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Abstract—In the setting of the two-user single-input single-
output X channel, recent works have explored the degrees-of-
freedom (DoF) limits in the presence of perfect channel state
information at the transmitter (CSIT), as well as in the presence
of perfect-quality delayed CSIT. Our work shows that the same
DoF-optimal performance — previously associated to perfect-
quality current CSIT — can in fact be achieved with current
CSIT that is of imperfect quality. The work also shows that
the DoF performance previously associated to perfect-quality
delayed CSIT, can in fact be achieved in the presence of
imperfect-quality delayed CSIT. These follow from the presented
sum-DoF lower bound that bridges the gap — as a function of
the quality of delayed CSIT — between the cases of having no
feedback and having delayed feedback, and then another bound
that bridges the DoF gap — as a function of the quality of
current CSIT — between delayed and perfect current CSIT. The
bounds are based on novel precoding schemes that are presented
here and which employ imperfect-quality current and/or delayed
feedback to align interference in space and in time.

Index Terms—degrees of freedom, SISO X channel, CSIT.

I. INTRODUCTION

We consider the two-user Gaussian single-input single-
output (SISO) X channel (XC), with two single-antenna
transmitters and two single-antenna receivers, where each
transmitter has an independent message for each of the two
receivers. The corresponding channel model takes the form

yt = h
(1)
t x

(1)
t + h

(2)
t x

(2)
t +mt

zt = g
(1)
t x

(1)
t + g

(2)
t x

(2)
t + nt (1)

where at any time t, h
(i)
t , g

(i)
t denote the scalar fading

coefficients of the channel from transmitter i to receiver 1 and
2 respectively, where mt, nt denote the unit-power AWGN
noise at the two receivers, and where x

(i)
t , i = 1, 2 denotes

the transmitted signals at transmitter i, satisfying a power
constraint E(|x(i)

t |2) ≤ P . Naturally each x
(i)
t may include

some private information – originating from transmitter i –
intended for receiver 1, and some private information intended
for receiver 2.

In this setting, for a quadruple of achievable rates
Rij , i, j = 1, 2 corresponding to communication from trans-
mitter i to receiver j, we adopt the high-SNR degrees-of-
freedom (DoF) approximation dij = lim

P→∞
Rij

logP , i, j = 1, 2

to describe the limits of performance over the XC, particularly
focusing on the sum DoF measure dΣ := d11+d21+d12+d22.

In this context, the challenge originates from the fact
that each transmitter is both an interferer as well as an
intended transmitter to both receivers. Crucial in addressing
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Fig. 1. 2-user SISO X channel.

this challenge is the role of feedback — and specifically of
channel state information at the transmitters (CSIT) — which
can allow for separation, at each receiver, of the intended and
the interfering signals. In particular, while the optimal sum
DoF without CSIT has been shown to be dΣ = 1 (cf. [1]), the
DoF increases to dΣ = 6

5 in the presence of perfect-quality
delayed CSIT (see [2] which proved that this performance is
optimal over all linear schemes), and the DoF further increases
to an optimal sum-DoF of dΣ = 4

3 (see [3]) in the presence
of perfect-quality and instantaneously available CSIT (perfect
current CSIT).

A. Feedback quality model

Motivated by practical settings of limited feedback links, we
here consider the case where feedback can be of imperfect-
quality, and potentially also delayed. Towards this, let ĥ(i)

t , ĝ
(i)
t

denote the current CSIT estimates of channels h
(i)
t , g

(i)
t re-

spectively, and let

h̃
(i)
t = h

(i)
t − ĥi

t, g̃
(i)
t = g

(i)
t − ĝ

(i)
t (2)

be the estimation errors, modeled here as having i.i.d Gaussian
entries.

Similarly for delayed CSIT, along the same lines as in [4],
[5], let ȟ

(i)
t , ǧ

(i)
t denote the delayed estimates of channels

h
(i)
t , g

(i)
t , where these estimates are obtained sometime after

the channel elapses, and let

ḧ
(i)
t = h

(i)
t − ȟ

(i)
t , g̈

(i)
t = g

(i)
t − ǧ

(i)
t (3)

be the associated CSIT errors, modeled here as having i.i.d
Gaussian entries.

In our context, motivated by the approach in [6]–[9], we
consider

α = − lim
P→∞

logE[||h̃(i)
t ||2]

logP
= − lim

P→∞

logE[||g̃(i)t ||2]
logP



to be the current CSIT quality exponent describing the quality
of current CSIT, equally for both i = 1, 2, and we similarly
consider

β = − lim
P→∞

logE[||ḧ(i)
t ||2]

logP
= − lim

P→∞

logE[||g̈(i)t ||2]
logP

to be the delayed-CSIT quality exponent. In our DoF setting,
and following arguments directly from [10], we can safely
consider that the two quality exponents are bounded as

0 ≤ α ≤ β ≤ 1.

