, are outlined and (more
importantly) (ii) a time-domain procedure based on a pre-
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diction approach, which is more robust to the overdetermi-
nation of the system order is presented.

2. SUBSPACE METHODS

The continuous-time output from a linear time-invariant
channel driven by a PAM/QAM sequence is given by

§(t) =) _ s(k)h(t — KT) + (?) (1)

k

where s(k) is an independent and identically distributed
(i.i.d) sequence of symbols (Es(k) = 0, E(s(k)®) = 1),
(1) is an additive temporally white noise E(w(t1)@(t2)) =
028(t1 — t2), T is the baud rate, and h(t) is the impulse
response of the cascade of channel, transmit and receive
filters, assumed to be causal and time-limited to (M +1)
symbols duration. Oversampling by a factor ¢ > 1 leads
to a g x 1 discrete sequence y(n) = yi(n), -, yq(n)]T
(respectively w(n) = [wi(n), -+, we(n)]"), where yi(n) =
§((1—1)T/q+nT +1to) (respectively wi(n) = @((I-1)T/q+
2T +t)). According to (1), y(n) can be seen as the noisy
output of a ¢ x 1 time-invariant polynomial transfer function
h(z) driven by the scalar sequence s(n), i.e.

y(n) = [ha(2), -+, ho(2)] s(n) + w(n) = [h(2)]s(n) + w(n)

M M
h(z) = 3 h(( - 1)% FRT+10)e™ = S (k)=

k=0 k=0

Denote by r(r) the autocovariance function of y(n), r(r) =
E{y(n + 7)y(n)T}. Under the fundamental hypothesis
h(z) # 0 for each z, it has been shown in [4] that h(z)
is identifiable from a finite number of values of (7). A
subspace-based identification scheme was later introduced
in [1). It relies on geometric properties of the so-called
Sylvester g(N + 1) x (M + N + 1) block-Toeplitz matrix
associated with the polynomial vector h(z), defined as:

RO) - R(M) 0 - 0
0 h(®) --- h(M) --- O
Tn(h) = : : : : : :
0 - 0 h(O) - A(M)

Denoting by R the covariance matrix of the g(N +1) x 1
vector Yn(n) = [y(n),---,y(n = N)]7, it comes, by using
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the signal model (2) and the noise properties:

Yn(n) = Tn(h)smin(n)+ Wn(n)
smen(n) = [s(n),---,8(n—M — N)]T
Ry = TIn(B)TF(h)+o°1

Since ¢ > 1, Ry — o°1 is singular as soon as ¢(N +1) >
(N +1+ M). Denote II the orthogonal projection matrix
onto the noise subspace of R (i.e the orthogonal subspace
of Range(Tn(k))). The subspace identification method is
ultimately related to the following theorem:

Theorem 1 Assume that (H1) h(z) #0 Vz, then

1. for N > M — 1, the matriz Ty (k) is full rank.

2. let 1(z) be a g x 1 polynomial transfer function,
deg(f(z)) = P. For N > M, we have

I7x(f) = 0 <= {(z) = p()h(2) (2)

where p(z) is some scalar polynomial. In this case, the
degree P must be greater than M.

In practice the orthogonal projector 11 is estimated from the
observed signals covariance matrix R, and, if M is known,
h can be estimated (up to a constant) by minimizing on the
set of all g x 1 degree-M polynomials the following quadratic
criterion .

Trace(Tx (17w () (3)
under a suitable constraint (see [1] for more details). If
M is overestimated, the argument f(z) of (3) will repre-
sent an estimate of a certain polynomial r(z)h(z), and an-
other algorithm would here be required to factorize from
the components of {(z) some approximatively common ze-
ros. But, using such an algorithm would require some test
to decide how many zeros are common, and the relevance of
the final estimate should again depend on the result of the
test. The same conclusion holds for the method proposed in
[5], which is closely related to the above subspace method.
The method proposed in [4] estimates the Sylvester matrix
Tn(h) without using the specific parametrisation of the ma-
trix. Based on simulations, it seems to be ‘more’ robust to
the errors in the estimation of the model order than sub-
space methods, but, as it will be shown in section 4, its
performance is still somewhat less inferior in comparison
with those of the linear prediction method presented in the
following.

