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Abstract : Blind channel identi�cation and equalization based on second-order statistics
by subspace �tting and linear prediction have received a lot of attention lately. On the other
hand, the use of cyclic statistics in fractionally sampled channels has also raised considerable
interest. We propose to use these statistics in subspace �tting and linear prediction for (possibly
multiuser and multiple antennas) channel identi�cation. We base our identi�cation schemes on
the cyclic statistics, using the stationary multivariate representation introduced by [6] and [9]
[10]. This leads to the use of all cyclic statistics. The methods proposed, compared to classic
approaches, have equivalent performance for the subspace �tting and enhanced performance for
linear prediction.

1 Introduction

Major impairments of most wireless communication channels, especially in mobile environments,
are intersymbol interference (ISI), cochannel interference (CCI) and adjacent channel interference
(ACI). In wireless networks, the latter is solved by source separation techniques and ISI by
equalization techniques. In the past three decades, so-called \blind" channel identi�cation and
equalization techniques ourished ; where \blind" really means based on the outputs of the channel
only; and some assumptions on the nature of the input and/or channel. Among these techniques,
methods based on second-order statistics only are very attractive, because they need few samples
to allow channel identi�cation compared to the other methods (implicitly or explicitly based on
higher order statistics).

Recognizing that communication (continuous time) signals are cyclostationary shows the cy-
clostationarity of the oversampled (w.r.t. the baud rate) discrete time signals and, under mild
conditions, leads to the identi�ability of the channel. The optimalmethodis the covariance match-
ing, introduced by [5]. The two other families of methods are subspace �tting and linear prediction
introduced with non-cyclic statistics [14] which are suboptimal, but do not need complex numer-
ical searches as the covariance matching method.

In this paper, we introduce a new multichannel channel model derived from the stationary
multivariate representation introduced by [6]. This representation allows us to derive the sub-
space �tting and linear prediction methods using the cyclic statistics. Algebraic considerations
show that the cyclic subspace �tting has, in theory, the same performance as the non-cyclic sub-
space �tting, although the cyclic approach is characterized by fewer parameters for the channel,
leading to some enhancement w.r.t. the non-cyclic method. For the linear prediction, basing the
prediction on more samples leads to better performance.

2 Data Model

We consider a spatial division multiple access (S.D.M.A.) communication system with p emitters
and a receiver constituted of an array of M antennas. The signals received are oversampled by a
factor m w.r.t. the symbol rate. The channel is FIR of duration NT=m where T is the symbol
duration.

The received signal can be written as :
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Figure 1: Schematic S.D.M.A. situation
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Figure 2: Channel model

The received signal x(n) and noise v(n) are M�1 vectors. x(n) is cyclostationary with period
m whereas v(n) is assumed not to be cyclostationary with period m. h(k) = [h1(k)T � � �hM (k)T ]T

has dimension M � p, a(k) and u(k) have dimensions p� 1.

3 Cyclic Statistics

Following the assumptions here above, the correlations :

Rxx(n; � ) = E
�
x(n)xH(n� � )

	
(2)

are cyclic in n with period m (H denotes complex conjugate transpose) [4]. One can easily express
them as:

Rxx(n; � ) =
1X

�=�1

1X
�=�1

h(n � �m)Raa(�)h
H(n � �m+ �m � � ) +Rvv(� ) (3)

We then express the kth cyclic correlation as :

Rfkgxx (� )
4
=

1

m

m�1X
l=0

Rxx(l; � )e
�|2�lk

m = Ek
�
x(l)xH(l � � )

	
(4)
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whose value is :

Rfkgxx (� ) =
1

m

1X
�=�1

1X
�=�1

h(�)Raa(�)h
H(�+ �m � � )e�|

2��k
m +Rvv(� )�(k) (5)

with k integer and Rfkgxx (� ) = Rfk+mgxx (� ) (usually, one uses k 2 [�
jm
2

k
; � � �

jm
2

k
]).

Let's also denote TK(HN ) as the convolution matrix of HN = [h(0)Th(1)T � � �h(N � 1)T ]T

and
D
fk;pg
DFT = blockdiag[Ipje

�| 2�k
m Ipj � � � je

�|
2�(N�1)k

m Ip] (6)

4 Gladyshev's Theorem And Miamee Process

Gladyshev's theorem [6] states that :

Theorem 1 Function Rxx(n; � ) is the correlation function of some PCS (Periodically Correlated
Sequence) if and only if the matrix-valued function :

R(� ) =
h
Rfkk

0g
xx (� )

im�1
k;k0=0

(7)

where Rfkk
0g

xx (� ) = Rfk�k
0g

xx (� )e2�|k�=m (8)

is the matricial correlation function of some m-variate stationary sequence.