Having α = 1 corresponds to the case of perfect CSIT, for
which case — as stated above — the optimal sum DoF was
established to be equal to dΣ = 4

3 , while having β = 1 (α =
0), corresponds to the case of perfect-quality delayed CSIT,
for which case the optimal linear sum DoF was established
in [2] to be dΣ = 6

5 .

II. DOF PERFORMANCE WITH IMPERFECT-QUALITY
CURRENT AND DELAYED CSIT

Motivated by works such as that in [11] which presented
a distributed interference management technique which can
obtain the optimal DoF with local and perfect current CSIT
with a certain fractional delay, and by works on imperfect
current and delayed CSIT over the broadcast channel [6]–[9],
we here explore the role of feedback in moving between these
extremal points (α = 1 and β = 1, α = 0) by considering
different values of α and β.

Theorem 1: For the two-user XC with perfect-quality
delayed CSIT, and with imperfect current CSIT of quality
exponent α, the optimal sum DoF is lower bounded as

dΣ ≥ min
(4
3
,
6

5
+

2α(2− 3α)

5(4− 7α)

)
. (4)

As a result, the optimal sum DoF dΣ = 4
3 can be achieved

with imperfect current CSIT of quality that need not exceed
α = 4

9 .

Proof: The result follows by analyzing the performance
of the communication scheme which will be presented in the
next section. �

We note that the above expression, evaluated at α = 0,
yields the aforementioned sum DoF dΣ = 6

5 .
We now shift attention to the case of imperfect-quality de-

layed feedback, and of no (or very limited) current feedback,
corresponding to having β < 1 and α = 0. As argued in
[9], interest in imperfect-quality delayed CSIT relates to the
fact that β is more indicative of the quality of the entirety of
feedback (timely plus delayed), and hence, any attempt to limit
the total amount of feedback — that is communicated during
a certain communication process — must focus on reducing
β, rather than just focusing on reducing α. We proceed with
the associated result.

Theorem 2: For the two-user XC with no current CSIT
and with imperfect delayed CSIT of quality exponent β, the
optimal sum DoF is lower bounded as

dΣ ≥ min
(6
5
, 1 +

β

3

)
. (5)

As a result, the (linear-) optimal sum-DoF dΣ = 6
5 , previously

associated to perfect-quality delayed feedback, can in fact be
achieved with imperfect-quality delayed CSIT of quality that
need not exceed β = 3

5 .
The proof is based on a construction of an interference

management scheme that utilizes imperfect-quality delayed
feedback, and which — due to lack of space — is left to
be presented in the journal version.

We proceed with the description of the scheme correspond-
ing to the first theorem.

III. SCHEMES FOR XC WITH IMPERFECT CURRENT CSIT
The schemes are designed to have S phases, where the

sth phase (s = 1, · · · , S) consists of Ts channel uses. In
describing the schemes, we will use a double time index s, t
to correspond to the tth time slot, t = 1, · · · , Ts, of phase s.

The general structure of the transmitted signals at any
timeslot t of phase s, will be

xs,t =

[
u
(1)
s,ta

(1)
s,t + u′(1)

s,ta
′(1)
s,t + v

(1)
s,t b

(1)
s,t + v′

(1)
s,t b

′(1)
s,t

cs,t + u
(2)
s,ta

(2)
s,t + u′(2)

s,ta
′(2)
s,t + v

(2)
s,t b

(2)
s,t + v′

(2)
s,t b

′(2)
s,t

]
where, depending on the instance, some of these symbols
will be deactivated resulting in a simpler transmitted signal.
In the above, a(i)s,t, a

′(i)
s,t will denote independent information

symbols, from transmitter i to receiver 1, while symbols
b
(i)
s , b′

(i)
s are intended for receiver 2, again from transmitter

i. In addition, cs,t will represent a common information
symbol generally intended for both receivers. Furthermore
u
(i)
s,t, u

′(i)
s,t, v

(i)
s,t, v

′(i)
s,t are unit-norm ‘precoding’ scalars which

— when combined in time and space — help align the
interference from the distributed transmitters at the unintended
receivers.