3. PREDICTION BASED METHODS

In this section, a linear prediction approach is developped
to identify h(z). This approach has been first investigated
by Slock in [6] in the special case where ¢ = 2, and when
the degree M of h(z) is known. The main contribution
of this section is to generalize the results of [6], and more
importantly, to show that the linear prediction approach is
robust to an over-determination of the order M. In order
to simplify the exposition, the noiseless case w(n) = 0 is
considered in a first part. A straightfroward extension to
noisy data is presented in a second part.

The basic idea behind the linear prediction approach is
to recognize that the moving-average (MA) process y(n) =

[h(2)]v(n) is also a finite order autoregressive process (AR).
This property is related to the generalized Bezout identity
(see, for example, [7]). Under (H2) (h(z) is irreducible),
it is known [7] that there exists a 1 x ¢ polynomial vector
g(z) such that g(z)h(z) = 1. By applying g(z) to y(n), it
comes that [g(z)]y(n) = s(n): h(z) can be ezactly inverted
by an FIR causal filter. This relation is the key behind all
subsequent derivations.

In order to proceed, some additional notations and def-
initions are in order. Denote H,_3i(y) the past of y up to
time n — 1 defined by

Hooi(y) =splyi(n =1)/i=1,q,1 21} 4)

Here, sp{z: € I} stands for the Hilbert subspace generated
by {z: € I'}. Denote accordingly Hn—i,~(y) the finite past
of y,

Hﬂ-—l,N(y)=sp{y|(n_l)/1=1yq) ISISN} (5)

The innovation process (i(n))nez of y is the g-variate white
noise sequence defined by

i(n) =y(n) = y(m)H\s(v) (6)

where | stands for the orthogonal projection in H. The
process y will be said to be autoregressive of order N if i(n)
coincides with the finite order innovation sequence ix(n) =
¥(n) — y(n)|#,_, n(y)- We have the following theorem.

Theorem 2 Under (H1-2), y(n) is an order M autore-
gressive process. Its innovation process is given by i(n) =
h(0)v(n).

proof: Consider Tn(h) the Sylvester matrix associated to
the filter h(z). Under (H1), for N = (M - 1), Tn(h)
is full rank, and is thus left invertible, i.e. it exists a
(2M x ¢M) matrix K such that K7y—1(h) = I. There-
fore, Hnar—1(y) = Hn2am-1(3), so that Ha(y) = Ha(s),
the infinite past of processes y and s coincide. Since y(n) =
h(0)s(n) + 3 0L, h(k)s(n — k), s(n) is a white noise, and
- Zi‘il h(k)s(n—k) = y(n)|x,_,(y) the innovation of y(n)
is given by: i(n) = k(0)s(n). As Hn ar-1(y) = Hn2m-1(3),
it holds Hn—1,M(y) = Hn-12m(s). Thus, the variables
s(n —k),1 <k < M belong to Hn—1,m{y), and hence,

M
=3 h(k)s(n = k) = y(m)s-y(v) € Hn-1,m(v)

k=1

In some sense, s(n) represents the normalized innovation of
y(n), and a 1x¢ polynomial filter g(z) verifying [g(z)]y(n) =
s(n) can be seen as a prediction error filter (PEF). Such a
filter can be easily computed by using generalized Yule-
Walker equations, as shown below. The important point is
that the polynomial transfer function h(z) can be recovered
from any PEF g(z) by using h(k) = E(y(n)([8(2)ly(n —
B)T).