Reminding that Rfkgxx (� ) = Rfm�kgHxx (�� ), the following matrix

R
4
=

2
6664

R(0) R(1) � � � R(K � 1)
R(�1) R(0) � � � R(K � 2)

...
...

. . .
...

R(1�K) R(2�K) � � � R(0)

3
7775 (9)

is an hermitian K �K block Toeplitz matrix of Mm �Mm blocks.
Then, Miamee [9] gives us the explicit expression of the multivariate stationary process asso-

ciated :

Zn =
h
Zkn

im�1
k=0

where Zkn =
m�1
�
j=0

x(n + j)e2�|k(n+j)=m (10)

where � is the direct sum, i.e., noting w = e2�|=m

Zkn = wkn[x(n);x(n+ 1)wk; � � � ;x(n +m � 1)wk(m�1)] (11)

is de�ned in a Hilbert space, where the correlation is the following Euclidean product :

< Zkn;Z
k0

n+l >=
m�1X
j=0

E

�
Zkn(j)Z

k0

n+l

H
(j)

�
(12)

and Zn = [Z0n
T
Z1n

T
� � �Zm�1n

T
]T with the classical correlation for multivariate stationary pro-

cesses.
On the other hand, Miamee gives the link between the linear prediction on Zn and the cyclic

AR model of x(n), which we will use to derive an e�cient way of computing the linear predictor.
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5 Expression of Zn w.r.t. u(n) and h(n)

From Zkn =
m�1
�
j=0

x(n+ j)e2�|k(n+j)=m and

x(n+ j) =
L�1X
k=0

h(k)u(n+ j � k) + v(n+ j)

= HN

2
6664

u(n+ j)
u(n+ j + 1)

...
u(n + j �N + 1)

3
7775+ v(n + j)

(13)

De�ning Un+j = [u(n + j)T � � �u(n + j � N + 1)T ]T and H
fkg
N = [w�kjh(j)]N�1j=0 we express the

Miamee process as :

Zkn =
m�1
�
j=0

(Hf�kg
N wknUn+j + v(n+ j)e2�|k

n+j
m )

= H
f�kg
N wkn[UnUn+1 � � �Un+m�1] +

m�1
�
j=0

v(n+ j)e2�|k
n+j
m

(14)

) Zn =HtotU(n) + V(n) (15)

where we noted Htot = [H
f0gT
N H

f�1gT
N � � �H

f1�mgT
N ]T ,

U(n) = D
fn;pNg
DFT [UnUn+1 � � �Un+m�1] (16)

V(n) =

2
6664

v(n) � � � v(n+m� 1)
v(n)wn � � � v(n +m � 1)wn+m�1

...
. . .

...
v(n)wn(m�1) � � � v(n +m � 1)w(m�1)(n+m�1)

3
7775 (17)

) Z = TL+N�1(Htot)UL + VL (18)

where UL = [U(n)]0n=L�1 clearly is a stationary process whose correlation matrix can easily be
deduced from Raa.
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hM (km)

hM (km+m � 1)

Figure 3: (Classical) Time Series Channel model representation

Based on relation (18), we apply the classical subspace �tting and linear prediction channel
identi�cation schemes, as detailed below.

6 Identi�ability

Provided the data collected are numerous enough, the rank condition on TL+N�1(Htot) lead to
the usual identi�ability conditions, i.e. that Htot(z) must be minimum phase which is equivalent
to the condition that hi(z) may not have 2�

m equispaced zeros and that hi(z) and hj(z) may not
have common zeros for all i 6= j.

4



m

a(k) u(k)

H(k)

Hf1g(k)

Hfm�1g(k)

U(n)

V(n)

Z(n)

DFT

z�1

z�1

U(n)

stack N samples

vector of size m

[Un(k) � � �Un+m�1(k)]

Figure 4: New Channel model

7 Signal Subspace Fitting

We recall briey the signal subspace �tting [11, 1] (noise subspace based) blind channel identi�-
cation algorithm here under.

One can write the (compact form of the) SVD of the cyclocorrelation matrix R = ABCH

with the relations:
rangefAg = rangefCg = rangefTK(Htot)g (19)

We can then solve the classical subspace �tting problem :

min
Htot;T

jjTK(Htot) �AT jj
2
F (20)

If we introduce A? such that [AA?] is a unitary matrix, this leads to

min
Htot

Ht
tot

"
KMmX
i=D?