Communication takes place under an average power con-
straint P on both transmitters. We use the following notation
to describe the allocated power on different symbols

P (a)
s ,E|a(i)s,t|2, P (a′)

s ,E|a′(i)s,t|2, P (b)
s ,E|b(i)s,t|2, P (b′)

s ,E|b′(i)s,t|2

and note that this holds equally for both transmitters, i = 1, 2.
Furthermore, we use r

(a)
s to mean that, during phase s, each

symbol a(i)s,t, t = 1, · · · , Ts, carries r
(a)
s logP + o(logP ) bits.

Similarly, we use r
(a′)
s , r

(b)
s , r

(b′)
s , r

(c)
s to describe the prelog

factor of the number of bits carried by a′
(i)
s,t, b

(i)
s,t, b

′(i)
s,t, cs,t

respectively.
Remark 1: We note that typically, a receiver encounters

interference originating from two transmitters. The general
idea behind our scheme is that a receiver uses linear com-
binations of received signals to remove as much interfer-
ence as possible from one transmitter, and then have the
other transmitter help out — with precoding that employs
imperfect-current and delayed feedback — in removing the
remaining interference. This will be achieved with a proper
choice of precoding scalars that are functions of imperfect
current and delayed CSIT. Given that this CSIT can be of
imperfect quality, the interference may not be fully removed
immediately, thus forcing power-and-rate regulation of the
information symbols, as well as a multiphase scheme that
uses proactive encoding which handles interference at later
stages of the communication process, and which then allows
for retrospective decoding of the original private information.



A. Coding

The phase durations T1, T2, · · · , TS are chosen to be inte-
gers such that

T2 = T1ξ, Ts = Ts−1µ, ∀s ∈ {3, 4, · · · , S − 1},
TS = TS−1γ = T1ξµ

S−3γ (6)

where ξ = 8(1−α)
3(4−7α) , µ = 2α

4−7α , γ = α
2(1−α) .

We proceed with the description of the phases.
a) Phase 1: Phase 1 consists of T1

3 sub-phases, with each
sub-phase consisting of three consecutive time slots. We will
focus on the first such sub-phase (i.e., the first 3 time slots
of the first phase), corresponding to time (1, 1), (1, 2), (1, 3).
The rest of the sub-phases will simply be a repetition of this
first sub-phase, with each sub-phase corresponding to new
information symbols. In this first sub-phase, the transmitted
signals are

x1,1=

[
a
(1)
1,1

a
(2)
1,1+a′

(2)
1,1

]
,x1,2=

[
b
(1)
1,2

b
(2)
1,2+b′

(2)
1,2

]
,x1,3=

[
a
(1)
1,1+b

(1)
1,2

u
(2)
1,3a

(2)
1,1+v

(2)
1,3b

(2)
1,2

]
where the power and normalized rates are set as

P
(a)
1 =̇ P

(b)
1 =̇ P, P

(a′)
1 =̇ P

(b′)
1 =̇ P 1−α

r
(a)
1 = r

(b)
1 = 1, r

(a′)
1 = r

(b′)
1 = 1− α (7)

and where

u
(2)
1,3 =

g
(2)
1,1 ĝ

(1)
1,3

g
(1)
1,1 ĝ

(2)
1,3

, v
(2)
1,3 =

h
(2)
1,2ĥ

(1)
1,3

h
(1)
1,2ĥ

(2)
1,3

.

To gain insight into the workings of the scheme, we note
that, for example, u(2)

1,3 is chosen to assist receiver 2 remove
the interference from transmitter 2 using delayed estimates
g
(1)
1,t , g

(2)
1,t as well as using current imperfect estimates of the

two channels leading to receiver 2 from the two transmitters.
We note that the above expression reflects our assumption that
delayed CSIT here is of perfect quality.

Excluding the noise term for the sake of brevity, the
received signals at receiver 1 take the form

y1,1 = h
(1)
1,1a

(1)
1,1 + h

(2)
1,1(a

(2)
1,1 + a′

(2)
1,1)

y1,2 = h
(1)
1,2b

(1)
1,2 + h

(2)
1,2(b

(2)
1,2 + b′

(2)
1,2)

y1,3 = h
(1)
1,3(a

(1)
1,1 + b

(1)
1,2) + h

(2)
1,3(u

(2)
1,3a

(2)
1,1 + v

(2)
1,3b

(2)
1,2). (8)