The innovation i(n) is computed by projecting y{n) onto
the space generated by the random variables {yi(n—-1)/i =
1,q, 1 =1, P} where P > M. Let [A(1),---, A(P)] be ¢ x ¢
matrices such that y(n) + kaﬂ AK)y(n — k) = i(n):

[AQ1), - A(P)Rpoa = =[r(1),---.7(P)]  (7)
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Since the innovation is not full-rank, these coefficients are
not uniquely defined. A particular set of coefficients may
be obtained by:

[a@),---,

where Rp_; is the covariance matrix of Yp_1(n) =
[y(n),--,y(n — P +1)]T and the supersript # denotes the
Moore—Penrose pseudo-inverse. According to theorem 2, the
covariance of the innovation D = r(0) + Zk -1 A(k)rT(k)
is of rank one; the non-zero eigenvalue of D is equal to
Aa = ||ho|?; the associated eigenvector d is the unit-norm
d = %ho/||ko]| (the sign is not identifiable at the second-
order). Take | =d/ Vg It comes

A(P)) = —[r(1), -, r(P)IRE_, (8)

Lemma 1 g(z) = IT(I + S1_, A(k)z™*) is a 1 x g poly-
nomial vector such that [g(z)fy(n) = s(n).

Comments

e For the prediction method, when P > M, h(M +
1),---,h(P) are equal to zero. And thus, when ex-
act statistics are available, an exact identification of
the filter coefficients is achieved under the solely hy-
pothesis that the prediction order P is greater than
the true model order. In practice, when only sample-
estimate statistics are available the order estimation
is necessary to perform the pseudo-inverse of the co-
variance matrix Rp—1. However, a failure of the order
determination procedure, doesn’t affect seriously the
performances of the method. Heuristically, the reasons
are twofolds. First, let P > M and let u a ‘noise’
eigenvector of matrix Rp—1: Rp—1u = 0; from (7), it
comes that [r(1),...,7(P)]u = 0, the noise elgenvectors
are orthogonal to [r(l) - r(P)]T This relation is ex-
act for ensemble-averaged covariance; it is expected to
be approximately verified for sample-statistics. Next,
the order determination method will fail when sample
noise eigenvalues are closed to some signal eigenval-
ues (in the case where there is a clear cut between the
two sets, the correct model order can be inferred di-
rectly) Then, it is likely that the M — M dominant
noise eigenvalues are bounded away from zero. This
two reasons together imply that the inversion does not
cause serious numerical troubles. All these claims are
supported by the numerous numerical simulations we
have conducted, as illustrated in section 4.

e The prediction method can be straightforwardly ex-
tended to deal with noisy signals. In this case, it suf-
fices to estimate ¢ and to deal with the noise-free
covariance, obtained by substracting to the observed
signal covariance the noise covariance a?I.

A practical implementation From the results of the
previous section, and assuming the additive noise spatially
and temporally white, we derive the following algorithm.

1. Given T > P samples of the process y, yr =
[¥(1),---,y(T)}, compute (P + 1) (P is greater than
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M. the order of the filter) autocovariance coefficients

according to

#n) = [fab(n))igarsq
T'—n

A Y vt +my()T 0<n<P
t=1

From these coefficients, a sample estimate Rp of the
g(P+1) x g(P +1) covariance matrix of the vectorized
observation Yp(n) can be obtained using the following
construction

#(0) #(1) .. #(P)
F(1)T #0) .. #(P-1)
Rp=
#P-1DT .. #0) #(1)
#(P)T F(1)T 7(0)

. From the eigen decomposition of Rp, estimate (i) the

order M of the filter h(z) by using, for example a stan-
dard information criteria test, such as the MDL test
(see [8] and the references therein), (ii) the noise covari-
ance &2 as the average of the N = g(P+1)—(M +P+1)
smallest eigenvalues of Rp.

. Compute the vectorial prediction error filter Aas

A
A()

[1,AQ1),...
—[#(1),...