TN (A
?Ht
i )T H

N (A?Ht
i )

#
HHt
tot (21)

where U?i is a KMm2 � 1, D? = N +K and superscript t denotes the transposition of the

blocks of a block matrix. Under constraint jjHtotjj = 1, Ĥ
t

tot is then the eigenvector corresponding
to the minimum eigenvalue of the matrix between brackets. Similar work was done by Schell in
[4] for the Direction of Arrival estimation problem. One can lower the computational burden by
using D? > N + K (see a.o. [11]), which leads to loss of performance. A reduced complexity
signal subspace �tting without loss of performance is described in [3].

The case p > 1 can be (partially) solved in a manner similar to [12] and [8].
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8 Linear Prediction

We consider the denoised case. The correlation matrix is then computed as follows : R
f0g
xx;sb =

Rf0gxx �RVV (� ) yields :

[RVV (� )]i;j =
m�1X
l=0

E
�
v(n+ l)vH (n+ l + � )

	
wi(n+l)w�j(n+l+�)

= Rvv(� )w
n(i�j)�j�

m�1X
l=0

w(i�j)l

= Rvv(� )w
n(i�j)�j�m�ij = m�ijRvv(� )w

�j�

(22)

Hence RVV (� ) = Rvv(� ) blockdiag[IM jw�IM jw2�IM j � � � jw(m�1)�IM ], which, in R, corre-
sponds to the noise contribution of the zero cyclic frequency cyclic correlation.

From equation (18) and noting ZK(n� 1) = [Zj]
j=n�K
j=n�1 , the predicted quantities are :

Ẑ(n)jZK(n�1) = p1Zn�1 + � � �+ pKZn�K (23)

~Z(n) = Z(n) � Ẑ(n)jZK(n�1) (24)

Following [16], we rewrite the correlation matrix as

R =

�
Ro rK
rHK RK�1

�
(25)

this yields the prediction �lter :

PK
4
= [p1 � � �pK ] = �rKR

�1
K�1 (26)

and the prediction error variance :

� ~Z;K
= Ro �PKr

H
K = Htot(0)�

2
U;K+N�1H

H
tot(0) (27)

where the inverse might be replaced by the Moore-Penrose pseudo-inverse, and still yield a con-
sistent channel estimate. Another way of being robust to order overestimation would be to use
the Levinson-Wiggins-Robinson (LWR) algorithm to �nd the prediction quantities and estimate
the order with this algorithm.

Lots of ways are possible to go from the prediction quantities to the channel estimate ([13]
and [2]). We used the optimal solution here under.

For K = K =

�
N � 1

M:m � 1

�
, (27) allows us to �nd Htot(0) up to a scalar multiple. Let H?

tot

be M:m � (M:m � 1) of rank M:m � 1 such that H?
totHtot(0) = 0, then

FbK+1 = H?H
tot PK (28)

is a set of M:m� 1 blocking equalizers, since FbZ = 0. Due to the commutativity of convolution,
we �nd :

FbKTK(Htot) = 0 ,Ht
totTN (F

bt
L ) (29)

Now
dim

�
Range?

n
TN (F

bt
K+1)

o�
= 1 (30)

so that we can identify the channel HtH
tot as the last right singular vector of TN (F

bt
K+1).
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9 Computational Aspects

It is obvious that the correlation matrix R built from the cyclic correlations is bigger (in fact
each scalar in R is replaced by a m�m block in R) than the corresponding matrix built from the
classical Time Series representation of oversampled stationary signals. This fact must be balanced
with the stronger structure that is cast in our correlation matrix. In fact, one can show that the

estimates Ĥ
f�kg

N are strictly related (i.e. Ĥ
f�kg

N = [w�kjĥ(j)]N�1j=0 for all k), which indicates us
that this structure should lead to reduced complexity algorithms w.r.t. the original ones. When
developing the expressions in detail, this is particularly obvious in linear prediction, where the
prediction �lter has some strong structure (which is also visible in [10]). Moreover, as noted in
[15], the multichannel linear prediction problems correspond to a block triangular factorization
and to an orthogonalization of the block components of the vector Z.

Coming back to the original channel model, we can alternatively introduce sequential process in
the orthogonalization process and orthogonalize the elements of the vector X = [x(n) � � �x(n+K)]
scalar component by scalar component. the elements of the vector X = [x(n) � � �x(n+K)] This
leads to the cyclic prediction �lters, whose explicit relations to the multivariate predictions �lters
are known, and results from a true (non-block) triangular factorization.