Upon receiving the above, receiver 1 removes the unintended
symbol b

(1)
1,2 from transmitter 1, using the following linear

combination, to get

y1,3/h
(1)
1,3 − y1,2/h

(1)
1,2

= a
(1)
1,1︸︷︷︸
P

+
h
(2)
1,3

h
(1)
1,3

u
(2)
1,3a

(2)
1,1︸ ︷︷ ︸

P

+

i1,1︷ ︸︸ ︷
(
h
(2)
1,3

h
(1)
1,3

v
(2)
1,3 −

h
(2)
1,2

h
(1)
1,2

)b
(2)
1,2 −

h
(2)
1,2

h
(1)
1,2

b′
(2)
1,2︸ ︷︷ ︸

P (1−α)

where under each term we noted the order of the summand’s
average power, where i1,1 denotes the interference from
transmitter 2 onto receiver 1 during this first sub-phase of

the first phase, and where the power of this interference is
bounded as

E|i1,1|2 = E

∣∣∣∣∣h
(2)
1,2

h
(1)
1,2

(
h
(2)
1,3

h
(1)
1,3

ĥ
(1)
1,3

ĥ
(2)
1,3

− 1)b
(2)
1,2

∣∣∣∣∣
2

+ E

∣∣∣∣∣h
(2)
1,2

h
(1)
1,2

b′
(2)
1,2

∣∣∣∣∣
2

=̇E

∣∣∣∣∣h
(2)
1,2

h
(1)
1,2

h̃
(2)
1,3ĥ

(1)
1,3 − ĥ

(2)
1,3h̃

(1)
1,3

h
(1)
1,3ĥ

(2)
1,3

b
(2)
1,2

∣∣∣∣∣
2

+ P 1−α=̇P 1−α. (9)

In the above, precoding with v
(2)
1,3 , managed to bring down the

residual interference of b
(2)
1,2 (due to imperfections in current

CSIT), to the levels of the interference imposed by b′
(2)
1,2.

Receiver 2, which follows a parallel course of action, now
experiences interference θ1,1 from transmitter 2, where this
interference is similarly bounded above by P 1−α. At the end
of this first sub-phase (3 time slots), transmitter 2 uses its
partial knowledge of current CSIT to reconstruct {i1,1, θ1,1},
and to quantize each term to get

ī1,1 = i1,1 − ĩ1,1, θ̄1,1 = θ1,1 − θ̃1,1.

Allowing for (1− α) logP bits per interference term, allows
in turn for E(|̃i1,1|2) =̇ E(|θ̃1,1|2) =̇ 1.

At this point, this same procedure described here for the
first sub-phase of the first phase, is repeated for the remaining
T1

3 −1 sub-phases, corresponding though to new information.
This process results in the accumulation of a total of 2T1

3 (1−
α) logP quantization bits representing residual interference.
These bits will be distributed evenly into the common symbols
{c2,t}T2

t=1 of the second phase.
2) Phase s, 2 ≤ s ≤ S − 1: Phase s consists of Ts

4 sub-
phases, each consisting of 4 consecutive channel uses. As
before, we describe the first sub-phase, corresponding to time
(s, 1), (s, 2), (s, 3), (s, 4), where the transmitted signals are

xs,1 =

[
a
(1)
s,1 + a′

(1)
s,1

cs,1 + a
(2)
s,1

]
, xs,2 =

[
b
(1)
s,2 + b′

(1)
s,2

cs,2 + b
(2)
s,2

]

xs,3 =

[
a
(1)
s,1 + a′

(1)
s,1 + b

(1)
s,2 + b′

(1)
s,2

cs,3 + u
(2)
s,3(a

(2)
s,1 + a′

(2)
s,3) + v

(2)
s,3(b

(2)
s,2 + b′

(2)
s,3)

]

xs,4 =

[
u
(1)
s,4a

(1)
s,1 + v

(1)
s,4b

(1)
s,2

cs,4 + a′
(2)
s,3 + b′

(2)
s,3

]
where

u
(2)
s,3 =

g
(2)
s,1 ĝ

(1)
s,3

g
(1)
s,1 ĝ

(2)
s,3

, u
(1)
s,4 =

g
(1)
s,1

g
(2)
s,1

(
g
(1)
s,3 ĝ

(2)
s,3

g
(2)
s,3 ĝ

(1)
s,3

− 1)
ĝ
(2)
s,4

ĝ
(1)
s,4

v
(2)
s,3 =

h
(2)
s,2ĥ

(1)
s,3

h
(1)
s,2ĥ

(2)
s,3

, v
(1)
s,4 =

h
(1)
s,2

h
(2)
s,2

(
h
(1)
s,3ĥ

(2)
s,3

h
(2)
s,3ĥ

(1)
s,3

− 1)
ĥ
(2)
s,4

ĥ
(1)
s,4

(10)

and where the rates and power are allocated as follows

P (c)
s =̇ P, P (a)

s = P (b)
s =̇ P 2α, P (a′)

s = P (b′)
s =̇ Pα

r(cs,1)s = r(cs,2)s = r(cs,3)s = 1− 2α, r(cs,3)s = 1− α,

r(a)s = r(b)s = 2α, r(a
′)

s = r(b
′)

s = α. (11)