LA
R ggry = 5 D*

[AQL), ...,

. Estimate the filter coefficient I = k(0)/ || (0) J|* from

the eigen-decomposition of the estimated covariance
matrix D:

D = [AQ),..., AQD)FQ),..., #(M)] +#(0) - &°I,
D = VavT
V = [b,...,0), VIV=I
[3 = diag(:éh""[}q), 312[922 Bq
i o
B

. Compute the 1 x q(M + 1) prediction error filter § as:

g=ITA

. I §(M) is the (M + 1) x ¢(M + 1) matrix

#(M) 0 0 .- 0
san=| MDD e e
#(0) - 6°Iq f(.l) f(}t’l)
estimate the g(M + 1) x 1 filter coefficient vector h=
[R(NM)T,..., h(0)T]" h = S(M)§"

as:



4. SIMULATION RESULTS

We present here some numerical simulations to assess the
performance of our algorithm. We run simulations for a
4-variate (¢ = 4) MA model, with coefficients given by
(M = 5): hy(z) = —0.04 — 0.30z™" - 1.2827% — 0.53:7° +
0.14z7% — 0.262°, ha(z) = 0.91 — 0.20z~" — 0.4427% —
1.02z7% — 0.54z™* — 0.0827%, h3(z) = —1.18 4 0.49z~" —
0.31272 +0.40272 4+ 0.1327* — 1.8527° and hy(z) = 1.30 +
0.05z=1 +0.34272 — 0.0327° 4 0.40z~* +0.88z™°. The out-
put observation noise is an ii.d. sequence of zero-mean
Gaussian variables and the input signal is an i.i.d sequence
of zero-mean, unit-variance Gaussian variables independent
from the noise signal.

The number of samples T is held constant (T" = 100).
For comparison, the algorithm of [4] was also simulated for
the same channels. The criterion used in this section is the
mean-square estimation error (MSE) defined as the square-
root of the sample average, over the Monte-Carlo simula-
tions, of the total estimation variance. For each experiment,
300 independent Monte-Carlo simulations are performed.

In figure 1, the a priori estimated order is set to P =7,
the input signal is Gaussian and the noise variance is var-
ied between —30 dB and 0 dB. The AIC model-order deter-
mination procedure is used for both methods. The figure
shows, the MSE in dB for the linear prediction method (re-
spectively, the method of [4]) in solid line (respectively, in
dashed line) as a function of the noise power. This show
that our method consistently provides more reliable esti-
mates is the case of unknown model-order M.

In the second experiment, we consider a two-variate
(¢ = 2) MA model of order M = 2. The noise variance
is set to —10 dB, the number of samples T is held con-
stant (T = 1000) and the estimated order P is varied be-
tween 2 (i.e the exact order) and 10. To deal with a dif-
ficult order estimation context, the transfert functions are
choosen as hi(z) = 1.1650 + 0.0751z~" —~ 0.6965z2 and
h2(z) = 0.0352 — 0.0697z~" + 0.1696z72. The eigenval-
ues of the exact noise-free covariance matrix are given by
{0, 0.0152, 0.0510, 1.0464, 1.8581, 2.6775}.

Fig.2 shows the MSE of the total estimation variance of
h = [h(0)7,...,R(P)T]" of the linear prediction method
when the MDL procedure is used for order determination
(dashed-line) and this of the linear prediction method when
the exact order is a priori known (solid-line), as a function
of the over-estimated filter degree P. The table 1 shows
the error-rate (ER) of the order estimation. This shows the
robustness of the method to the errors in the estimation of
the model order.

5. CONCLUSION

This contribution presents a linear prediction approach o
the blind identification of multichannel FIR filters. This
technique allows to obtain a good estimation behaviours of
the channel coefficients even in the case where the number of
coefficients is over-estimated. Numerical simulations have
been preformed to evidence the usefulness of the method
and to support our theoretical claims.

M 2 3 5 7 10
ER | 0.62 | 0.51 | 0.67 | 0.67 | 0.79

MSE indB

RTYIv.4

3 4 L] 93 10

5 & 7
Over estimaled order P
Tabl. Error-rate on the estimated order by the MDL criterion
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