10 Simulations

In our simulations, we restrict ourselves to the p = 1 case, using a randomly generated real channel
of length 6T, an oversampling factor of m = 3 and M = 3 antennas. We draw the NRMSE of the
channel, de�ned as

NRMSE =

vuut 1

100

100X
l=1

jjĥ
(l)
� hjj

2

F =jjhjj
2
F (31)

where ĥ
(l)

is the estimated channel in the lth trial.
The correlation matrix is calculated from a burst of 100 QAM-4 symbols (note that if we

used real sources, we would have used the conjugate cyclocorrelation, which is another means of
getting rid of the noise, provided it is circular). For these simulations, we used 100 Monte-Carlo
runs.

10.1 Subspace �tting

The estimations of 25 realizations, for an SNR of 20 dB, are reproduced here under.

0 2 4 6 8 10 12 14 16 18

0

0 2 4 6 8 10 12 14 16 18

0

0 2 4 6 8 10 12 14 16 18
−0.5

0

0.5

Figure 5: Simple channel estimate
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For comparison, we used the same algorithm for the classical Time Series representation of the
oversampled signal. The results here under show a better performance for the classic approach,
which is due to the fact that we used the same complexity for both algorithms (same matrix size),
which results in a lower noise subspace size for the cyclic approach. In theory, when one uses the
same subspace size, as there is a one to one correspondence between the elements of the classic
correlation matrix and the elements of the cyclic correlation matrix, the performances should be
equal. The third curve illustrates this fact.
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−40
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SNR in dB

N
R

M
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 d
B

NRMSE for subspace fitting

+ : cyclic correlation

x : cyclic correlation, increased complexity

o : classic correlation

Figure 6: Subspace �tting estimation error

In more realistic cases, when one uses a channel model where the transmitter and receiver
�lters are incorporated, the cyclic approach gives better results. This is mostly due to the fact
that we can better re�ne the channel length estimate (and should be preceded by a good channel
length estimation algorithm). Indeed, if we use a channel of the form (where M = 2 and m = 2)�

� � � � � � �
� � � � � � �

�
(32)

where � is a near zero value, the cyclocorrelation approach can a�ord to restrict to the central
part of the channel, but the classical approach will try to �nd the M �m multichannel :0

BB@
� � �
� � �
� � �
� � �

1
CCA or

0
BB@

� � �
� � �
� � �
� � �

1
CCA (33)

with 2 more (near zero) parameters to estimate, which will globally give a worse estimation.
Following �gures illustrate, for moderate SNR, the performance enhancement for a 5T channel
combined to a 90% excess bandwidth raised cosine �lter (we continue to use M = 3 and m = 3).

10.2 Linear prediction

For the linear prediction, we expect to have a slightly better performance in the cyclic approach
than in the classic approach. Indeed, in the classic approach, if we use for example M = 1
antenna and an oversampling factor of m = 3, we predict [x(n)x(n � 1)x(n � 2)]T based on
[x(n � 3)x(n � 4) � � �]T , whereas in the cyclic approach we predict the scalar x(n) based on
[x(n � 1)x(n � 2)x(n � 3) � � �]T . The corresponding prediction �lter thus captures little more
prediction features in the cyclic case.

On the other hand, the noise contribution being only present in the zero cyclic frequency
cyclic correlation (see equation 5), we expect a better behavior of the method if we do not take
the noise into account in the correlation matrix (i.e. we don't estimate the noise variance before
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Figure 7: Combined channel and transmission/reception �lter
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Figure 8: Subspace �tting estimation error

doing the linear prediction). Those expectations are con�rmed by the following simulations, note
that the mention LP on cyclic statistics refers to the use of R where the noise contribution has
been removed, whereas the mention LP on cyclic statistics, no "denoising" refers to the use of the
plain correlation matrix.

11 Conclusions

Using the stationary multivariate representation introduced by [6] and [9] [10], we have explicitly
expressed this process. It can be seen as the output of a system with transfer channel Htot =

[Hf0gT
N H

f�1gT
N � � �Hf1�mgT

N ]T and input easily related to the actual system input. Once these
quantities expressed, application of the classical subspace �tting and linear prediction algorithms
is straightforward.

For the subspace �tting, one has essentially the same performance as in the Time Series
Representation [16]. The only advantage one could expect is some re�nement in the channel order
estimation prior to the subspace �tting. The main drawback is the increase of the computational
burden.

For the linear prediction, we get a better performance due to the fact that we take the very
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Figure 9: Linear prediction estimation error

near past into account. What is more, use of modular multichannel linear prediction algorithms
like those described in [7] provide fast algorithms and adaptive implementations.
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