We focus on the noiseless version of the signals of the first
receiver, which take the form

ys,1 = h
(2)
s,1cs,1 + h

(1)
s,1(a

(1)
s,1 + a′

(1)
s,1) + h

(2)
s,1a

(2)
s,1

ys,2 = h
(2)
s,2cs,2 + h

(1)
s,2(b

(1)
s,2 + b′

(1)
s,2) + h

(2)
s,2b

(2)
s,2

ys,3 = h
(2)
s,3cs,3 + h

(1)
s,3(a

(1)
s,1 + a′

(1)
s,1 + b

(1)
s,2 + b′

(1)
s,2)

+ h
(2)
s,3

(
u
(2)
s,3(a

(2)
s,1 + a′

(2)
s,3) + v

(2)
s,3(b

(2)
s,2 + b′

(2)
s,3)

)
ys,4 = h

(2)
s,4cs,4+h

(1)
s,4(u

(1)
s,4a

(1)
s,1+v

(1)
s,4b

(1)
s,2)+h

(2)
s,4(a

′(2)
s,3 + b′

(2)
s,3).

At this point, receiver 1 decodes cs,1, cs,2, cs,3, cs,4 by treating
the other signals as noise1. After removal of these common
symbols, receiver one has y′s,t = ys,t−h

(2)
s,t cs,t, t = 1, · · · , 4,

where

y′s,1 = h
(1)
s,1(a

(1)
s,1 + a′

(1)
s,1) + h

(2)
s,1a

(2)
s,1

y′s,2 = h
(1)
s,2(b

(1)
s,2 + b′

(1)
s,2) + h

(2)
s,2b

(2)
s,2

y′s,3 = h
(1)
s,3(a

(1)
s,1 + a′

(1)
s,1 + b

(1)
s,2 + b′

(1)
s,2)

+ h
(2)
s,3

(
u
(2)
s,3(a

(2)
s,1 + a′

(2)
s,3) + v

(2)
s,3(b

(2)
s,2 + b′

(2)
s,3)

)
y′s,4 = h

(1)
s,4(u

(1)
s,4a

(1)
s,1 + v

(1)
s,4b

(1)
s,2) + h

(2)
s,4(a

′(2)
s,3 + b′

(2)
s,3). (12)

b) Interference alignment and power reducing: Receiver
1 considers the following linear combination

y′s,3

h
(1)
s,3

−
y′s,2

h
(1)
s,2

= σs,1 +

is,1︷ ︸︸ ︷
(
h
(2)
s,3

h
(1)
s,3

v
(2)
s,3 −

h
(2)
s,2

h
(1)
s,2

)b
(2)
s,2 +

h
(2)
s,3

h
(1)
s,3

v
(2)
s,3b

′(2)
s,3︸ ︷︷ ︸

Pα

as a means of canceling the unintended information from
transmitter 1. In the above, we use σs,1 to simply denote
the part of the received signal — during this sub-phase —
that consists of desired symbols, while we also recall that is,1
denotes the interference from transmitter 2. The interference
relating to b

(1)
s,2 + b′

(1)
s,2 has been removed by the actions of

transmitter 1. Choosing v
(2)
s,3 =

h
(2)
s,2ĥ

(1)
s,3

h
(1)
s,2ĥ

(2)
s,3

, guarantees that

E|is,1|2 = E

∣∣∣∣∣(h
(2)
s,3

h
(1)
s,3

v
(2)
s,3 −

h
(2)
s,2

h
(1)
s,2

)b
(2)
s,2

∣∣∣∣∣
2

+ E

∣∣∣∣∣h
(2)
s,3

h
(1)
s,3

v
(2)
s,3b

′(2)
s,3

∣∣∣∣∣
2

=̇ E

∣∣∣∣∣h
(2)
s,2

h
(1)
s,2

(h̃
(2)
s,3ĥ

(1)
s,3 − h̃

(1)
s,3ĥ

(2)
s,3)

h
(1)
s,3ĥ

(2)
s,3

b
(2)
s,2

∣∣∣∣∣
2

+ Pα =̇ Pα (13)

and using y′s,2 and y′s,3, receiver 1 removes the interference
from transmitter 1 and also reduces interference from trans-
mitter 2. Similar arguments apply also for the interference θs,1
at receiver 2 originating from transmitter 2.

We also consider

y′s,3

h
(2)
s,3v

(2)
s,3

−
y′s,2

h
(2)
s,2

−
y′s,4

h
(2)
s,4

= σs,2 + (η −
h
(1)
s,4

h
(2)
s,4

v
(1)
s,4)b

(1)
s,2︸ ︷︷ ︸

P 0

+ ηb′
(1)
s,2︸ ︷︷ ︸

P 0

1For the case of cs,4, note that this is achieved by proper choice of u(1)
s,4.

where σs,2 is the desired signal, and where η =
h
(1)
s,3

h
(2)
s,3v

(2)
s,3

− h
(1)
s,2

h
(2)
s,2

.

With proper choice of precoding scalars, we have

E

∣∣∣∣∣(η− h
(1)
s,4

h
(2)
s,4

v
(1)
s,4)b

(1)
s,2

∣∣∣∣∣
2

=E

∣∣∣∣∣h
(1)
s,2

h
(2)
s,2

(
h
(1)
s,3ĥ

(2)
s,3

h
(2)
s,3ĥ

(1)
s,3

−1)(1−
h
(1)
s,3ĥ

(2)
s,3

h
(2)
s,3ĥ

(1)
s,3

)b
(1)
s,2

∣∣∣∣∣
2

=E

∣∣∣∣∣h
(1)
s,2

h
(2)
s,2

(h̃
(1)
s,3ĥ

(2)
s,3 − h̃

(2)
s,3ĥ

(1)
s,3)

h
(2)
s,3ĥ

(1)
s,3

(h̃
(2)
s,3ĥ

(1)
s,3 − h̃

(1)
s,3ĥ

(2)
s,3)

h
(2)
s,3ĥ

(1)
s,3

b
(1)
s,2

∣∣∣∣∣
2

=̇P 0

and

E
∣∣∣ηb′(1)s,2

∣∣∣2 = E

∣∣∣∣∣h
(1)
s,2

h
(2)
s,2

(h̃
(1)
s,3ĥ

(2)
s,3 − h̃

(2)
s,3ĥ

(1)
s,3)

h
(2)
s,3ĥ

(1)
s,3

b′
(1)
s,2

∣∣∣∣∣
2

=̇ P 0

Using y′s,2 and y′s,4, receiver 1 removes the interference
relating to b

(2)
s,2+ b′

(2)
s,3 in y′s,3, and the power of b(1)s,2 and b′

(2)
s,2

is reduced below the noise level.
Similarly receiver 1 can also get

σs,3 = σs,2 −
h
(1)
s,3

h
(2)
s,3v

(2)
s,3

σs,1 = −
h
(1)
s,4

h
(2)
s,4

u
(1)
s,4a

(1)
s,1 − a′

(2)
s,3

which will be used later to decode.
c) Quantizing and retransmitting the interference: Up

to this point, we have removed the unintended signals from
transmitter 1, and now focus on the interference originating
from transmitter 2. After the first sub-phase of phase s,
transmitter 1 reconstructs is,1, θs,1 using its knowledge of
delayed CSIT, and quantizes these into

īs,1 = is,1 − ĩs,1, θ̄s,1 = θs,1 − θ̃s,1

requiring a total of 2α logP bits, allowing for bounded noise

E(|̃is,1|2) =̇ E(|θ̃s,1|2) =̇ 1.

Consequently during phase s, a total of α
2 Ts logP bits are

accumulated, and will be distributed evenly into the common
symbol sets {cs+1,t}Ts+1

t=1 of the next phase.
3) Phase S: Phase S has TS

3 sub-phases, each consisting
of 3 consecutive time slots. Focusing on (S, 1), (S, 2), (S, 3),
we have

xS,1 =

[
a
(1)
S,1

cS,1 + a
(1)
S,1

]
, xS,2 =

[
b
(1)
S,2

cS,2 + b
(2)
S,2

]
,

xS,3 =

[
a
(1)
S,1 + b

(1)
S,2

cS,3 + u
(2)
S,3a

(2)
S,1 + v

(2)
S,3b

(2)
S,2

]
where

u
(2)
S,3 =

g
(2)
S,1ĝ

(1)
S,3

g
(1)
S,1ĝ

(2)
S,3

, v
(2)
S,3 =

h
(2)
S,2ĥ

(1)
S,3

h
(1)
S,2ĥ

(2)
S,3

and where the power and rate are set to

P
(c)
S =̇ P, P

(a)
S =̇ Pα, P

(b)
S =̇ Pα

r
(c)
S = 1− α, r

(a)
S = r

(b)
S = α. (14)

As before, receiver 1 decodes and removes the common
symbols to get

y′S,1 = h
(1)
S,1a

(1)
S,1 + h

(2)
S,1a

(2)
S,1

y′S,2 = h
(1)
S,2b

(1)
S,2 + h

(2)
S,1b

(2)
S,2

y′S,3 = h
(1)
S,3(a

(1)
S,1 + b

(1)
S,2) + h

(2)
S,3(u

(2)
S,3a

(2)
S,1 + v

(2)
S,3b

(2)
S,2). (15)



which are then linearly combined to get

y′S,3

h
(1)
S,3

−
y′S,2

h
(1)
S,2

=a
(1)
S,1+

h
(2)
S,3

h
(1)
S,3

u
(2)
S,3a

(2)
S,1︸ ︷︷ ︸

Pα

+(
h
(2)
S,3

h
(1)
S,3

v
(2)
S,3 −

h
(2)
S,2

h
(1)
S,2

)b
(2)
S,2︸ ︷︷ ︸

P 0

where

E

∣∣∣∣∣(h
(2)
S,3

h
(1)
S,3

v
(2)
S,3−

h
(2)
S,2

h
(1)
S,2

)b
(2)
S,2

∣∣∣∣∣
2

=E

∣∣∣∣∣ h̃
(2)
S,3ĥ

(1)
S,3 − h̃

(1)
S,3ĥ

(1)
S,3

h
(1)
S,3ĥ

(1)
S,3

b
(2)
S,2
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2

=̇P 0

B. Decoding

1) Phase S: Receiver 1 first decodes cS,t by treating all
other signals as noise, and then removes h

(2)
S,tcS,t from yS,t.

At this point, for each sub-phase, the receiver experiences an
equivalent 2 × 2 MIMO channel of the form (with bounded
noise)[

y′S,1
y′

S,3

h
(1)
S,3

− y′
S,2

h
(1)
S,2

]
=

 h
(1)
S,1 h

(1)
S,2

1
h
(2)
S,3

h
(1)
S,3

u
(2)
S,3

[
a
(1)
S,1

a
(2)
S,1

]

allowing receiver 1 to decode a
(1)
S,1, a

(2)
S,1. Now receiver 1

can go back one phase and reconstruct {̄iS−1,t}TS−1

t=1 using
knowledge of the common symbols of this last phase. Similar
actions are performed by receiver 2.

2) Phase s, s = S − 1, · · · , 2. As before, receiver 1
first decodes cs,t. Using the already decoded {cs+1,t}Ts+1

t=1 ,
receiver 1 reconstructs {̄is,t, θ̄s,t}Ts

t=1, and for each sub-phase,
subtracts īs,1 to get σs,1, up to bounded noise. The same
receiver also employs the estimate θ̄s,1 as an extra observation.
Thus now receiver 1 sees a 4× 4 MIMO channel of the form


y′s,1
σs,1

σs,3

θ̄s,1

=


h
(1)
s,1 h

(2)
s,1 h

(1)
s,1 0

1
h
(2)
s,3

h
(1)
s,3

u
(2)
s,3 1

h
(2)
s,3

h
(1)
s,3

u
(2)
s,3

−h
(1)
s,4

h
(2)
s,4

u
(1)
s,4 0 0 −1

0
g
(2)
s,3

g
(1)
s,3

u
(2)
s,3−

g
(2)
s,1

g
(1)
s,1

0
g
(2)
s,3

g
(1)
s,3

u
(2)
s,3


︸ ︷︷ ︸

A


a
(1)
s,1

a
(2)
s,1

a′
(1)
s,1

a′
(2)
s,3



where one can check that matrix has a full rank almost surely.
With the above linear independence established, we now see
that we have accumulated two observations of power P 2α,
and two observations of power Pα, while at the same time,
there are two information symbols of power P 2α and of rate
2α and two information symbols of power Pα and of rate
α. This suffices for receiver 1 to decode a

(1)
s,1, a

(2)
s,1, a

′(1)
s,1, a

′(2)
s,3.

The process is the similar for receiver 2.
3) Phase 1: Similarly, receiver 1 first reconstructs

{̄i1,1, θ̄1,1}T1
t=1 from {c2,t}T2

t=1 for each sub-phase to get a 3×3
MIMO channel of the form y1,1

y1,3

h
(1)
1,3

− y1,2

h
(1)
1,2

− ī1,1

θ̄1,1

=


h
(1)
1,1 h

(2)
1,1 h

(2)
1,1

1
h
(2)
1,3

h
(1)
1,3

u
(2)
1,3 0

0
g
(2)
1,3

g
(1)
1,3

u
(2)
1,3 −

g
(2)
1,1

g
(1)
1,1

− g
(2)
1,1

g
(1)
1,1


a

(1)
1,1

a
(2)
1,1

a′
(2)
1,1


where obviously the matrix has a full rank almost surely.
Therefore, receiver can decode a

(1)
1,1, a

(2)
1,1 with rate 1 respec-

tively, and a′
(2)
1,1 with rate 1− α. Receiver 2 acts the same.

C. DoF calculation

Adding up the private information transmitted over the
different phases, we get that

d∑ = (
T1

3
(6− 2α) +

S−1∑
i=2

Ti

4
(12α) +

TS

3
4α)/(

S∑
i=1

Ti)

= 3α+ (T1(2−
11

3
α)− TS

5

3
α)/(

S∑
i=1

Ti)

Considering that 0 ≤ µ ≤ 1, for an asymptotically high S,
we get

d∑=3α+

T2

ξ (2− 11
3 α)− 5

3T2µ
S−3γα

T2

ξ + T2(
1

1−µ + µS−3(γ − µ
1−µ ))

=
6

5
+
2α(2−3α)

5(4−7α)

which proves the result, and which additionally shows that the
optimal sum DoF 4

3 is achievable even with α = 4
9 .

IV. CONCLUSIONS

This work provided analysis and a novel scheme for the
setting of the two-user SISO X channel with imperfect quality
current and delayed CSIT, offering insight on how much
delayed and current feedback quality suffices to achieve a
certain target sum-DoF performance.

ACKNOWLEDGMENT

The work was supported by the European Community’s
Seventh Framework Programme (FP7/2007-2013) / grant
agreement no.318306 (NEWCOM#), the FP7 CELTIC SPEC-
TRA project, and by the ANR project IMAGENET.

REFERENCES

[1] C. Vaze and M. Varanasi, “The degree-of-freedom regions of MIMO
broadcast, interference, and cognitive radio channels with no CSIT,”
IEEE Trans. Inf. Theory, vol. 58, no. 8, pp. 5254 – 5374, Aug. 2012.

[2] S. Lashgari, A. S. Avestimehr, and C. Suh, “Linear degrees of freedom
of the X-channel with delayed CSIT,” IEEE Trans. Inf. Theory, vol. 60,
no. 4, pp. 2180 – 2189, Apr. 2014.

[3] S. Jafar and S. Shamai, “Degrees of freedom region of the MIMO X
channel,” IEEE Trans. Inf. Theory, vol. 54, no. 1, pp. 151 – 170, Jan
2008.

[4] M. A. Maddah-Ali and D. N. C. Tse, “Completely stale transmitter
channel state information is still very useful,” IEEE Trans. Inf. Theory,
vol. 58, no. 7, pp. 4418 – 4431, Jul. 2012.

[5] M. J. Abdoli, A. Ghasemi, and A. K. Khandani, “On the degrees of
freedom of K-user SISO interference and X channels with delayed
CSIT,” IEEE Trans. Inf. Theory, 2013.

[6] S. Yang, M. Kobayashi, D. Gesbert, and X. Yi, “Degrees of freedom
of time correlated MISO broadcast channel with delayed CSIT,” IEEE
Trans. Inf. Theory, vol. 59, no. 1, pp. 315–328, Jan. 2013.

[7] J. Chen and P. Elia, “Can imperfect delayed CSIT be as useful as perfect
delayed CSIT? DoF analysis and constructions for the BC,” in Proc.
Allerton Conf. Communication, Control and Computing, Oct. 2012.

[8] T. Gou and S. Jafar, “Optimal use of current and outdated channel state
information: Degrees of freedom of the MISO BC with mixed CSIT,”
IEEE Communications Letters, vol. 16, no. 7, pp. 1084 – 1087, Jul.
2012.

[9] J. Chen and P. Elia, “Toward the performance versus feedback tradeoff
for the two-user miso broadcast channel,” IEEE Trans. Inf. Theory,
vol. 59, no. 12, pp. 8336–8356, Dec. 2013.

[10] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran, “Multiuser MIMO
achievable rates with downlink training and channel state feedback,”
IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2845 – 2866, Jun. 2010.

[11] N. Lee, R. Tandon, and R. W. Heath Jr., “Distributed space-time
interference alignment with moderately-delayed CSIT,” 2014, to appear
in IEEE Transactions on Wireless Communications.


